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Maximum likelihood estimation

• One way: pick θ, that means pick a specific probability 
model that the data we observe, 𝑋𝑋′𝑠𝑠, most likely have 
occurred

Mathematically:
– Model with unknown parameter(s), 𝑋𝑋~𝑝𝑝𝑋𝑋(𝑥𝑥;𝜃𝜃)
– ML: pick 𝜃𝜃 that “makes the data most likely”

�𝜃𝜃𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝑝𝑝𝑋𝑋(𝑥𝑥;𝜃𝜃)
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Simple example

• Example: 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛: i.i.d. exponential(θ)
Try to find a good estimate of θ using the ML approach

�̂�𝜃𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝑝𝑝𝑋𝑋(𝑥𝑥;𝜃𝜃)

𝑝𝑝𝑋𝑋 𝑥𝑥;𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝜃𝜃𝑒𝑒−𝜃𝜃𝑥𝑥𝑖𝑖

Take log

ln𝑝𝑝𝑋𝑋 𝑥𝑥;𝜃𝜃 = 𝑛𝑛 ln𝜃𝜃 − 𝜃𝜃�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖
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�𝜃𝜃𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝑝𝑝𝑋𝑋(𝑥𝑥;𝜃𝜃)

�𝜃𝜃𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

ln𝑝𝑝𝑋𝑋 𝑥𝑥;𝜃𝜃 = arg max
𝜃𝜃

𝑛𝑛 ln𝜃𝜃 − 𝜃𝜃�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖

How to solve? 

Take derivative with respect to 𝜃𝜃 and set it equals to 0 and solve:

�𝜃𝜃𝑀𝑀𝑀𝑀 =
𝑛𝑛

𝑥𝑥1 + ⋯+ 𝑥𝑥𝑛𝑛
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Let’s abstractly this about this:

In fact, we have just designed an estimator (function on 
data) of the following form:

�Θ𝑛𝑛 =
𝑛𝑛

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

Imagine this as an experiment, once you do the experiment, 
that each 𝑋𝑋𝑖𝑖 will output a number, and you have the ML-
estimate
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Desired probability of an estimator

• This estimator, �Θ𝑛𝑛, is random
• Unbiased: 𝐸𝐸 �Θ𝑛𝑛 = 𝜃𝜃

– �Θ𝑛𝑛 is a function of data 𝑋𝑋
– 𝑋𝑋 is affected by true parameter 𝜃𝜃 (each 𝜃𝜃 corresponds to a 

different model)
– Is it always true? Not necessary
Exponential example that we just demonstrated (take 𝑛𝑛 = 1)

𝐸𝐸 1/𝑋𝑋1 = ∞ ≠ 𝜃𝜃
This ML estimate is biased estimator (biased upward)
In general ML estimate is just like this, under some condition, it 
will turn out to be unbiased
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• Consistent: �Θ𝑛𝑛 → 𝜃𝜃 (convergence in probability)
– This is good property especially if you have large amount of data
– ML estimate tend to have this properties (given independent 

data)!
Exponential example:

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛
𝑛𝑛 → 𝐸𝐸 𝑋𝑋 = 1/𝜃𝜃

Knowing, we can look at our estimator:
�Θ𝑛𝑛 =

𝑛𝑛
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

�Θ𝑛𝑛 =
𝑛𝑛

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛
→

1
𝐸𝐸 𝑋𝑋 = 𝜃𝜃

Weak law of large number, this is true no matter what the true 
theta is
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• �Θ𝑛𝑛 is a function of data 𝑋𝑋
• 𝑋𝑋 is affected by true parameter 𝜃𝜃 (each 𝜃𝜃 corresponds to 

a different model)

One more desired property for an estimator: small mean 
square error (MSE)

𝐸𝐸 �Θ − 𝜃𝜃 2 = 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ − 𝜃𝜃 + 𝐸𝐸 �Θ − 𝜃𝜃 2

= 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ + bias 2
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• Ideally, we want �Θ to be very close θ, so we like the 
biased term to be zero, and at the same time, the 
fluctuation (variance of our estimator) is small too!

𝐸𝐸 �Θ − 𝜃𝜃 2 = 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ − 𝜃𝜃 + 𝐸𝐸 �Θ − 𝜃𝜃 2

= 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ + bias 2

• Let’s do a silly example
Assume we have distribution that is normal with 

unknown mean θ and variance 1

Let’s design a simple estimator: just keep saying that mean 
equals to 100 no matter what
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• This estimator has 0 variance, but huge bias term!

• Moral of the story;
– You can make variance extremely small but pay the price in the 

bias term
– There is certain tradeoff between the two
– We won’t cover this further in this class
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Revisit our estimation of mean

• 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛: iid mean 𝜃𝜃, variance 𝜎𝜎2
𝑋𝑋𝑖𝑖 = 𝜃𝜃 + 𝑊𝑊𝑖𝑖

𝑊𝑊𝑖𝑖: iid, mean 0, variance 𝜎𝜎2

Design an estimator to estimate mean 𝜃𝜃 using sample mean:

�Θ𝑛𝑛 = sample mean = 𝑀𝑀𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
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Revisit this sample mean estimator

• Unbiased:

�Θ𝑛𝑛 = 𝑀𝑀𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
𝐸𝐸 𝑀𝑀𝑛𝑛 = 𝜃𝜃

• Consistent:
By weak law of large number:
Sample mean converge to true mean in probability

�Θ𝑛𝑛 → 𝜃𝜃
• MSE

𝑣𝑣𝑣𝑣𝑣𝑣 �Θ + bias 2 =
𝜎𝜎2

𝑛𝑛
+ 0
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ML estimate of normal distribution parameters

Consider estimating the mean and variance of a normal 
distribution using 𝑛𝑛 independent observations 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

The parameter that is unknown as 𝜃𝜃 = 𝜇𝜇, 𝑣𝑣

To do ML estimation, we need get the data likelihood:

𝑓𝑓𝑋𝑋 𝑥𝑥; 𝜇𝜇, 𝑣𝑣 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑋𝑋𝑖𝑖 𝑥𝑥𝑖𝑖; 𝜇𝜇, 𝑣𝑣 = �
𝑖𝑖=1

𝑛𝑛
1

2𝜋𝜋𝑣𝑣
𝑒𝑒− 𝑥𝑥𝑖𝑖−𝜇𝜇 2/2𝑣𝑣
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𝑓𝑓𝑋𝑋 𝑥𝑥; 𝜇𝜇, 𝑣𝑣 = �
𝑖𝑖=1

𝑛𝑛
1

2𝜋𝜋𝑣𝑣
𝑒𝑒− 𝑥𝑥𝑖𝑖−𝜇𝜇 2/2𝑣𝑣

Note:
𝑥𝑥𝑖𝑖 − 𝜇𝜇 2 = 𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛 + 𝑚𝑚𝑛𝑛 − 𝜇𝜇 2

= 𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛
2 + 𝑚𝑚𝑛𝑛 − 𝜇𝜇 2 + 2 𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛 𝑚𝑚𝑛𝑛 − 𝜇𝜇

For 𝑖𝑖 = 1, … ,𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛 𝑚𝑚𝑛𝑛 − 𝜇𝜇 = 𝑚𝑚𝑛𝑛 − 𝜇𝜇 �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛

Define: 

𝑚𝑚𝑛𝑛 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖
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�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛 𝑚𝑚𝑛𝑛 − 𝜇𝜇 = 𝑚𝑚𝑛𝑛 − 𝜇𝜇 �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛

Due to our definition, 
This term = 0
Now define:

𝑠𝑠𝑛𝑛2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛
2

Now we can re-write: 𝑓𝑓𝑋𝑋 𝑥𝑥; 𝜇𝜇, 𝑣𝑣 = ∏𝑖𝑖=1
𝑛𝑛 1

2𝜋𝜋𝑣𝑣
𝑒𝑒− 𝑥𝑥𝑖𝑖−𝜇𝜇 2/2𝑣𝑣

𝑓𝑓𝑋𝑋 𝑥𝑥; 𝜇𝜇, 𝑣𝑣 =
1

2𝜋𝜋𝑣𝑣 𝑛𝑛/2 exp −
𝑛𝑛𝑠𝑠𝑛𝑛2

2𝑣𝑣
exp −

𝑛𝑛 𝑚𝑚𝑛𝑛 − 𝜇𝜇 2

2𝑣𝑣
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Now to find ML estimate, find 𝜇𝜇, 𝑣𝑣 that maximize that data 
likelihood function:

log 𝑓𝑓𝑋𝑋 𝑥𝑥;𝜇𝜇, 𝑣𝑣 = −
𝑛𝑛
2 log 2𝜋𝜋 −

𝑛𝑛
2 log 𝑣𝑣 −

𝑛𝑛𝑠𝑠𝑛𝑛2

2𝑣𝑣 −
𝑛𝑛 𝑚𝑚𝑛𝑛 − 𝜇𝜇 2

2𝑣𝑣

Differentiate respect to each parameter and set to zero:

𝜇𝜇 = 𝑚𝑚𝑛𝑛, 𝑣𝑣 = 𝑠𝑠𝑛𝑛2

Sample mean is also the ML estimate for mean!

Sample variance (𝑠𝑠𝑛𝑛2 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑛𝑛

2) is also the ML estimate 
for variance!
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Look closer at the variance estimate

𝑣𝑣 = 𝑠𝑠𝑛𝑛2

Essentially, we have constructed a function of estimator of 
the following form:

𝑆𝑆𝑛𝑛2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑛𝑛
2

Is it biased?

𝐸𝐸[𝑆𝑆𝑛𝑛2] =
1
𝑛𝑛
𝐸𝐸 �

𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑛𝑛
2
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𝐸𝐸[𝑆𝑆𝑛𝑛2] =
1
𝑛𝑛
𝐸𝐸 �

𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑛𝑛
2 =

1
𝑛𝑛
𝐸𝐸 �

𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖2 − 2𝑀𝑀𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 + 𝑛𝑛𝑀𝑀𝑛𝑛
2

= 𝐸𝐸
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖2 − 2𝑀𝑀𝑛𝑛
2 + 𝑀𝑀𝑛𝑛

2 = 𝐸𝐸
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖2 − 𝑀𝑀𝑛𝑛
2

Now noting that:

𝐸𝐸 𝑀𝑀𝑛𝑛 = 𝜇𝜇,𝐸𝐸 𝑀𝑀𝑛𝑛
2 = 𝜇𝜇2 +

𝑣𝑣
𝑛𝑛

,𝐸𝐸 𝑋𝑋𝑖𝑖2 = 𝜇𝜇2 + 𝑣𝑣

𝐸𝐸
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖2 − 𝑀𝑀𝑛𝑛
2 = 𝜇𝜇2 + 𝑣𝑣 − 𝜇𝜇2 +

𝑣𝑣
𝑛𝑛 =

𝑛𝑛 − 1
𝑛𝑛 𝑣𝑣

This estimator is biased estimator, (though asymptotically unbiased)
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Can we get an unbiased estimator?

Sure, just with proper scaling:

�̂�𝑆𝑛𝑛2 =
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑛𝑛
2

This is an unbiased variance estimator!
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• Note sample mean does not always correspond to ML 
estimate

• Which one to report when you are forced to pick one?
– Probably sample mean… much easier!
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Desired probability of an estimator

• This estimator, �Θ𝑛𝑛, is random
• Unbiased: 𝐸𝐸 �Θ𝑛𝑛 = 𝜃𝜃
• Consistent: �Θ𝑛𝑛 → 𝜃𝜃 (convergence in probability)
• Small mean square error (MSE)

– 𝐸𝐸 �Θ − 𝜃𝜃 2 = 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ − 𝜃𝜃 + 𝐸𝐸 �Θ − 𝜃𝜃 2 = 𝑣𝑣𝑣𝑣𝑣𝑣 �Θ + bias 2
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Estimator you already know in classical sense

• Sample mean
– This is an estimator with very good property
– Very easy and good estimator for mean of a distribution

• ML estimate
– Maximum data likelihood
– Observable evidence is the KING

• They don’t necessary coincide
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Confidence interval

• Idea: you want to know how much you can trust a given 
estimate (say, for example: you estimate the mean to be 
2.37)

• Can we construct an interval to say the likely value of 
‘true thetas’?
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Confidence interval

• Design a 1 − 𝑣𝑣 confidence interval
– �Θ𝑛𝑛−, �Θ𝑛𝑛+

– Such that: 𝑃𝑃 �Θ𝑛𝑛−�Θ𝑛𝑛+ ≥ 1 − 𝑣𝑣 for all θ
– Often this 𝑣𝑣 = 0.05, 0.025, or 0.01

• Note: this interval is ‘random’ – uppercase rvs!
– So what you are doing exactly is to construct two other random 

variables as estimators!
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• Interpretation (subtle)
– Say you have an interval, and given the data you observe, you 

realize the value of the interval (uppercase -> lowercase)
– Say it’s between 1.97 – 2.56 (𝑣𝑣 = 0.05)
– Can you say:

• With probability 0.95, the true theta falls in that interval (1.97, 
2.56)?

• Nope, probability statement is associated with randomness 
statement

• 𝜃𝜃 is a number, the two realized intervals are numbers, so it’s either 
you are ‘IN’ the interval or ‘NOT’

– Proper way to state this:
• the interval, that's being constructed by our procedure, should 

have the property that, with probability 95%, it's going to fall on 
top of the true value of theta
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• Imagine this procedure as experiment
– You do it once on a day, seeing the data, construct the interval, 

and yes, the true theta is in
– You do it on another day, seeing different data, construct the 

interval, and yes, the true theta is in
– You do it on another way, seeing different data, but this time, 

nope!
– 95% of the days when I use this procedure to construct the 

confidence interval, I got it right!

• it's a statement about the distribution of these random 
confidence intervals, how likely are they to fall on top of 
the true theta
– It's a statement about probabilities associated with a confidence 

interval (intervals are random variables)
– Not about the theta!
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Quick example

• Let’s construct a CI in the estimation of the mean
�Θ𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 /𝑛𝑛

Note, we should probably already know this
– From standard normal table
– For 𝑧𝑧 = 1.96: corresponds to .975 (right tail portion 0.025, and 

both right-left tail portion 0.05)
– The random variable here is sample mean: �Θ𝑛𝑛

From CLT:

𝑃𝑃
|�Θ𝑛𝑛 − 𝜃𝜃|
𝜎𝜎/ 𝑛𝑛

≤ 1.96 ≈ 0.95
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Or:

𝑃𝑃 �Θ𝑛𝑛 −
1.96𝜎𝜎

𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

1.96𝜎𝜎
𝑛𝑛

≈ 0.95

Here, we have our confidence interval, so for this exercise 
of estimating the mean, we can report two things:
1. Sample mean , �Θ𝑛𝑛
2. 95% CI:

�Θ𝑛𝑛 −
1.96𝜎𝜎

𝑛𝑛
, �Θ𝑛𝑛 +

1.96𝜎𝜎
𝑛𝑛

Confidence interval gets smaller as 𝑛𝑛 gets larger, this 
interval is an interval derived from invoking CLT
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• This can be done generally if we continue using CLT as 
the approach:

Let 𝑧𝑧 be s.t. Φ 𝑧𝑧 = 1 − 𝑣𝑣/2
remember if we set 𝑣𝑣 = 0.95, 1 − 𝑎𝑎

2
= 0.975, Φ 𝑧𝑧 = 0.975 for 𝑧𝑧 = 1.96

Now we can easily derive the CI:

𝑃𝑃 �Θ𝑛𝑛 −
𝑧𝑧𝜎𝜎
𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

𝑧𝑧𝜎𝜎
𝑛𝑛

≈ 1 − 𝑣𝑣

This is an ‘approximate’ 1 − 𝑣𝑣 CI interval, why?
Because of CLT – that limiting property need to be used 
with care!
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All is good, but do we know 𝜎𝜎 in general?

• Usually no, so we have a couple options to go to:

1. Use upper bound on 𝜎𝜎
if 𝑋𝑋𝑖𝑖 Bernoulli random variable, then the standard is at most ½ (𝜎𝜎 ≤ 1

2
)

2. Use ad-hoc estimate
if 𝑋𝑋𝑖𝑖 Bernoulli random variable, we know standard deviation should be 
𝑝𝑝(1 − 𝑝𝑝), so if we have an estimate of 𝑝𝑝 using �Θ𝑛𝑛, then estimated 

standard deviation can be �Θ𝑛𝑛(1 − �Θ𝑛𝑛)
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3.  Use generic estimate of variance
– Start from 𝜎𝜎2 = 𝐸𝐸 𝑋𝑋𝑖𝑖 − 𝜃𝜃 2

– Variance (law of large number, averaging variance goes to true 
variance)

�𝜎𝜎𝑛𝑛2 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝜃𝜃 2 → 𝜎𝜎2

– Problem? Don’t know 𝜃𝜃, use estimate, also make it unbiased 
(like we talk about in previous pages!)

�̂�𝑆𝑛𝑛2 =
1

𝑛𝑛 − 1�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �Θ𝑛𝑛
2
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Now back to CI

𝑃𝑃 �Θ𝑛𝑛 −
𝑧𝑧𝜎𝜎
𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

𝑧𝑧𝜎𝜎
𝑛𝑛

≈ 1 − 𝑣𝑣

If we approximate 𝜎𝜎 (this is the true standard deviation of 
the sample mean) using �̂�𝑆𝑛𝑛

Then we obtain the following CI interval

�Θ𝑛𝑛 −
𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛
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�Θ𝑛𝑛 −
𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛

Look at this closer, there are TWO approximation going on,

1. We assume �Θ𝑛𝑛 behave like normal using CLT
2. The true variance of �Θ𝑛𝑛 (which should be 𝑣𝑣/𝑛𝑛, where 𝑣𝑣

is the variance of individual 𝑋𝑋𝑖𝑖) is approximated using 
�̂�𝑆𝑛𝑛2/𝑛𝑛
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• For the CI that we talked about earlier, essentially, we have 
treated the following random variable as normal:

�Θ𝑛𝑛 − 𝜃𝜃

𝑣𝑣𝑣𝑣𝑣𝑣 (�Θ𝑛𝑛)

When 𝑣𝑣𝑣𝑣𝑣𝑣 (�Θ𝑛𝑛) is unknown and using the approximation �̂�𝑆𝑛𝑛2

�Θ𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛

𝑇𝑇𝑛𝑛 =
�Θ𝑛𝑛 − 𝜃𝜃

𝑣𝑣𝑣𝑣𝑣𝑣 (�Θ𝑛𝑛)
=
�Θ𝑛𝑛 − 𝜃𝜃

�̂�𝑆𝑛𝑛2/𝑛𝑛
=

𝑛𝑛(�Θ𝑛𝑛 − 𝜃𝜃)
�̂�𝑆𝑛𝑛

In general, this is not normal, too many approximation going on
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• We won’t go into details, just to demonstrate the 
mechanics of workings out the problems:

In general, we are out of luck of working out this problem 
easily, but if we have the following condition:

𝑋𝑋𝑖𝑖~normal

Then, we can show that 𝑇𝑇𝑛𝑛 PDF does not depend on the 
mean 𝜃𝜃, and true variance 𝑣𝑣

It is essentially called 𝑡𝑡-distribution with 𝑛𝑛 − 1 degree of 
freedom
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𝑡𝑡-distribution is just like normal distribution:
– Bell shape with heavier tail
– CDF is pre-computed just like normal distribution

• In practical life:
When 𝑋𝑋𝑖𝑖 is normal-like and 𝑛𝑛 relatively small, a confidence 
interval is the following:

�Θ𝑛𝑛 −
𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛

In order to find 𝑧𝑧, instead of looking at normal table, look at 
𝑡𝑡 table with 𝑛𝑛 − 1 degree of freedom
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That is find 𝑧𝑧 such that

Ψ𝑛𝑛−1 𝑧𝑧 = 1 −
𝑣𝑣
2

n is the number of data points

For a given confidence 𝑣𝑣
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Example

The weight of an object is measured eight times using an 
electronic scale that reports the true weight plus a random 
error that is normally distributed with zero mean and 
unknown variance.

Assume that the errors in the in the observations are 
independent. We obtain the following results:

0.5547, 0.5404, 0.6364, 0.6438, 0.4917, 0.5674, 0.5564, 0.6066
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Let’s compute a 95% confidence interval (𝑣𝑣 = 0.05) using 
the 𝑡𝑡-distribution

First let’s compute the sample mean of the results obtained:
�Θ𝑛𝑛 = 0.5747

Now, lets’ compute the sample variance associated with �Θ𝑛𝑛
�̂�𝑆𝑛𝑛2

𝑛𝑛
=

1
𝑛𝑛(𝑛𝑛 − 1)

�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �Θ𝑛𝑛
2 = 3.2952 ∗ 10−4

Then the sample standard deviation:
�̂�𝑆𝑛𝑛
𝑛𝑛

= 0.0182
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• Okay, now we are ready to use t-distribution with n-1 
degree of freedom

𝑛𝑛 = 8 (degree of freedom = 7)

So if we set 𝑣𝑣 = 0.05

Find 𝑧𝑧 in the following:

𝑃𝑃
�Θ𝑛𝑛 − 𝜃𝜃
�̂�𝑆𝑛𝑛/ 𝑛𝑛

≤ 𝑧𝑧 = 0.95

Find z such that 1 −Ψ7 𝑧𝑧 = 𝑎𝑎
2

= 0.025

𝑧𝑧 = 2.365
40



• So the interval is the following:
[0.531, 0.618]

Compare it with using normal table:

�Θ𝑛𝑛 −
𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛
≤ 𝜃𝜃 ≤ �Θ𝑛𝑛 +

𝑧𝑧�̂�𝑆𝑛𝑛
𝑛𝑛

𝑧𝑧 = 1.96

We have the following interval:
[0.539, 0.610]
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