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Probability

Lecture 23: limiting theorem
Intro to statistics

AT



Logistics

e Noclasson5/24
e HW and QUIZ remain the same
e 6/5 CLASS + TA session (longer session)



Central limit theorem

Let X1, X,, ... be a sequence of independent identically
distributed random variables with common mean p, and
variance, o2, and define:

Xyt e+ Xy —

Zn

g\/n
Then, the CDF of Z,, converges to the standard normal CDF
1 r? 2
D(z) = —j e ¥ /2dx
V21T J— o

In the sense that:
lim P(Z, < z) = ®(2)
n—>00



Normal approximation based on the CLT

Let S,, = X; + -+ X,,, where X; are independent
identically distributed random variables with mean p,
variance c?. If nis large, the probability P(S,, < c¢) can be
approximated by treating §,, as if it were normal, according
to the following procedure:

1. Calculate the mean nu and variance no? of S,
2. Calculate the normalized value z = (¢ — nu) /o\n

3. Use the approximation
P(S, <c) = D(z2)

where ®(z) is available from the standard normal CDF tables



De Moivre-Laplace Approximation to the
Binomial PMF

If §,, is a binomial random variable with parameters n and p,
n is large, and k, [ are nonnegative integers, then:

1 1
l+5—np k—5—np
2 —® 2

Jnp(1—p) Jnp(1—p)

Pk<S,<D)=d



Strong law of large numbers

e |t still deals with the convergence of the sample mean to
the true mean

Let X1, X5, ... be asequence of independent identically
distributed random variables with mean pu. Then, the
sequence of sample means M,, = (X; + X, + -+ X,,)/n
converges to u, with probability 1

X +...+X
P(lim - n=,u>=1
n—oo n




Think about this for a little

e Recall on the sample space
e The experiment is:

— The experiment is infinitely long

— Each experiment generate a sequence of value (one value for
each of the random variable sequence, Xy, ..., X;,)

— So sample space as a set of infinite sequences of real numbers
(xl, X ,)
— Consider the set A consisting of those sequences whose long

term averages is

] x1+x2+“'+xn
(x1,%5,...) EA & lim = U

n—oo n




e Strong law of large number

— The collection of outcomes that do not belong to A has
probability zero

.y (1im S hallar. u) —1

n—oo n

e Weak law of large number

Xi+4+Xn
n

— lim P(

n—0o

—M‘ZE)—>O

e The difference is subtle, but should be noted



Convergence with probability 1

Let Y;, Y5 ... be a sequence of random variables (not
necessarily independent). Let ¢ be a real value. We say that
Y., converges to ¢ with probability 1 (almost surely) if

P(lim Yn=c)=1

n—>00

Sample space consisting of infinite sequences: all of the
probability is concentrates on those sequences that
converge to c.



Example

Let X1, X, ... be a sequence of independent random
variables that are uniformly distributed in [0,1], and let
YTL — min{Xl,Xz, ""XTL}

We want to show that Y,, converges to 0, with probability 1



Think about we are doing this sequence of experiments:

The sequence of Y,, is nonincreasing, i.e., Y,,,1 <Y, forall
n

This sequence is lower bounded by 0 (uniform distribution
0), as sequence gets longer, you can imagine this has to
converge to a point (limit), we denoteas Y = (lim Y;)

n—>00



Now let’s fix some € > 0, now we have Y > € if and only if
X; > eforall i, which implies that

P(Y>€)=PX;=2¢X,>¢,..,X, =€)

=(1—-e)"

Now let’s take the limit:
lim(1—-€e)" =0

n—00

This shows that P(Y = €) = 0 for any positive €




e This shows that P(Y = €) = 0 for any positive €

This implies:
P(Y>0)=0
Which also means:

P(Y=0)=1



Example

A factory produces X,, gadgets on day n, where the X,, are
independent and identically distributed random variables,
with mean 5 and variance 9



a) Find an approximation to the probability that the total
number of gadgets produced in 100 days is less than
440

Let S,, = X; + -+ X,, be the total number of gadget
produced in n days

e S,:
— Mean: 5n
— Variance: 9n
— Standard deviation: 34/n



P(S]_OO < 4‘4‘0) —_ P(Sloo S 4‘395)
439.5 — 500

S100 — 500

30

439.5 — 500

30

<

30

= ®(—2.02) = 0.0217

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-3.9 | .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003
-3.8 | .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005
-3.7 | .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008
-3.6 | .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011
-3.5 | .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017
-3.4 | .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024
-3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035
-3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050
-3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071
-3.0 | .00135 .00131 .00126 .00122 .00118 .00114 00111 .00107 .00104 .00100
-2.9 | .00187 .00181 00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139
-2.8 | .00256 .00248 .00240 .00233 00226 .00219 00212 .00205 .00199 .00193
-2.7 | .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 00272 .00264
-2.6 | .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
-2.5 | .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.4 | .00820 .00798 00776 .00755 00734 .00714 .00695 .00676 00657 .00639
-2.3 .01072 .01044 .01017 .00990 .00964 .00939 00914 .00889 .00866 .00842
-2.2 .01390 .01355 .01321 .01287 01255 01222 01191 .01160 01130 .01101
21 .01786 .01743 .01700 .01659 01618 01578 01539 .01500 .01463 .01426
-2.0 | .02275 .02222 02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831

16



b) Find (approximately) the largest value of n such that
P(Xy+ -+ X, =200+ 5n) <0.05

P(Xy+ -+ X, =200+ 5n) <0.05
Equals to:

Using CLT:



e From the table,

— ®(1.65) = 0.95

200
— ﬁz 1.65 > n <1632

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the
Z .00 01 .02 .03 .04 05 .06

0.0 | .50000 50399 50798 S1197 51595 51994 52392
0.1 53983 .54380 54776 55172 55567 .55962 56356
0.2 57926 58317 58706 59095 .59483 59871 .60257

0.3 61791 .62172 .62552 .62930 .63307 .63683 .64058
0.4 | .65542 .65910 .66276 66640 .67003 .67364 67724
0.5 ] .69146 .69497 .69847 70194 70540 70884 71226
0.6 | .72575 72907 73237 73565 73891 74215 7453

0.7 | .75804 76115 76424 76730 77035 7733 17637
0.8 | .78814 .79103 79389 79673 79955 .80234 80511
0.9 | .81594 .81859 82121 82381 82639 .82894 83147
1.0 | 84134 .84375 84614 84849 .85083 85314 85543
1.1 .86433 .86650 .86864 87076 87286 .87493 87698
1.2 .88493 .88686 88877 .89065 .89251 .89435 89617
1.3 90320 .90490 90658 90824 90988 91149 91309
1.4 ] 91924 .92073 92220 92364 92507 92647 92785
1.5 ] 93319 93448 93574 93699 93822 93943 94062
1.6 | 94520 94630 94738 94845 94950 95053 95154
1.7 | 95543 95637 95728 95818 95907 95994 96080
1.8 | .96407 96485 96562 96638 96712 96784 96856
1.9 | 97128 97193 97257 97320 97381 97441 97500




c) Let N be the first day which the total number of gadgets
produced exceed 1000, calculate an approximation to that
probability that N = 220

The event N = 220 (takes at least 220 days to exceed 1000
gadgets) is the same as the event S,19 < 1000 (no more
than, at most, 1000 gadgets produced in the first 219 days)

» (5219 —5%219 1000 — 5 * 219)

<
3v/219 3v219
= ®(—2.14) = 0.0162



Example

Say, you are working for the world’s largest producer of
lightbulbs. Your boss asks you to estimate the quality of the
production, i.e., estimate the probability p that a bulb
produced by the factory is defect-less.

You are told to assume that all lightbulbs have the same
probability of having a defect, and that defects in different
lightbulbs are independent



a) Suppose that you test n randomly picked bulbs, what is
a good estimate Z,, for p, such that Z,, converges to p in
probability

Let X; be a random variable indicating the quality of the ith
bulb (“1” for good bulbs, “0” for bad ones)

X/s are independent Bernoulli random variable, let Z,, be:

X1 +X2++Xn
n — "




E[Zn] =P

nxvar(X;) o°

var(Z,) = = —
" n2 n
where o# is the variance X;

Applying Chebyshev inequality:

0.2

P(lZ, —pl=ze) =—
ne

Taking the limit as n goes to infinity, this probability goes to
0, hence converges to p in probability

No surprise at this point, this is just WLLN



b) If you test 50 light bulbs, what is the probability that your
estimate is in the range p £ 0.1 using Chebyshev inequality

2
o)
P(1Zso —pl =2 0.1) <

Since X; is Bernoulli random variable, it’s variance is
p(1—p) =p—p*

Variance is biggest at p = 0.5, 0% = 0.25

1

)
P(lZso —pl = 0.1) < = 0.5




c) The manager ask that your estimate falls in the range of
p + 0.1 with probability 0.95, how many lights bulbs do you
need to meet this specification (assume you use Chebyshev
inequality)

IS

P(lZ,—p|=0.1) <
(l n pl — )_n(O.l)z

To guarantee a probability 0.95 of falling in the desired
range

1
4

0.1 < 005




Solve for n, n = 500, with only 500, it is enough even with
the highest variance (note our upper bound on variance)

With lower variance, then n would be smaller (also note
that we are using Chebyshev inequality)



Example

Let X4, ..., X1o be independent random variables, uniformly
distributed over the unit interval [0,1]

a) Estimate P(X; + - + X19 = 7) using the Markov

inequality X > @) _ElX]
7T a

10
E|X] = E[X;] = 10E[X;] =5
i=1
Then use Markov inequality:

5
P(X27) < =07142



b) Using the Chebyshev inequality, find the following prob.

We know mean =5 o2
P(JX—ul=c) < ?,forallc >0

var(X)
4

2P(X—=5=>2)=P(|X=5|=2) <

1
10+ ()

4

5
P(X—-5=22)<-—=0.1042
( - )_48



c) Now, let’s try with CLT:

~1—®(2.19) = 0.0143



Example

Suppose that a specific stock on any trading day, increase
30% or decrease 25%, independent of the fluctuations of
the stock value on the past and future trading days

So,
~_} 0.3, with probability 0.5
"t = 1-0.25, with probability 0.5

This 1; is the rate of return on the ith trading day



So a person comes, and thinks that he would invest in A
amount of dollars, and he computes the expected return:

1 1
E(r) = 0.3 %5+ (~0.25) - = 0.025

Implies that on average, everyday, his investment increases
by 2.5% compared to the previous day! He thinks that it’s a
wonderful investment:

For example, day 1
E[A(1+nr)] =A[1+E()] = A(1.025) = 1.0254



At day 2:
A(l + 7”1) + A(l + 7‘1)7”2 —_ A(l + Tl)(l + 7‘2)

In general at day n,
Al+rp(A+1r)..(1+7nr)

letY; = (1+ 1)

v = 1.3, with probability 1/2
Y 10.75, with probability 1/2

We are going to show that the previous logic was incorrect, and
if you hold onto this investment long enough, you will lose all
your money



This sequence of {3, Y, ..., Y, } is an independent sequence
of iid random variables.

Let give a task to find n (the number of trading days) after
which, with probability 0.99, the value of the stock
decreases to 10% of its original value

099<PA1+r)(A+1r)..(1+mr) <0.14)
= P(nY; +InY, +--+1nY, <In0.1)

Now, we know In 0.1 = —2.303
The sequence of {InY;,InY, ...,InY,} areiids



We are moving closer to use CLT!

Before that, lets compute everything needed for CLT (need
mean and variance for a summation of random variable):

1 1
E[InY;] =1In1.30 = 5 + In 0.75 * 5= —0.127

2 2 1 2 1
E|InY?| = [In 1.30] * 5 +[In0.75]* 2 = 0.0758

var(Y;) = 0.0758 — (—0.127)? = 0.0597

oy, = V0.0597 = 0.244



Now, we can use central limit theorem:

P(InY; +InY, +--+1InY, <In0.1)

_(nYi+In¥, +--+In¥, —n(-0127) _—2.303 —n(-0.127)
B 0.244 * \/n - 0.244 * \/n

~y
~y

—2.303 — n(—=0.127)
0.244 x\/n

For this probability to be greater than 0.99
—2303 —n(-0.127) _ 22

0.244 x\n




Solve for n,
n =49.73

This shows that with probability 0.99, after 50 trading days,
the value of stock reduces to 10% of its original value,
despite every day’s expected return is positive

You’'d better make you do wise decision around your
investment decision (note the compounding effect)



Example

Suppose that F, the probability distribution function (cdf)
of the elements of a class of random variables (say, a
population), is unknown and we want to estimate it at a
point x (i.e., F(x)).

To do so, we take a random sample from the population:
that is we find independent random variables X{, X5, ...
each with distribution function F.



How do we estimate?

Now we let n(x) = the number of X;'s < x and E,(x) =
n(x)

n

Clearly, F,(x) is the relative frequency of the number of
data < x [this is also called: empirical distribution function
of the sample, imagine a discrete case, where X is total
number coin resulting heads]

Now, lets try to show
lim F,(x) = F(x)
Nn—>00



Now, let’s define the following:

i

1, lel <X
0, otherwise

Y;'s are iids and have the expected value as following:
ElY;] = P(X; <x) = F(x)

Now by invoking strong law of large number:

_ Vi+Y,++Y,
lim F, = lim L e =
n—>00 Nn—>00 n

=E;) = F(x)

Hence, for large n, this empirical distribution function (estimate from
your own experiments) goes to true cumulative distribution function

*this is the theoretical proof on why you can do empirical estimation
of CDF from data



Example

Let {X, X, ... } be a sequence of nonnegative independent
random variables and, for all i, suppose that the probability
density function, X; is:

4x(1 —x),if0<x <1
0, otherwise

fx(x) = {

Now, try to find the following:
] X1+X2++Xn
lim

Nn—oo n




Instead of working it out directly,

We can use strong law of large numbers:

E(X;) = f1x4x(1 — x)dx = %
0

So we know:
] X1+X2++Xn 1
Pl lim =

n—oo n 3



Introduction to statistics

We will cover the following chapters:

Chapt. 8.1 — 8.3
Chapt. 9.1



Statistics

Models

Reality
(e.g., Poisson)

(e.g., customer arrivals)

Data

This is a tremendously useful field of study!
It is essentially everywhere ~~



Just a few examples for you to think about...

Design and interpretation of experiments:

— Polling

— Medical and pharmaceutical trials

— Netflix competition

— Finance (say, a given economic index of some sort)
 Models to predict future

— Signal processing tasks
* Tracking, detection, speaker identification, speech recognition



Note:
— In a sense, there is no ‘new’ probability theory that will be
covered in the next couple of lectures

— Statistics (inference problems) can be imagined as exercises
using probability theory

However:
— Probability is built upon axioms (rules), given a probability
problem, there is a correct (unique) answer

— Statistics does not work that way
* You are only given data, with only data, say you want to estimate
the motion of the planet...

Extremely common:
— Misuse of statistics
— Assumption checked?



Statistical estimation:
Types of inference models/approaches

Let’s think about an example:
Someone shouting (S) through air (A) and observed (X)

Assume a particular model form:
X=aS+W

 Model-building (a.k.a., system identification)
— Know S, observe X, infer a

e Signal estimation
— Know a, observe X, infer S



Bayesian vs. Classical

 Fundamental philosophical differences

— Imaging a case of estimating the mass of an electron 6

Classical statistics
0 Is a parameter (not ar.v.)

0
" Estimator —

=
>
~
s
(N
—
A

\@

A 4

Bayesian
- " pX|®(x|@) Estimator Use priors of ©®
Pe(6)




Note:

o~

® is a random variable, data is random
Classical: treat mass as a number

Bayesian: treat mass as though you have certain ‘prior’ belief

These two class of thoughts, debate for 100 years, recently,
Bayesian version is a little more prevalent

We know Bayes rule already, and that’s essentially what is
involved in statistical inference problem in Bayesian case, we will
start with it next time!

Let’s introduce something intuitive first!



Least mean square estimation

* Imagine a case: give a number for a rv ® in the absence
of information (only a prior distribution)

&

:

* You only have a prior belief on ®, as uniformly
distributed over a range (say 4 — 10)

 You want to have a point estimate (single answer) for ®,
how?



Find estimate ¢, to
minimize E[(® — ¢)?]

e Essentially, trying to find a number ¢ to report that has
minimum error (as measured by expected value of the square

difference)
e This is called least mean square error estimation (LMS)

E[(® — ¢)?] = E[®?] — 2¢cE[O] + c?

Differentiate with respect to ¢ and set it equal to 0 and solve

c = E|[O]

Soin thiscase,c = 7



In this case, how good is your estimate

— Basically: how much expected error there is?
E[(® —c)?]
What is ¢ now? E[O]
E[(® — c)?] = E[(6 — E[6])?] = var(®)

Optimal estimate: E[O]
Error associated with this estimate: var(0)

Okay now, what would happen if we have data...



LMS estimation of ® based on X

e Now we have two random variables, ® and X

e We observethat X = x

— Essentially, we are just now in a new universe, a conditional
universe where X = x

So again, we want to have an estimate ¢ such that:
E[(® — ¢)?|X = x]

Through the same procedure, we can see that the error is
minimized when reportcy c = E[0O|X = x]



We can imagine, that the estimator E[®|X = x] is a function of
data X

We know this:
E[(0 — E[6]X = x]?|X = x] < E (0 — g(x)) | X = x]
This implies
E[(e — E[0|XD?|X] < E (6 — g(x))"|X]

Now use law of iterated expectation, take expectation on both
sides:

E[(e - E[0|X])?] < E (8 — ()]
Mean square error is smallest if c = E[0©|X] than any other
function g(.) (estimator) on data X

So what is the function that provides the best estimate in least
mean square error ? E|0|X] (r.v. of conditional expectation)




Mean square error is smallest if c = E[0|X] than any other
function g(.) (estimator) on data X

So what is the function that provides the best estimate in
least mean square error ? E[©|X] (r.v. of conditional
expectation)

We will elaborate this further on its property, and then
come back to Bayesian statistical estimation
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