

EE 306001 Probability

Lecture 6-2: discrete random variable

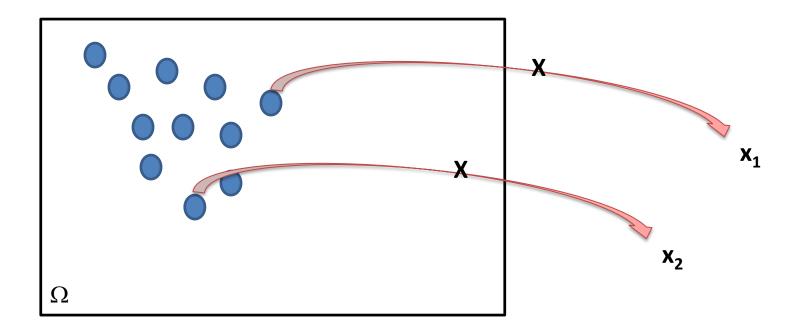
Lecture outline

Readings: Section 2.1 – 2.3

- Random variables
- Probability mass function (PMF)

We have covered all the basics foundations of probability

- Now, we are going to introduce a concept of random variable
 - Ways to assign numerical results to the outcomes of an experiment
- We will define what are random variables, describe random variables using probability mass function (PMF)
 - PMF: a compact way of representing how some numerical values are more likely to occur compared to others
 - Think about going from sets -> algebra


Random variables

- An assignment of a value (number) to every possible outcome
 - Imagine the sample space is this class (many students in this class)
 - We are interested in the height of a random student
 - Measuring the height using 'real number'
 - Then, carry out the experiment

- Mathematically:
 - A function from the sample space Ω to the real numbers
 - Imaging this function takes an argument, which is the outcome of the experiment, i.e., a typical student, and produces the value of that function, which is the height of that particular student
- Notation-wise (note the distinction)
 - Random variable, **X** this is a function
 - Numerical value, *x* this is a value that the function takes
- Can have multiple random variables for the same sample space
 - In this example, say, the weight of a student

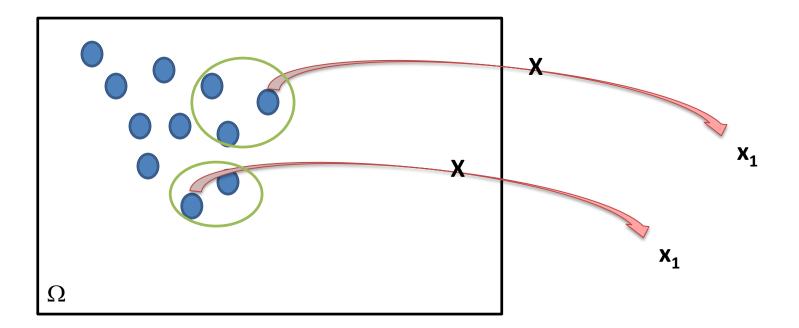
We can be clear that:

- Random variable is not random, is not a variable, an appropriate way to think about it:
- it's just a function from the sample space to the real numbers!
- They can be discrete or continuous
 - Round the height to the nearest centimeter (that's discrete)
 - Infinite precision weight recorder (that's continuous)
- We will start with discrete random variables
- Important concept fundamentally (seems trivial)
 - Random variable is a function (can be thought to be a subroutine in a programming language)
 - X: random variable
 - x: numerical values

We want to describe something about the relative likelihoods of the different numerical values that the random variable can take

We are asking: how likely is it that we obtain an outcome that leads to that particular numerical value

Probability mass function, a function describing how 'mass' is distributed on every value that random variable can take


7

Probability mass function (PMF)

- "probability law, probability distribution of X"
- Let's write out the notation of this probability $p_X(x) = P(X = x) = P(\{\omega \in \Omega, \text{ s.t. } X(\omega) = x\}$
- Since, these are probabilities:
 - $p_X(x) \ge 0$

$$-\sum_{x}p_{X}=1$$

- Example: X (random variable) is the number of coin tosses until first head
 - First toss, X =1, second toss X = 2, nth toss X=n
 - Assume independent toss:
 - P(H) = p
 - $p_X(k) = P(X = k) = P(TT \dots TH) = (1 p)^{k-1}p$, k = 1,2, ...

