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Quick review

PMF:
px(x) = P(X = x)
Joint PMF:
pxy(x,y) =PX =xY =y)
Conditional PMF:
pxy(xly) = P(X =x|Y = y)
Marginal PMF:

px(x) = Zpr,Y(x: y)

Joint PMF as conditional PMF:
Pxy (X, y) = px (X)pyx(V]x)



 Expectation
— E[X]
— Average, values taken by variable X weighted by probability

e \ariance

— Distance (spread) from the average
— E[X?] = (E[X])?

 These functions (operator) can be applied onto
unconditional, joint, or conditional probability (note*:
they are all the same, just probability with different
sample space)
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Consider an experiment in which a fair four-sided (with
faces labeled 0,1,2,3) is thrown once to determine how
many times a fair coin is to flipped. In the sample space of
this experiment, random variables N and K are defined by:

e N =the result of die roll

e K =the total number of heads resulting from the coin
flips



a) Determine and sketch py(n)

pn(n)

[




b) Determine and tabulate py ((n,k)

When N =0, the coin is not flipped at all, so K=0. When N =n forn €
{1, 2, 3}, the coin is flipped n times, resulting in K with a distribution
that is conditionally binomial. The binomial probabilities are all
multiplied by % because py(n) =% forn € {1, 2, 3},

PK|N(k|n)"’B(n: k)
To construct the following table

Pk|N (kln)py(n) = pg n(k,n)

k=0 k=1 k=2 k=3

n=0| 1/4 0 0 0
n=1| 1/8 1/8 0 0
n=211/16 1/8 1/16 0

n=3|1/32 3/32 3/32 1/32



c) Determine and sketch pyy(k|2)

Conditioning on N =2, K is binomial random variable. So we
immediately see that

E if k=0
-, 1 —_
4
= if k=1
-, 1 —_
prin(k|2) =12
. iIf k=2
-, 1 —_
4
\
k=0 k=1 k=2 k=3
n=0| 1/4 0 0 0
o é f}@fﬁlfm D 8 This is essentially a normalized row
n=3| 1/32 3/32 3/32 1/32 of the table on the left

Or you can apply binomial PMF
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d) Determine and sketch py,«(n|2)

To get K=2, there must been at least 2 coin tosses, so only
N=2, and N=3

1
P({N =2} n{K = 2}) 16 2
pN|K(2|2): — — 1 63 — =
P(K = 2)) L3 5
16 * 32
P({N =3} n{K = 2}) > 3
— — 2
pnix (312) = — =7 3 3T =T
P({K = 2}) n 5
16 * 32
k=0 k=1 k=2 k=3
n=0| 1/4 0 0 0
n=1|1/8 1/8 0 0

n=2|1/16 1/8 1/16 0
n=3|1/32 3/32 3/32 1/32
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P2

Consider an outcome space comprising eight equally-likely
event points as show below:

Yo

(1/8) (1/8)

3 ®
(1/8) (1/8)

2 —+ ° ®
(1/8) (1/8) (1/8)

1 & ® ®
(1/8)
0 | —




a) Which value(s) of x maximize E[Y|X=x]?

1 1
E[Y|X=O]=§*3+§*1=2

1 1
ElY|X = 2] =§*2+§*1=1.5

1 1 1
ElY|X = 4] =_*3+_*2+Z*1=1'5

4 4
y o
(1/8) (1/8)
3e ¢
(1/8) (1/8)
oL . . X = 0 maximizes that E[Y | X=x]
(1/8) (1/8) (1/8)
14 . .
(1/8)
0 | | |




b) Which values of y maximize var(X|Y=y)?
var(X|Y =0) =?
E[X|Y = 0] = 4, variance of a constant =0
E[X|Y = 1] = 2,var(X|Y = 1) = Exjy=1[(X — 2)?]

= 4 + L 0+ L 4 =8/3
= — % — X — % =
3 3 3
REPEAT
Yo
; *{1x8) . (1/8) (0,ify = 0
8
(1/8) (1/8) §,ify:1
2T * * var(X|Y = y) =« 1 ifye
(1/8) (1/8) (1/8) y Y=
1% . . 4,if y=3
(1/8) .undefined,
0 R --




c) Let R = min(X,Y). Prepare a neat fully labeled sketch of

prir)

Pr(r)
38 T
14 +
1/8 T
Yoy
(1/8) (1/8)
3| ®
(1/8) (1/8)
2|+ o o
(1/8) (1/8) (1/8)
. 2 @ @
O ] | ﬁ\a

A total of 8 points

NOW GO THROUGH EACH CASE
TO ADD

14



d) Let A denote the events X? > Y. Determine numerical
values for the quantities of E[XY] and E[XY|A]

BXYI= ) (XY )par(x)

=1/80*3+4*3+2+x24+4+x24+0*x1+2x1+4x14+4%0
= 15/4

Conditioning on A removes the point masses at (0,1) (0,3). The
conditional probability of each of the remaining point masses is thus
1/6

8 (1/8)

/3 - 1&\ .
(1/8) (1/8)

I *
(1/8) | (1/8) (1/8)

1 / ° °
\0\/ o (1/8)




E[XY|A]

1
=E(4*3+2*2+4*2+2*1+4*1+4*0)=5
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Variance of geometric distribution?



Back to geometric case

e Al:{X=1}, A2:{X>1}

E[X?|[x =1]=1x*p
E[X2|X > 1] = E[(1 + X)?] = 1+ 2E[X] + E[X?]

1
E[X?] =p*1+(1—p)*<1+2*—+E[X2]>

p
TOTAL EXPENCTATION THEOREM (SEPARATE INTO TWO CASES)
2 1
E[X?] = — — -
p* P
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Consider a sequence of independent tosses of a biased coin
at timest=0,1,2,... On each toss, the probability of a ‘head’
is p, and the probability of a ‘tail’ is 1-p. A reward of one
unit is given each time that a ‘tail’ follows immediately after
‘head’. Let R be the total reward paid in times 1,2,...,n. Find
E[R] and var(R)



Let |, be the reward paid at time k, we have
Ell,] =P, =1) =P(T attime kand H attime k — 1) = 1

=p(1—p)

Computing E[R] is immediate because:

E[R|=E|) I

= > Ell] =np(1—p)
k=1

The variance is not as easy because |,s are not all independent

E[i7] =

p(1—p)*1°

E(II,+1] = 0 because reward can only happen at a time!

Ellilir] = EUR)E[Ix] = p?(1 — p)?,forl = 2



n

E[R?] =E_ ;1,{ 2 I

m=1

] n
| k=

n

E[Iklm]
1

m=

When k = m, the summation is ap(1 — p)

— There are n terms of this

When |k — m| = 1, summation is O

— There are 2n-2 terms of this kind

E[IZ] = p(1 —p) = 12
Elle 411 =0
E[liIk] = p*(1 = p)?,

So the rest has summation of (n*—3n + 2) * (p* *

(1-p)?)
Put it together:
Var[R*] = E[R?*] — (E[R])*

=np(1—p) + (n? —3n+2)p2(1 — p)? — n?p?(1 — p)?

=np(1—p) — Bn—2)p*(1 - p)’


吳俊毅
刪劃線
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The joint PMF of the random variable X and Y is given by
the following table:

y =3 C C 2¢

Yy = 2 2¢ 0 4c

y=1 3c C Oc
r=1|x=2|2=3




a) Find the value of the constant c:

We can find ¢ knowing that the probability of the entire
sample space must equal to 1

3 3

1=ZZpX,Y(x,y)=C+c+ZC+2c+4c+3c+c+6c
x=1y=1

= 20c



b) Find py(2)

y=3 C c 9
y =2 2c 0 Ac
Yy = 3¢ C 6

r=1|x=2|2=23

3
Pxy(x,2) =2c+0+4c=—

py(2) = -

3

x=1

24



c) Consider the random variable Z = YX?. Find the

E[Z|Y = 2]

E[Z|Y = 2] = E[YX?|y = 2] = E[2X2|y = 2] = 2E[X?|Y

:2]

PX|Y(X|2) =

Therefore,

.

px|y (x]2) =<

Pxy (x,2) oy,
2 y=2, 2c 0 e
pY( ) y=1 3c c Ge
r=1]r= r=23
1
3’ / B
2 ‘720
g) lf X = 3

0, otherwise




E[Z|Y =2] =2

X

1 2
x°pxy (x|2) = 2 (12 3t 32 % —>

3
- 3

1

38
3



d)

Conditioned on the event that X # 2, are Xand Y
independent? Give a one line justification.

=3 C

y=2\ 2c

U= 1 3c

[l )

Yes, let’s look at the following: r=1]z="

PX=x|Y =y, X#2)=PX =x|X +2)

think of an case:
PX=1Y=1,X#2)=PX=1Y =3, X #2)
=PX=1|X+2)=1/3

Given that X # 2, the distribution of X is the same given
Y=y




e) Find the conditional variance of Y given that X = 2

Pxy(2,y)
pyix(Vlx = 2) =
vix px(2)
> 1
px(2) = Pxy(2,¥) =c+0+c=1—0
y=1
y=3, c ( 2c
Enmmm /20 1.
r=1le=2|2=3 1/10 — 2'lfy_
pyix(¥12) =<1/20 1 |
L= ify=3
1/10 2
\ 0



e Conditional variance? Same thing as plain variance
var(Y|X = 2) = E[Y?|X = 2] — E[Y|X = 2]*

Just need to compute individual term:

E[Y?|X = 2] Zy pyix (x|y = 2)
=1

)b des

1 1
EIYIX =21 = ) ypyx(7]2) = 155 +3 %5 =2
y=1
var(Y|X=2)=5—-4=1
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e Suppose that X and Y are independent, identically
distributed (iid), geometric random variables with
parameter p, we want to show the following:

e P(X=ilX+Y =n) =ﬁ,f0ri =12,..,n—1



PE(X=i}n{X+Y =n)
P(X+Y =n)

PX=ilX+Y=n)=

The event {X =i} N {X + Y = n}in the numerator in equivalent to
{X =i} n{Y =n — i}, taking this in combination with the fact hat X
and Y are independent

n-—1
P(X+Y = n) :zP(Xzi)P(X+Y=n|X=i) -
=1

n—1
ZP(Xzi)P(i+Y:n|X:i) =
=1

ZP(X — DP(Y =n—i|X = i)
=1
=Y 'PX =D)PY =n—1i)

Total probability theorem



We only get non-zero probability for i=1, ..., n-1 since X and
Y are both geometric random variables

So now we can write it completely from the previous slides:
PX=0)P(Y =n-—1i)

P =X Y =n) = s s = P = n—1)

(1-p)tp—-p)™ - p (1-p)"
Z A =-p)ip(1l—p)»i1p Z (1 -p)"
(1 —-p)" 1

T A-pylil n-1
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 Asimple example of a random variable is the indictor of
an event A, which is denoted by I,:

1,ifweA
0, otherwise

I,(w) = {



a) Prove that two events A and B are independent if and
only if the associated indicator random variables, |,, I;
are independent

We know that |, is a random variable that maps a 1 to the
real number if w occurs within an event A, and maps a 0 to
the real number line if w occurs outside the event A. A
similar argument holds for event B, so we have the
following:

1 () — 1, with probability P(A)
A1 0, with probability 1 — P(A)

Foili 1, with probability P(B)
B(w) = 0, with probability 1 — P(B)



e If the random variables, A and B, are independent, we
have P(AN B) = P(A)P(B). The indicator random
variable 1, and I;, are independent if P, ;. =

P, (x) P, (y)
e We know that the intersection of A and B yields:

Pr,op(1,1) Pr,(1)Pr;(1)
= P(A)P(B)

P(A N B)



= P

P(AN B) = P(A)P(B) = Py, (1)Pp,(1)

P(A° N B) = P(A9)P(B) = Py, (0)P1,(1)

P(ANB®) =PA)P(B°) =Py, (1)P;,(0)
(A° N BY) = P(A°)P(B) = Py, (0)Py,,(0)

36



b) Show that if X = |, then E[X] = P(A)

E[X]=E[I,]=1xP(A)+0x(1—P(A)) = P(4)
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