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If interested in a single answer:
– Hypothesis testing (discrete unknown)

• Pick 𝜃𝜃 that has maximum a posteriori probability (MAP)

𝑝𝑝Θ|𝑋𝑋 𝜃𝜃∗ 𝑥𝑥 = max
𝜃𝜃

𝑝𝑝Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥

• Minimizes probability of error; used in hypothesis testing

– Estimation case (continuous unknown)
• Pick 𝜃𝜃 that has maximum a posteriori probability (MAP)

𝑓𝑓Θ|𝑋𝑋 𝜃𝜃∗ 𝑥𝑥 = max
𝜃𝜃

𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥

• The point at the maximum point of the density function
– OR? 

• Use conditional expectation (LMS)

𝜃𝜃∗ = 𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥 = �𝜃𝜃 𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥 𝑑𝑑𝜃𝜃

• Average of the density function (center of gravity)
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Least mean square estimation (LMS estimator)

Try to minimize the following (find 𝜃𝜃∗):
𝐸𝐸 Θ − 𝜃𝜃∗ 2

• In the absence of any observation, 𝜃𝜃∗ = 𝐸𝐸 Θ
𝐸𝐸 Θ − 𝐸𝐸 Θ 2 ≤ 𝐸𝐸 Θ − �𝜃𝜃 2 , for all �𝜃𝜃

• For any given value 𝑥𝑥 of 𝑋𝑋, 𝐸𝐸 Θ − 𝜃𝜃∗ 2|𝑋𝑋 = 𝑥𝑥 is 
minimized 𝜃𝜃∗ = 𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥

𝐸𝐸 Θ − 𝐸𝐸 Θ 2|𝑋𝑋 = 𝑥𝑥 ≤ 𝐸𝐸 Θ − �𝜃𝜃 2|𝑋𝑋 = 𝑥𝑥 , for all �𝜃𝜃

• Out of all estimators 𝑔𝑔 𝑋𝑋 of Θ based on 𝑋𝑋, the mean 
squared estimation error 𝐸𝐸 Θ − 𝑔𝑔(𝑋𝑋) 2 is minimized 
when 𝑔𝑔 𝑋𝑋 = 𝐸𝐸 Θ|𝑋𝑋
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Example

Romeo and Juliet start dating, but Juliet will be late on any 
date by a random amount 𝑋𝑋, uniformly distributed over the 
interval [0,𝜃𝜃]. The parameter, 𝜃𝜃, is unknown and is 
modeled as the value of a random variable, Θ, which is 
uniformly distributed between zero and one hour.

Now, assume Juliet is late by 𝑥𝑥 on their first date, how 
should Romeo use this information to update the 
distribution of Θ

4



• First note the prior distribution pdf is

𝑓𝑓Θ(𝜃𝜃) = �1, if 0 ≤ 𝜃𝜃 ≤ 1
0, otherwise

The conditional pdf of the observation (data given 
parameter):

𝑓𝑓𝑋𝑋|Θ(𝑥𝑥|𝜃𝜃) = �
1
𝜃𝜃

, if 0 ≤ 𝑥𝑥 ≤ 𝜃𝜃

0, otherwise

Now, we can directly use Bayes rule (𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥 ), and note 
that 𝑓𝑓Θ 𝜃𝜃 𝑓𝑓𝑋𝑋|Θ 𝑥𝑥 𝜃𝜃 is nonzero only if 0 ≤ 𝑥𝑥 ≤ 𝜃𝜃 ≤ 1
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• The new posterior probability distribution function is:

𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥 =
𝑓𝑓Θ 𝜃𝜃 𝑓𝑓𝑋𝑋|Θ 𝑥𝑥 𝜃𝜃

∫0
1 𝑓𝑓Θ 𝜃𝜃′ 𝑓𝑓𝑋𝑋|Θ 𝑥𝑥 𝜃𝜃′ 𝑑𝑑𝜃𝜃′

=
1/𝜃𝜃

∫𝑥𝑥
1 1/𝜃𝜃′𝑑𝑑𝜃𝜃′

=
1

𝜃𝜃 log 𝑥𝑥
, if x ≤ 𝜃𝜃 ≤ 1

𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥 = �
1

𝜃𝜃 log 𝑥𝑥
, if x ≤ 𝜃𝜃 ≤ 1

0, otherwise
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Okay so with this, can we come up with a single 
point estimate?

𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥 = �
1

𝜃𝜃 log 𝑥𝑥
, if x ≤ 𝜃𝜃 ≤ 1

0, otherwise

First, lets think about this function,
– Any given 𝑥𝑥, 𝑓𝑓Θ|𝑋𝑋 𝜃𝜃 𝑥𝑥 is decreasing with 𝜃𝜃 over the range [𝑥𝑥, 1]

• So what’s best estimate if we are going for MAP (maximum a-
posteriori estimation)? 

• 𝜃𝜃 = 𝑥𝑥
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How about if we have another point estimate?

• Instead of MAP, let’s try conditional expectation

𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥 = �
𝑥𝑥

1
𝜃𝜃

1
𝜃𝜃 log 𝑥𝑥

𝑑𝑑𝜃𝜃

=
1 − 𝑥𝑥
log 𝑥𝑥
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Note:
– Before the first date: 
– Compute the probability that Juliet is going to be late by 𝑋𝑋 =
𝑥𝑥1, we can now use LMS:

𝑋𝑋~uniform 0,𝐸𝐸 Θ = uniform 0, 0.5

– After the first date:

Now, if we use LMS estimator 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿 = 1−𝑥𝑥
log 𝑥𝑥

– Then to compute the probability that Juliet is going to be late by 
𝑋𝑋 = 𝑥𝑥2, we can now assume:

𝑋𝑋~uniform 0,𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥 = uniform 0,
1 − 𝑥𝑥1
log 𝑥𝑥1
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Classical statistics



𝜃𝜃: the unknown, nothing random about it, it’s just a number

𝑝𝑝𝑋𝑋 𝑥𝑥; 𝜃𝜃 : this distribution depends on 𝜃𝜃, however, it is NOT 
conditional pdf (conditional pdf is for r.v.s)!

You can imagine this could just be a parameter to describe the 
distribution 𝑋𝑋 (somehow depends on 𝜃𝜃) – maybe a normal 
distribution with mean 𝜃𝜃

Data 𝑋𝑋 could be a vector 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 , and 𝜃𝜃 could be a vector 
of parameters too!
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𝑝𝑝𝑋𝑋(𝑥𝑥;𝜃𝜃) Estimator

𝑁𝑁

𝜃𝜃 𝑋𝑋 �𝚯𝚯 Classical statistics
θ Is a parameter (not a r.v.)



Desired probability of an estimator

• This estimator, �Θ𝑛𝑛, is random
• Unbiased: 𝐸𝐸 �Θ𝑛𝑛 = 𝜃𝜃
• Consistent: �Θ𝑛𝑛 → 𝜃𝜃 (convergence in probability)
• Small mean square error (MSE)

– 𝐸𝐸 �Θ − 𝜃𝜃 2 = 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ − 𝜃𝜃 + 𝐸𝐸 �Θ − 𝜃𝜃 2 = 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ + bias 2
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Estimator you already know in classical sense

• Sample mean
– This is an estimator with very good property
– Very easy and good estimator for mean of a distribution

• ML estimate
– Maximum data likelihood
– Observable evidence is the KING

• They don’t necessary coincide
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Confidence interval

• Idea: you want to know how much you can trust a given 
estimate (say, for example: you estimate the mean to be 
2.37)

• Can we construct an interval to say the likely value of 
‘true thetas’?

14



Confidence interval

• Design a 1 − 𝑣𝑣 confidence interval
– �Θ𝑛𝑛−, �Θ𝑛𝑛+

– Such that: 𝑃𝑃 �Θ𝑛𝑛−�Θ𝑛𝑛+ ≥ 1 − 𝑣𝑣 for all θ
– Often this 𝑣𝑣 = 0.05, 0.025, or 0.01

• Note: this interval is ‘random’ – uppercase rvs!
– So what you are doing exactly is to construct two other random 

variables as estimators!
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• Interpretation (subtle)
– Say you have an interval, and given the data you observe, you 

realize the value of the interval (uppercase -> lowercase)
– Say it’s between 1.97 – 2.56 (𝑣𝑣 = 0.05)
– Can you say:

• With probability 0.95, the true theta falls in that interval (1.97, 
2.56)?

• Nope, probability statement is associated with randomness 
statement

• 𝜃𝜃 is a number, the two realized intervals are numbers, so it’s either 
you are ‘IN’ the interval or ‘NOT’

– Proper way to state this:
• the interval, that's being constructed by our procedure, should 

have the property that, with probability 95%, it's going to fall on 
top of the true value of theta
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• Imagine this procedure as experiment
– You do it once on a day, seeing the data, construct the interval, 

and yes, the true theta is in
– You do it on another day, seeing different data, construct the 

interval, and yes, the true theta is in
– You do it on another way, seeing different data, but this time, 

nope!
– 95% of the days when I use this procedure to construct the 

confidence interval, I got it right!

• it's a statement about the distribution of these random 
confidence intervals, how likely are they to fall on top of 
the true theta
– It's a statement about probabilities associated with a confidence 

interval (intervals are random variables)
– Not about the theta!
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Example: polling

Consider the polling problem, where we wish to estimate 
the fraction θ of voters who support a particular candidate 
for office

We collect 𝑛𝑛 independent sample voter responses, where 
each 𝑋𝑋𝑖𝑖 is a Bernoulli random variable, with 𝑋𝑋𝑖𝑖 = 1 if the 𝑖𝑖th

voter supports the candidate

We estimate θ with sample mean �Θ𝑛𝑛 and construct a 
confidence interval based on normal approximation and 
different ways of estimating unknown variances
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• For example: 684 out of a sample of 𝑛𝑛 = 1200 voters 
support the candidate, so that �Θ𝑛𝑛 = 0.57

Case I:

Using the unbiased sample variance 

𝑆𝑆𝑛𝑛2 =
1

𝑛𝑛 − 1�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �Θ𝑛𝑛
2

=
1

1199 684 ∗ 1 −
684

1200

2

+ 1200 − 684 ∗ 0 −
684

1200

2

≈ 0.245
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Now, we can use this to find the CI interval

Assume �Θ𝑛𝑛 is normal random variable, with mean 𝜃𝜃, 
variance �̂�𝑆𝑛𝑛2/𝑛𝑛, the 95% CI is the following: (�̂�𝑆𝑛𝑛 = 0.245)

�Θ𝑛𝑛 − 1.96
�̂�𝑆𝑛𝑛
𝑛𝑛

, �Θ𝑛𝑛 + 1.96
�̂�𝑆𝑛𝑛
𝑛𝑛

= 0.542, 0.598
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Case II: if we use conservative estimate:

𝜎𝜎 ≤
1
2

, upperbounded in Bernoulli

�Θ𝑛𝑛 − 1.96
1/2
𝑛𝑛

, �Θ𝑛𝑛 + 1.96
1/2
𝑛𝑛

This is a tad bit wider bound than the previous

As you can see in this case, they are not that much different, 
also as 𝑛𝑛 get larger, they are essentially the same!
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Some logistics about project presentation

• Each team, 10 minutes + 5 Q/A
• Need to cover:

– Your data collection in detail (how much data, how do you collect, 
show evidence of your data collection)

– What distribution do you use to model the event of interest and why?
– Derive ML estimator (or other estimation if you use) for the 

parameters of the distribution
– Evaluation: split your data into 80/20 (cross validation) and do your 

own testing
• How accurate is your model?
• Can it be better?
• If it is not very good, what happened?
• What is the take home message
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