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Quick review

PMF:
𝑝𝑝𝑋𝑋 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥

Joint PMF:
𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦)

Conditional PMF:
𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥 𝑦𝑦 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑌𝑌 = 𝑦𝑦

Marginal PMF:

𝑝𝑝𝑋𝑋 𝑥𝑥 = �
𝑦𝑦
𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)

Joint PMF as conditional PMF:
𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑥𝑥)
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• Expectation
– E[X]
– Average, values taken by variable X weighted by probability

• Variance
– Distance (spread) from the average
– E[X2] – (E[X])2

• These functions (operator) can be applied onto 
unconditional, joint, or conditional probability (note*: 
they are all the same, just probability with different 
sample space)
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p1

Consider an experiment in which a fair four-sided (with 
faces labeled 0,1,2,3) is thrown once to determine how 
many times a fair coin is to flipped. In the sample space of 
this experiment, random variables N and K are defined by:

• N = the result of die roll
• K = the total number of heads resulting from the coin 

flips
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a) Determine and sketch pN(n)
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b) Determine and tabulate pN,K(n,k)

When N = 0, the coin is not flipped at all, so K=0. When N = n for n ∈
{1, 2, 3}, the coin is flipped n times, resulting in K with a distribution 
that is conditionally binomial. The binomial probabilities are all 
multiplied by ¼ because pN(n) = ¼  for n ∈ {1, 2, 3},

6

𝑝𝑝𝐾𝐾|𝑁𝑁(𝑘𝑘|𝑛𝑛)~𝐵𝐵(𝑛𝑛, 𝑘𝑘)
To construct the following table
𝑝𝑝𝐾𝐾|𝑁𝑁 𝑘𝑘 𝑛𝑛 𝑝𝑝𝑁𝑁 𝑛𝑛 = 𝑝𝑝𝐾𝐾,𝑁𝑁(𝑘𝑘,𝑛𝑛)



c) Determine and sketch pK|N(k|2)

Conditioning on N =2, K is binomial random variable. So we 
immediately see that

𝑝𝑝𝐾𝐾|𝑁𝑁 𝑘𝑘 2 =

1
4

, if k=0
1
2

, if k=1
1
4

, if k=2

7

This is essentially a normalized row 
of the table on the left
Or you can apply binomial PMF
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d) Determine and sketch pN|K(n|2)

To get K=2, there must been at least 2 coin tosses, so only 
N=2, and N=3

𝑝𝑝𝑁𝑁|𝐾𝐾 2 2 =
𝑃𝑃( 𝑁𝑁 = 2 ∩ {𝐾𝐾 = 2})

𝑃𝑃( 𝐾𝐾 = 2 )
=

1
16

1
16 + 3

32
=

2
5

𝑝𝑝𝑁𝑁|𝐾𝐾 3 2 =
𝑃𝑃( 𝑁𝑁 = 3 ∩ {𝐾𝐾 = 2})

𝑃𝑃( 𝐾𝐾 = 2 )
=

3
32

1
16 + 3

32
=

3
5

9
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p2

Consider an outcome space comprising eight equally-likely 
event points as show below:
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a) Which value(s) of x maximize E[Y|X=x]?

𝐸𝐸 𝑌𝑌 𝑋𝑋 = 0 =
1
2
∗ 3 +

1
2
∗ 1 = 2

𝐸𝐸 𝑌𝑌 𝑋𝑋 = 2 =
1
2
∗ 2 +

1
2
∗ 1 = 1.5

𝐸𝐸 𝑌𝑌 𝑋𝑋 = 4 =
1
4
∗ 3 +

1
4
∗ 2 +

1
4
∗ 1 = 1.5

12

X = 0 maximizes that E[Y|X=x]



b) Which values of y maximize var(X|Y=y)?
𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 0 =?

𝐸𝐸 𝑋𝑋 𝑌𝑌 = 0 = 4, variance of a constant = 0
𝐸𝐸 𝑋𝑋 𝑌𝑌 = 1 = 2, 𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 1 = 𝐸𝐸𝑋𝑋|𝑌𝑌=1 𝑋𝑋 − 2 2

=
1
3
∗ 4 +

1
3
∗ 0 +

1
3
∗ 4 = 8/3

REPEAT

13

𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 =

0, if 𝑦𝑦 = 0
8
3

, if y=1

1, if y=2
4, if y=3

undefined,



c) Let R = min(X,Y). Prepare a neat fully labeled sketch of 
pR(r)
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A total of 8 points
NOW GO THROUGH EACH CASE 
TO ADD



d) Let A denote the events X2 ≥ Y. Determine numerical 
values for the quantities of E[XY] and E[XY|A]

𝐸𝐸 𝑋𝑋𝑌𝑌 = �
𝑥𝑥,𝑦𝑦

(𝑋𝑋𝑌𝑌)𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)

= 1/8(0 ∗ 3 + 4 ∗ 3 + 2 ∗ 2 + 4 ∗ 2 + 0 ∗ 1 + 2 ∗ 1 + 4 ∗ 1 + 4 ∗ 0
= 15/4

Conditioning on A removes the point masses at (0,1) (0,3). The 
conditional probability of each of the remaining point masses is thus 
1/6
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𝐸𝐸 𝑋𝑋𝑌𝑌|𝐴𝐴

=
1
6

4 ∗ 3 + 2 ∗ 2 + 4 ∗ 2 + 2 ∗ 1 + 4 ∗ 1 + 4 ∗ 0 = 5
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p3

Variance of geometric distribution?

17



Back to geometric case

• A1: {X=1}, A2:{X>1}

𝐸𝐸 𝑋𝑋2 𝑋𝑋 = 1 = 1 ∗ p
𝐸𝐸 𝑋𝑋2 𝑋𝑋 > 1 = 𝐸𝐸 (1 + 𝑋𝑋)2 = 1 + 2𝐸𝐸 𝑋𝑋 + 𝐸𝐸[𝑋𝑋2]

𝐸𝐸 𝑋𝑋2 = 𝑝𝑝 ∗ 1 + 1 − 𝑝𝑝 ∗ 1 + 2 ∗
1
𝑝𝑝

+ 𝐸𝐸 𝑋𝑋2

TOTAL EXPENCTATION THEOREM (SEPARATE INTO TWO CASES)

𝐸𝐸 𝑋𝑋2 =
2
𝑝𝑝2

−
1
𝑝𝑝

𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2 =
2
𝑝𝑝2

−
1
𝑝𝑝
−

1
𝑝𝑝2

=
1 − 𝑝𝑝
𝑝𝑝2
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p5

Consider a sequence of independent tosses of a biased coin 
at times t = 0,1,2,… On each toss, the probability of a ‘head’ 
is p, and the probability of a ‘tail’ is 1-p. A reward of one 
unit is given each time that a ‘tail’ follows immediately after  
‘head’. Let R be the total reward paid in times 1,2,…,n. Find 
E[R] and var(R)



Let Ik be the reward paid at time k, we have
𝐸𝐸 𝐼𝐼𝑘𝑘 = 𝑃𝑃 𝐼𝐼𝑘𝑘 = 1 = 𝑃𝑃 𝑇𝑇 at time 𝑘𝑘 and 𝐻𝐻 at time 𝑘𝑘 − 1 ∗ 1
= 𝑝𝑝(1 − 𝑝𝑝)

Computing E[R] is immediate because:

𝐸𝐸 𝑅𝑅 = 𝐸𝐸 �
𝑘𝑘=1

𝑛𝑛

𝐼𝐼𝑘𝑘 = �
𝑘𝑘=1

𝑛𝑛

𝐸𝐸[𝐼𝐼𝑘𝑘] = 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)

The variance is not as easy because Iks are not all independent
𝐸𝐸 𝐼𝐼𝑘𝑘2 = 𝑝𝑝 1 − 𝑝𝑝 ∗ 12

𝐸𝐸 𝐼𝐼𝑘𝑘𝐼𝐼𝑘𝑘+1 = 0 because reward can only happen at a time!

𝐸𝐸 𝐼𝐼𝑘𝑘𝐼𝐼𝑘𝑘+𝑙𝑙 = 𝐸𝐸 𝐼𝐼𝑘𝑘 𝐸𝐸 𝐼𝐼𝑘𝑘+𝑙𝑙 = 𝑝𝑝2(1 − 𝑝𝑝)2, for l ≥ 2



𝐸𝐸 𝑅𝑅2 = 𝐸𝐸 �
𝑘𝑘=1

𝑛𝑛

𝐼𝐼𝑘𝑘 �
𝑚𝑚=1

𝑛𝑛

𝐼𝐼𝑚𝑚 = �
𝑘𝑘=1

𝑛𝑛

�
𝑚𝑚=1

𝑛𝑛

𝐸𝐸 𝐼𝐼𝑘𝑘𝐼𝐼𝑚𝑚

• When k = m, the summation is 𝑛𝑛𝑝𝑝 1 − 𝑝𝑝
– There are n terms of this

• When 𝑘𝑘 −𝑚𝑚 = 1, summation is 0
– There are 2n-2 terms of this kind

• So the rest has summation of (𝑛𝑛2−3𝑛𝑛 + 2) ∗ (𝑝𝑝2 ∗
1 − 𝑝𝑝 2)

• Put it together:
𝑉𝑉𝑣𝑣𝑣𝑣 𝑅𝑅2 = 𝐸𝐸 𝑅𝑅2 − 𝐸𝐸 𝑅𝑅 2

= 𝑛𝑛𝑝𝑝 1 − 𝑝𝑝 + 𝑛𝑛2 − 3𝑛𝑛 + 2 𝑝𝑝2 1 − 𝑝𝑝 2 − 𝑛𝑛2𝑝𝑝2 1 − 𝑝𝑝 2

= 𝑛𝑛𝑝𝑝 1 − 𝑝𝑝 − (3𝑛𝑛 − 2)𝑝𝑝2(1 − 𝑝𝑝)2

𝐸𝐸 𝐼𝐼𝑘𝑘2 = 𝑝𝑝 1 − 𝑝𝑝 ∗ 12
𝐸𝐸 𝐼𝐼𝑘𝑘𝐼𝐼𝑘𝑘+1 = 0

𝐸𝐸 𝐼𝐼𝑘𝑘𝐼𝐼𝑘𝑘+𝑙𝑙 = 𝑝𝑝2(1 − 𝑝𝑝)2,

吳俊毅
刪劃線



p6

The joint PMF of the random variable X and Y is given by 
the following table:
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a) Find the value of the constant c:

We can find c knowing that the probability of the entire 
sample space must equal to 1

1 = �
𝑥𝑥=1

3

�
𝑦𝑦=1

3

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑐𝑐 + 𝑐𝑐 + 2𝑐𝑐 + 2𝑐𝑐 + 4𝑐𝑐 + 3𝑐𝑐 + 𝑐𝑐 + 6𝑐𝑐

= 20c

𝑐𝑐 =
1

20
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b) Find 𝑝𝑝𝑌𝑌 2

𝑝𝑝𝑌𝑌 2 = �
𝑥𝑥=1

3

𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥, 2) = 2𝑐𝑐 + 0 + 4𝑐𝑐 =
3

10
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c) Consider the random variable 𝑍𝑍 = 𝑌𝑌𝑋𝑋2. Find the 
𝐸𝐸 𝑍𝑍|𝑌𝑌 = 2

𝐸𝐸 𝑍𝑍 𝑌𝑌 = 2 = 𝐸𝐸 𝑌𝑌𝑋𝑋2 𝑌𝑌 = 2 = 𝐸𝐸 2𝑋𝑋2 𝑌𝑌 = 2 = 2𝐸𝐸[𝑋𝑋2|𝑌𝑌
= 2]

𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥 2 =
𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥, 2)
𝑝𝑝𝑌𝑌(2)

Therefore,

𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥 2 =

1
3

, 𝑖𝑖𝑖𝑖 𝑥𝑥 = 1

2
3

, 𝑖𝑖𝑖𝑖 𝑥𝑥 = 3

0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜
25

𝑐𝑐 =
1

20



𝐸𝐸 𝑍𝑍 𝑌𝑌 = 2 = 2�
𝑥𝑥=1

3

𝑥𝑥2𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥 2 = 2 12 ∗
1
3

+ 32 ∗
2
3

=
38
3
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d) 
Conditioned on the event that 𝑋𝑋 ≠ 2, are X and Y 
independent? Give a one line justification.

Yes, let’s look at the following:
𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑌𝑌 = 𝑦𝑦,𝑋𝑋 ≠ 2 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑋𝑋 ≠ 2)

think of an case:
𝑃𝑃 𝑋𝑋 = 1 𝑌𝑌 = 1,𝑋𝑋 ≠ 2 = 𝑃𝑃 𝑋𝑋 = 1 𝑌𝑌 = 3,𝑋𝑋 ≠ 2
= 𝑃𝑃 𝑋𝑋 = 1 𝑋𝑋 ≠ 2 = 1/3

Given that 𝑋𝑋 ≠ 2, the distribution of X is the same given 
Y=y
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e) Find the conditional variance of Y given that X = 2

𝑝𝑝𝑌𝑌|𝑋𝑋 𝑦𝑦 𝑥𝑥 = 2 =
𝑝𝑝𝑋𝑋𝑌𝑌(2,𝑦𝑦)
𝑝𝑝𝑋𝑋(2)

𝑝𝑝𝑋𝑋 2 = �
𝑦𝑦=1

3

𝑝𝑝𝑋𝑋𝑌𝑌(2,𝑦𝑦) = 𝑐𝑐 + 0 + 𝑐𝑐 =
1

10

𝑝𝑝𝑌𝑌|𝑋𝑋 𝑦𝑦 2 =

1/20
1/10

=
1
2

, 𝑖𝑖𝑖𝑖 𝑦𝑦 = 1

1/20
1/10

=
1
2

, 𝑖𝑖𝑖𝑖 𝑦𝑦 = 3

0
28



• Conditional variance? Same thing as plain variance
𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌 𝑋𝑋 = 2 = 𝐸𝐸 𝑌𝑌2|𝑋𝑋 = 2 − 𝐸𝐸[𝑌𝑌|𝑋𝑋 = 2]2

Just need to compute individual term:

𝐸𝐸 𝑌𝑌2|𝑋𝑋 = 2 = �
𝑦𝑦=1

3

𝑦𝑦2𝑝𝑝𝑌𝑌|𝑋𝑋 𝑥𝑥 𝑦𝑦 = 2

= 12 ∗
1
2

+ 32 ∗
1
2

= 5

𝐸𝐸 𝑌𝑌 𝑋𝑋 = 2 = �
𝑦𝑦=1

3

𝑦𝑦𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|2) = 1 ∗
1
2

+ 3 ∗
1
2

= 2

𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌 𝑋𝑋 = 2 = 5 − 4 = 1
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p7

• Suppose that X and Y are independent, identically 
distributed (iid), geometric random variables with 
parameter p, we want to show the following:

• 𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = 1
𝑛𝑛−1

, for 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1

30



𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 =
𝑃𝑃({𝑋𝑋 = 𝑖𝑖} ∩ {𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛)

𝑃𝑃(𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛)

The event {𝑋𝑋 = 𝑖𝑖} ∩ {𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛} in the numerator in equivalent to 
{𝑋𝑋 = 𝑖𝑖} ∩ {𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖}, taking this in combination with the fact hat X 
and Y are independent

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛−1

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛|𝑋𝑋 = 𝑖𝑖) =

�
𝑖𝑖=1

𝑛𝑛−1

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑖𝑖 + 𝑌𝑌 = 𝑛𝑛|𝑋𝑋 = 𝑖𝑖) =

�
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖 𝑋𝑋 = 𝑖𝑖

= ∑𝑖𝑖=1𝑛𝑛−1𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖)
31Total probability theorem



We only get non-zero probability for i=1, …, n-1 since X and 
Y are both geometric random variables

So now we can write it completely from the previous slides:

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 =
𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖)

∑𝑖𝑖=1𝑛𝑛−1 𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖)

=
1 − 𝑝𝑝 𝑖𝑖−1𝑝𝑝(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖−1𝑝𝑝

∑𝑖𝑖=1𝑛𝑛−1(1 − 𝑝𝑝)𝑖𝑖−1𝑝𝑝(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖−1𝑝𝑝
=

(1 − 𝑝𝑝)𝑛𝑛

∑𝑖𝑖=1𝑛𝑛−1(1 − 𝑝𝑝)𝑛𝑛

=
(1 − 𝑝𝑝)𝑛𝑛

(1 − 𝑝𝑝)𝑛𝑛∑𝑖𝑖=1𝑛𝑛−11
=

1
𝑛𝑛 − 1
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P8

• A simple example of a random variable is the indictor of 
an event A, which is denoted by 𝐼𝐼𝐴𝐴:

𝐼𝐼𝐴𝐴 𝑜𝑜 = � 1, if 𝑜𝑜 ∈ 𝐴𝐴
0, otherwise

33



a) Prove that two events A and B are independent if and 
only if the associated indicator random variables, IA, IB
are independent

We know that IA is a random variable that maps a 1 to the 
real number if w occurs within an event A, and maps a 0 to 
the real number line if w occurs outside the event A. A 
similar argument holds for event B, so we have the 
following:
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• If the random variables, A and B, are independent, we 
have 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝑃𝑃(𝐵𝐵). The indicator random 
variable IA and IB, are independent if 𝑃𝑃𝐼𝐼𝐴𝐴,𝐼𝐼𝐵𝐵 =
𝑃𝑃𝐼𝐼𝐴𝐴(𝑥𝑥)𝑃𝑃𝐼𝐼𝐵𝐵(𝑦𝑦)

• We know that the intersection of A and B yields:
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b) Show that if X = IA, then E[X] = P(A)

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐼𝐼𝐴𝐴 = 1 ∗ 𝑃𝑃 𝐴𝐴 + 0 ∗ 1 − 𝑃𝑃 𝐴𝐴 = 𝑃𝑃(𝐴𝐴)
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