
EE 306001 
Probability

Lecture 3: conditional probability
李祈均



Lecture Outline

Reading: Section 1.3, 1.4

• Review 
• Conditional probability
• Three important tools:

– Multiplication rule
– Total probability theorem
– Bayes rule
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Main agenda for today

At first, you know something about the world of which you 
write down your belief (probability) for different outcomes

Then, something happens, somebody tells you a little more 
about the world, this information, should change your 
‘belief’ on your original probabilistic model
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Partial information about the outcome of the experiment should revise our beliefs

Conditional probabilities are probabilities that apply after the revision of our beliefs, 
when we are given some information
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Somebody just told you, that event B occurs (didn’t mention the full 
outcomes, but just that event B occurs)

Does it change your probabilistic model?

It should!
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Let’s think intuitively,

Event B originally has probability  (2+1)/6 = ½

What is probability of P(B) given that we know 
outcome lies in event B?

= 1! 
- It becomes the new sample space for this 
experiment

So what is the probability of event A now that we know outcome lie in event B?

- We know originally, within event B, the portion that event A would occur is two 
times less than (event B AND not event A)

= 1/3 ! We have revised probability of event A 

B

A

1/3 2/3



Definition of conditional probability

• P(A|B) = probability of A, given that B occurred
– B is our new universe

• Definition: assuming P(B) ≠ 0

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃(𝐴𝐴∩𝐵𝐵)
𝑃𝑃(𝐵𝐵)

– P(A|B) undefined if P(B) = 0
– We can compute the previous example using this equation
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So how should we interpret this equation:

Basically, only look at experiments at which B happens to occur, 
and then look at what fraction of those experiments where B 
ALREADY occurred, event A also occurs

There is symmetrical version of this equality for A and B

Conditional probability is just like ordinary probability
– Satisfy all probability law described previously
– You can imagine we just change the universe (sample space) since we 

are ‘conditioning’ (knowing) that some event has already occurred
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X= first roll

Y= second roll

Let B be the event: min(X, Y) = 2
Let M = max(X, Y)

• P( M = 1 | B) = 0

• P( M = 2 | B) =
Use definition: P(A|B) = P(A ∩ B) / P(B)

• P(M = 2 AND min(X, Y )= 2) = 1/16
• P(B) = 5/16
• P( M = 2 | B) = 1/5 

Now, lets think 
about a larger 

model
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Probabilistic model defined directly from conditional probability

Imagining an airplane on the sky

Event A: Airplane is flying above
Event B: Something registers on radar screen

each piece is an individual probabilistic 
model (part of a larger model)

Now we have specified the complete model of radar 
detection of an airplane on the sky using conditional 
probability, we can start answering some question!



• P(A ∩ B) = 
– A plane is up there and radar picks it up
– P(B|A) = P(A ∩ B)/P(A) ⇒ P(A ∩ B) = 0.99 ∗ 0.05 = 

0.0495
– We calculate this probability by multiplying through 

the leaves

• P(B) = 
– what is the probability that radar is going to 

register something?
– 2 way: 

• There is a plane & registered
• There is not a plane & registered
• 0.0495 + (0.95 * 0.10) = 0.1445

• P(A|B) =
– Given your radar records something, how likely is 

it that there is an airplane up there?
– P(A & B) / P(B) = 0.34
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Look at this closely

• P(A|B) =
– Given your radar records something, how likely is it that there is 

an airplane up there?
– Answer is roughly 30%!

Not very high ! Why?
Mostly because of the false alarm!
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Conditional probability can have weird (non-intuitive) interpretation something!

Need to be extremely careful about this
e.g, in medical testing – be aware of false alarm



Generalize these calculations I
multiplication rule

Find a composite event’s probability
- Multiply probabilities and conditional probabilities
- P(A ∩ B) = P(B|A) * P(A)

Generalize this to multiple events (A, B, C):
P(A ∩ B ∩ C) = P(A) P(B|A) P(C|A ∩ B)
Essentially, multiplying through the leaves
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Think in terms of frequencies,

How often do three things (A,B,C) occur?
1. How often A occur
2. Out of all times A occur, how often B occur
3. Out of all times A, B occur, how often does C occur



Can we prove this?

• Yeah, straight forward from conditional probability 
definition

P(A ∩ B) = P(B|A) * P(A)

Here, we have 3 events,
– Simply make B’ = (B ∩ C)
– P(A ∩ B ∩ C) = P(A ∩ B’) = P(A) * P(B’ | A) = P(A) * P(B ∩ C|A)
= P(A) * P(B|A) * P(C|A ∩ B)

• You can now compute any probabilities on the previous tree 
diagram using conditional probability
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Generalize these calculations II
Total probability theorem

• The previous radar example, we 
compute P(B)!

Let’s generalize this:
– Find the occurrences of B under 

different scenarios (Ai) – plane is 
there or not!
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To find the total probability of B
• We add up the probabilities of B occurring under each of the partitions 

of A



Total probability theorem
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• Divide and conquer 
• Partitions split entire sample space
• Compute P(B|Ai)

To compute P(B) above:
P(B) =    P(A1) P(B|A1)

+  P(A2)P(B|A2)
+ P(A3)P(B|A3)



Generalize these calculations III
Bayes’ rule

• P(A|B) =
– Given your radar records something, how likely is it that there is 

an airplane up there?
– An inference problem
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Different scenarios = different ‘prior’ probabilities (initial belief on how likely 
each scenario is going to occur)

P(Ai)

We also have model of our measuring device that tells us under that scenario 
how likely event B (radar registered) is going to happen

P(B|Ai)



• P(A|B)
– So what are we trying to infer here?
– Whether an airplane was present

• Initially, we believe 5% at any time (now 34%, if you think in this 
term the radar is not so bad now~)

• Now we see an additional information/observation (radar 
recording), how would that change our belief?
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How do we do it?
• Apply definition of conditional probability, multiplication rule, total 

probability theorem!

𝑃𝑃 𝐴𝐴𝑖𝑖 𝐵𝐵 =
𝑃𝑃(𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

𝑃𝑃 𝐴𝐴𝑖𝑖 𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖)
𝑃𝑃(𝐵𝐵) =

𝑃𝑃 𝐴𝐴𝑖𝑖 𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖)
∑𝑗𝑗 𝑃𝑃 𝐴𝐴𝑗𝑗 𝑃𝑃(𝐵𝐵|𝐴𝐴𝑗𝑗)

Revert the probabilistic model to perform inference based on ‘data’ observed!
Cause – effect, we see the effect, infer the cause?
1700’s Thomas Bayes
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