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Logistics

• No class on 5/24
• HW and QUIZ remain the same
• 6/5 CLASS + TA session (longer session)
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Central limit theorem

Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of independent identically 
distributed random variables with common mean µ, and 
variance, σ2, and define:

𝑍𝑍𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 − 𝑛𝑛𝜇𝜇

𝜎𝜎 𝑛𝑛
Then, the CDF of 𝑍𝑍𝑛𝑛 converges to the standard normal CDF

Φ 𝑧𝑧 =
1
2𝜋𝜋

�
−∞

𝑧𝑧
𝑒𝑒−𝑥𝑥2/2𝑑𝑑𝑑𝑑

In the sense that:
lim
𝑛𝑛→∞

𝑃𝑃 𝑍𝑍𝑛𝑛 ≤ 𝑧𝑧 = Φ 𝑧𝑧

3



Normal approximation based on the CLT

Let 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛, where 𝑋𝑋𝑖𝑖 are independent 
identically distributed random variables with mean µ, 
variance σ2. If 𝑛𝑛 is large, the probability 𝑃𝑃(𝑆𝑆𝑛𝑛 ≤ 𝑐𝑐) can be 
approximated by treating 𝑆𝑆𝑛𝑛 as if it were normal, according 
to the following procedure:

1. Calculate the mean 𝑛𝑛𝜇𝜇 and variance 𝑛𝑛𝜎𝜎2 of 𝑆𝑆𝑛𝑛
2. Calculate the normalized value 𝑧𝑧 = 𝑐𝑐 − 𝑛𝑛𝜇𝜇 /𝜎𝜎 𝑛𝑛
3. Use the approximation

𝑃𝑃(𝑆𝑆𝑛𝑛 ≤ 𝑐𝑐) ≈ Φ(𝑧𝑧)
where Φ(𝑧𝑧) is available from the standard normal CDF tables
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De Moivre-Laplace Approximation to the 
Binomial PMF

If 𝑆𝑆𝑛𝑛 is a binomial random variable with parameters 𝑛𝑛 and 𝑝𝑝, 
𝑛𝑛 is large, and 𝑘𝑘, 𝑙𝑙 are nonnegative integers, then:

𝑃𝑃 𝑘𝑘 ≤ 𝑆𝑆𝑛𝑛 ≤ 𝑙𝑙 ≈ Φ
𝑙𝑙 + 1

2 − 𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 1 − 𝑝𝑝
−Φ

𝑘𝑘 − 1
2 − 𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 1 − 𝑝𝑝
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Strong law of large numbers

• It still deals with the convergence of the sample mean to 
the true mean

Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of independent identically 
distributed random variables with mean µ. Then, the 
sequence of sample means 𝑀𝑀𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 /𝑛𝑛
converges to µ, with probability 1

𝑃𝑃 lim
𝑛𝑛→∞

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛
𝑛𝑛

= 𝜇𝜇 = 1
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Think about this for a little

• Recall on the sample space
• The experiment is:

– The experiment is infinitely long
– Each experiment generate a sequence of value (one value for 

each of the random variable sequence, 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛)
– So sample space as a set of infinite sequences of real numbers 

(𝑥𝑥1, 𝑥𝑥2 … ,)
– Consider the set 𝐴𝐴 consisting of those sequences whose long 

term averages is µ

(𝑥𝑥1, 𝑥𝑥2, … ) ∈ 𝐴𝐴 ↔ lim
𝑛𝑛→∞

𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛
𝑛𝑛 = 𝜇𝜇
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• Strong law of large number
– The collection of outcomes that do not belong to A has 

probability zero

– 𝑃𝑃 lim
𝑛𝑛→∞

𝑋𝑋1+⋯+𝑋𝑋𝑛𝑛
𝑛𝑛

= 𝜇𝜇 = 1

• Weak law of large number

– lim
𝑛𝑛→∞

𝑃𝑃 𝑋𝑋1+⋯+𝑋𝑋𝑛𝑛
𝑛𝑛

− 𝜇𝜇 ≥ 𝜖𝜖 → 0

• The difference is subtle, but should be noted
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Convergence with probability 1

Let 𝑌𝑌1,𝑌𝑌2 … be a sequence of random variables (not 
necessarily independent). Let 𝑐𝑐 be a real value. We say that 
𝑌𝑌𝑛𝑛 converges to 𝑐𝑐 with probability 1 (almost surely) if

𝑃𝑃 lim
𝑛𝑛→∞

𝑌𝑌𝑛𝑛 = 𝑐𝑐 = 1

Sample space consisting of infinite sequences: all of the 
probability is concentrates on those sequences that 
converge to 𝑐𝑐.
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Example

Let 𝑋𝑋1,𝑋𝑋2 … be a sequence of independent random 
variables that are uniformly distributed in [0,1], and let 
𝑌𝑌𝑛𝑛 = min 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛

We want to show that 𝑌𝑌𝑛𝑛 converges to 0, with probability 1
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Think about we are doing this sequence of experiments:

The sequence of 𝑌𝑌𝑛𝑛 is nonincreasing, i.e., 𝑌𝑌𝑛𝑛+1 ≤ 𝑌𝑌𝑛𝑛 for all 
𝑛𝑛

This sequence is lower bounded by 0 (uniform distribution 
0), as sequence gets longer, you can imagine this has to 
converge to a point (limit), we denote as 𝑌𝑌 = ( lim

𝑛𝑛→∞
𝑌𝑌𝑖𝑖)
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Now let’s fix some 𝜖𝜖 > 0, now we have 𝑌𝑌 > 𝜖𝜖 if and only if 
𝑋𝑋𝑖𝑖 > 𝜖𝜖 for all 𝑖𝑖 , which implies that

𝑃𝑃 𝑌𝑌 ≥ 𝜖𝜖 = 𝑃𝑃 𝑋𝑋1 ≥ 𝜖𝜖,𝑋𝑋2 ≥ 𝜖𝜖, … ,𝑋𝑋𝑛𝑛 ≥ 𝜖𝜖

= (1 − 𝜖𝜖)𝑛𝑛

Now let’s take the limit:
lim
𝑛𝑛→∞

(1 − 𝜖𝜖)𝑛𝑛 = 0

This shows that 𝑃𝑃 𝑌𝑌 ≥ 𝜖𝜖 = 0 for any positive 𝜖𝜖
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• This shows that 𝑃𝑃 𝑌𝑌 ≥ 𝜖𝜖 = 0 for any positive 𝜖𝜖

This implies:

𝑃𝑃 𝑌𝑌 > 0 = 0

Which also means:

𝑃𝑃 𝑌𝑌 = 0 = 1
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Example

A factory produces 𝑋𝑋𝑛𝑛 gadgets on day 𝑛𝑛, where the 𝑋𝑋𝑛𝑛 are 
independent and identically distributed random variables, 
with mean 5 and variance 9 
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a) Find an approximation to the probability that the total 
number of gadgets produced in 100 days is less than 
440

Let 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 be the total number of gadget 
produced in 𝑛𝑛 days

• 𝑆𝑆𝑛𝑛:
– Mean: 5𝑛𝑛
– Variance: 9𝑛𝑛
– Standard deviation: 3 𝑛𝑛
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𝑃𝑃 𝑆𝑆100 < 440 = 𝑃𝑃(𝑆𝑆100 ≤ 439.5)

= 𝑃𝑃
𝑆𝑆100 − 500

30
<

439.5 − 500
30

≈ Φ
439.5 − 500

30
= Φ −2.02 = 0.0217
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b) Find (approximately) the largest value of 𝑛𝑛 such that

𝑃𝑃 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 ≥ 200 + 5𝑛𝑛 ≤ 0.05

𝑃𝑃 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 ≥ 200 + 5𝑛𝑛 ≤ 0.05
Equals to:

𝑃𝑃
𝑆𝑆𝑛𝑛 − 5𝑛𝑛

3 𝑛𝑛
≥

200
3 𝑛𝑛

≤ 0.05

Using CLT:

1 −Φ
200
3 𝑛𝑛

≤ 0.05

Φ
200
3 𝑛𝑛

≥ 0.95
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• From the table,
– Φ 1.65 ≈ 0.95

– 200
3 𝑛𝑛

≥ 1.65 ⇒ 𝑛𝑛 ≤ 1632
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c) Let N be the first day which the total number of gadgets 
produced exceed 1000, calculate an approximation to that 
probability that 𝑁𝑁 ≥ 220

The event 𝑁𝑁 ≥ 220 (takes at least 220 days to exceed 1000 
gadgets) is the same as the event 𝑆𝑆219 ≤ 1000 (no more 
than, at most, 1000 gadgets produced in the first 219 days)

𝑃𝑃 𝑁𝑁 ≥ 220 = 𝑃𝑃 𝑆𝑆219 ≤ 1000

𝑃𝑃
𝑆𝑆219 − 5 ∗ 219

3 219
≤

1000 − 5 ∗ 219
3 219

= Φ −2.14 = 0.0162
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Example

Say, you are working for the world’s largest producer of 
lightbulbs. Your boss asks you to estimate the quality of the 
production, i.e., estimate the probability 𝑝𝑝 that a bulb 
produced by the factory is defect-less.

You are told to assume that all lightbulbs have the same 
probability of having a defect, and that defects in different 
lightbulbs are independent
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a) Suppose that you test 𝑛𝑛 randomly picked bulbs, what is 
a good estimate 𝑍𝑍𝑛𝑛 for 𝑝𝑝, such that 𝑍𝑍𝑛𝑛 converges to 𝑝𝑝 in 
probability

Let 𝑋𝑋𝑖𝑖 be a random variable indicating the quality of the 𝑖𝑖th
bulb (“1” for good bulbs, “0” for bad ones)

𝑋𝑋𝑖𝑖′s are independent Bernoulli random variable, let 𝑍𝑍𝑛𝑛 be:

𝑍𝑍𝑛𝑛 =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
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𝐸𝐸 𝑍𝑍𝑛𝑛 = 𝑝𝑝

𝑣𝑣𝑣𝑣𝑣𝑣 𝑍𝑍𝑛𝑛 =
𝑛𝑛 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋𝑖𝑖)

𝑛𝑛2
=
𝜎𝜎2

𝑛𝑛
where 𝜎𝜎2 is the variance 𝑋𝑋𝑖𝑖

Applying Chebyshev inequality:

𝑃𝑃 𝑍𝑍𝑛𝑛 − 𝑝𝑝 ≥ 𝜖𝜖 ≤
𝜎𝜎2

𝑛𝑛𝜖𝜖2

Taking the limit as 𝑛𝑛 goes to infinity, this probability goes to 
0, hence converges to 𝑝𝑝 in probability

No surprise at this point, this is just WLLN
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b) If you test 50 light bulbs, what is the probability that your 
estimate is in the range 𝑝𝑝 ± 0.1 using Chebyshev inequality 

𝑃𝑃( 𝑍𝑍50 − 𝑝𝑝 ≥ 0.1) ≤
𝜎𝜎2

50 0.1 2

Since 𝑋𝑋𝑖𝑖 is Bernoulli random variable, it’s variance is
𝑝𝑝 1 − 𝑝𝑝 = 𝑝𝑝 − 𝑝𝑝2

Variance is biggest at 𝑝𝑝 = 0.5, 𝜎𝜎2 = 0.25

𝑃𝑃 𝑍𝑍50 − 𝑝𝑝 ≥ 0.1 ≤
1
4

50 0.1 2 = 0.5
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c) The manager ask that your estimate falls in the range of 
𝑝𝑝 ± 0.1 with probability 0.95, how many lights bulbs do you 
need to meet this specification (assume you use Chebyshev
inequality) 

𝑃𝑃 𝑍𝑍𝑛𝑛 − 𝑝𝑝 ≥ 0.1 ≤
1
4

𝑛𝑛 0.1 2

To guarantee a probability 0.95 of falling in the desired 
range

1
4

𝑛𝑛 0.1 2 < 0.05
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Solve for 𝑛𝑛, 𝑛𝑛 ≥ 500, with only 500, it is enough even with 
the highest variance (note our upper bound on variance)

With lower variance, then 𝑛𝑛 would be smaller (also note 
that we are using Chebyshev inequality)
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Example

Let 𝑋𝑋1, … ,𝑋𝑋10 be independent random variables, uniformly 
distributed over the unit interval [0,1]

a) Estimate 𝑃𝑃 𝑋𝑋1 + ⋯+ 𝑋𝑋10 ≥ 7 using the Markov 
inequality

𝐸𝐸[𝑋𝑋] = �
𝑖𝑖=1

10
𝐸𝐸[𝑋𝑋𝑖𝑖] = 10𝐸𝐸 𝑋𝑋𝑖𝑖 = 5

Then use Markov inequality:

𝑃𝑃 𝑋𝑋 ≥ 7 ≤
5
7

= 0.7142

26

𝑃𝑃 𝑋𝑋 ≥ 𝑎𝑎 ≤
𝐸𝐸[𝑋𝑋]
𝑎𝑎



b) Using the Chebyshev inequality, find the following prob.
𝑃𝑃 𝑋𝑋1 + ⋯+ 𝑋𝑋10 ≥ 7

We know mean = 5

2𝑃𝑃 𝑋𝑋 − 5 ≥ 2 = 𝑃𝑃 𝑋𝑋 − 5 ≥ 2 ≤
𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋

4

=
10 ∗ 1

12
4

𝑃𝑃 𝑋𝑋 − 5 ≥ 2 ≤
5

48
= 0.1042

27

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐 ≤
𝜎𝜎2

𝑐𝑐2 , for all 𝑐𝑐 > 0



c) Now, let’s try with CLT:

𝑃𝑃 �
𝑖𝑖=1

10
𝑋𝑋𝑖𝑖 ≥ 7 = 1 − 𝑃𝑃 �

𝑖𝑖=1

10
𝑋𝑋𝑖𝑖 ≤ 7

= 1 − 𝑃𝑃
∑𝑖𝑖=110 𝑋𝑋𝑖𝑖 − 5

10
12

≤
7 − 5

10
12

≈ 1 −Φ 2.19 = 0.0143
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Example

Suppose that a specific stock on any trading day, increase 
30% or decrease 25%, independent of the fluctuations of 
the stock value on the past and future trading days

So,

𝑟𝑟𝑖𝑖 = � 0.3, with probability 0.5
−0.25, with probability 0.5

This 𝑟𝑟𝑖𝑖 is the rate of return on the 𝑖𝑖th trading day
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So a person comes, and thinks that he would invest in 𝐴𝐴
amount of dollars, and he computes the expected return:

𝐸𝐸 𝑟𝑟𝑖𝑖 = 0.3 ∗
1
2

+ −0.25 ∗
1
2

= 0.025

Implies that on average, everyday, his investment increases 
by 2.5% compared to the previous day! He thinks that it’s a 
wonderful investment:

For example, day 1
𝐸𝐸 𝐴𝐴(1 + 𝑟𝑟1) = 𝐴𝐴 1 + 𝐸𝐸(𝑟𝑟1) = 𝐴𝐴 1.025 = 1.025𝐴𝐴
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At day 2:
𝐴𝐴 1 + 𝑟𝑟1 + 𝐴𝐴 1 + 𝑟𝑟1 𝑟𝑟2 = 𝐴𝐴(1 + 𝑟𝑟1)(1 + 𝑟𝑟2)

In general at day n,
𝐴𝐴 1 + 𝑟𝑟1 1 + 𝑟𝑟2 … 1 + 𝑟𝑟𝑛𝑛

Let 𝑌𝑌𝑖𝑖 = 1 + 𝑟𝑟𝑖𝑖

𝑌𝑌𝑖𝑖 = � 1.3, with probability 1/2
0.75, with probability 1/2

We are going to show that the previous logic was incorrect, and 
if you hold onto this investment long enough, you will lose all 
your money
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This sequence of 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑛𝑛 is an independent sequence 
of iid random variables.

Let give a task to find 𝑛𝑛 (the number of trading days) after 
which, with probability 0.99, the value of the stock 
decreases to 10% of its original value

0.99 ≤ 𝑃𝑃 𝐴𝐴 1 + 𝑟𝑟1 1 + 𝑟𝑟2 … 1 + 𝑟𝑟𝑛𝑛 ≤ 0.1𝐴𝐴
= 𝑃𝑃 𝑌𝑌1𝑌𝑌2 …𝑌𝑌𝑛𝑛 ≤ 0.1

= 𝑃𝑃 ln𝑌𝑌1 + ln𝑌𝑌2. + ⋯+ ln𝑌𝑌𝑛𝑛 ≤ ln 0.1

Now, we know ln 0.1 = −2.303
The sequence of ln𝑌𝑌1 , ln𝑌𝑌2. … , ln𝑌𝑌𝑛𝑛 are iids
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We are moving closer to use CLT!
Before that, lets compute everything needed for CLT (need 
mean and variance for a summation of random variable):

𝐸𝐸 ln𝑌𝑌𝑖𝑖 = ln 1.30 ∗
1
2

+ ln 0.75 ∗
1
2

= −0.127

𝐸𝐸 ln𝑌𝑌𝑖𝑖2 = [ln 1.30]2 ∗
1
2

+ [ln 0.75]2 ∗
1
2

= 0.0758

𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌𝑖𝑖 = 0.0758 − −0.127 2 = 0.0597

𝜎𝜎𝑌𝑌𝑖𝑖 = 0.0597 = 0.244
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Now, we can use central limit theorem:

𝑃𝑃 ln𝑌𝑌1 + ln𝑌𝑌2. + ⋯+ ln𝑌𝑌𝑛𝑛 ≤ ln 0.1

= 𝑃𝑃
ln𝑌𝑌1 + ln𝑌𝑌2. + ⋯+ ln𝑌𝑌𝑛𝑛 − 𝑛𝑛(−0.127)

0.244 ∗ 𝑛𝑛
≤
−2.303 − 𝑛𝑛(−0.127)

0.244 ∗ 𝑛𝑛

≈ Φ
−2.303 − 𝑛𝑛(−0.127)

0.244 ∗ 𝑛𝑛

For this probability to be greater than 0.99
−2.303 − 𝑛𝑛(−0.127)

0.244 ∗ 𝑛𝑛
= 2.33
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Solve for n,
𝑛𝑛 = 49.73

This shows that with probability 0.99, after 50 trading days, 
the value of stock reduces to 10% of its original value, 
despite every day’s expected return is positive

You’d better make you do wise decision around your 
investment decision (note the compounding effect)
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Example

Suppose that 𝐹𝐹, the probability distribution function (cdf) 
of the elements of a class of random variables (say, a 
population), is unknown and we want to estimate it at a 
point 𝑥𝑥 (i.e., 𝐹𝐹(𝑥𝑥)).

To do so, we take a random sample from the population: 
that is we find independent random variables 𝑋𝑋1,𝑋𝑋2, …
each with distribution function 𝐹𝐹.
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How do we estimate?

Now we let 𝑛𝑛(𝑥𝑥) = the number of 𝑋𝑋𝑖𝑖′𝑠𝑠 ≤ 𝑥𝑥 and �𝐹𝐹𝑛𝑛 𝑥𝑥 =
𝑛𝑛 𝑥𝑥
𝑛𝑛

Clearly, �𝐹𝐹𝑛𝑛 𝑥𝑥 is the relative frequency of the number of 
data ≤ 𝑥𝑥 [this is also called: empirical distribution function 
of the sample, imagine a discrete case, where X is total 
number coin resulting heads]

Now, lets try to show 
lim
𝑛𝑛→∞

�𝐹𝐹𝑛𝑛 𝑥𝑥 = 𝐹𝐹(𝑥𝑥)
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Now, let’s define the following:

𝑌𝑌𝑖𝑖 = � 1, if 𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥
0, otherwise

𝑌𝑌𝑖𝑖′𝑠𝑠 are iids and have the expected value as following:

𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝑃𝑃 𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥 = 𝐹𝐹 𝑥𝑥

Now by invoking strong law of large number:

lim
𝑛𝑛→∞

�𝐹𝐹𝑛𝑛 = lim
𝑛𝑛→∞

𝑌𝑌1 + 𝑌𝑌2 + ⋯+ 𝑌𝑌𝑛𝑛
𝑛𝑛 = 𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝐹𝐹 𝑥𝑥

Hence, for large n, this empirical distribution function (estimate from 
your own experiments) goes to true cumulative distribution function
*this is the theoretical proof on why you can do empirical estimation 
of CDF from data 38



Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of nonnegative independent 
random variables and, for all 𝑖𝑖, suppose that the probability 
density function, 𝑋𝑋𝑖𝑖 is:

𝑓𝑓𝑋𝑋 𝑥𝑥 = �4𝑥𝑥 1 − 𝑥𝑥 , if 0 ≤ 𝑥𝑥 ≤ 1
0, otherwise

Now, try to find the following:

lim
𝑛𝑛→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛
𝑛𝑛

Example

39



Instead of working it out directly,

We can use strong law of large numbers:

𝐸𝐸 𝑋𝑋𝑖𝑖 = �
0

1
𝑥𝑥𝑥𝑥𝑥 1 − 𝑥𝑥 𝑑𝑑𝑑𝑑 =

1
3

So we know:

𝑃𝑃 lim
𝑛𝑛→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛
𝑛𝑛

=
1
3

= 1
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Introduction to statistics

We will cover the following chapters:

Chapt. 8.1 – 8.3
Chapt. 9.1 
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Statistics

42

Reality
(e.g., customer arrivals)

Models
(e.g., Poisson)

Data

This is a tremendously useful field of study!
It is essentially everywhere ∼∼



Just a few examples for you to think about…

• Design and interpretation of experiments:
– Polling
– Medical and pharmaceutical trials
– Netflix competition
– Finance (say, a given economic index of some sort)

• Models to predict future
– Signal processing tasks

• Tracking, detection, speaker identification, speech recognition
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Note:
– In a sense, there is no ‘new’ probability theory that will be 

covered in the next couple of lectures
– Statistics (inference problems) can be imagined as exercises 

using probability theory

However:
– Probability is built upon axioms (rules), given a probability 

problem, there is a correct (unique) answer 
– Statistics does not work that way

• You are only given data, with only data, say you want to estimate 
the motion of the planet…

Extremely common:
– Misuse of statistics
– Assumption checked?
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Statistical estimation:
Types of inference models/approaches

Let’s think about an example:
Someone shouting (𝑆𝑆) through air (𝐴𝐴) and observed (𝑋𝑋)

Assume a particular model form:
𝑋𝑋 = 𝑎𝑎𝑎𝑎 + 𝑊𝑊

• Model-building (a.k.a., system identification)
– Know 𝑆𝑆, observe 𝑋𝑋, infer 𝑎𝑎

• Signal estimation
– Know 𝑎𝑎, observe 𝑋𝑋, infer 𝑆𝑆
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Bayesian vs. Classical

• Fundamental philosophical differences
– Imaging a case of estimating the mass of an electron 𝜃𝜃

46

𝑝𝑝𝑋𝑋(𝑥𝑥;𝜃𝜃) Estimator

𝑁𝑁

𝜃𝜃 𝑋𝑋 �𝚯𝚯 Classical statistics
θ Is a parameter (not a r.v.)

𝑝𝑝𝑋𝑋|Θ(𝑥𝑥|Θ) Estimator

𝑁𝑁

Θ 𝑋𝑋 �𝚯𝚯

𝑝𝑝Θ(𝜃𝜃)

Bayesian
Use priors of Θ



Note:
�𝚯𝚯 is a random variable, data is random
Classical: treat mass as a number
Bayesian: treat mass as though you have certain ‘prior’ belief

These two class of thoughts, debate for 100 years, recently, 
Bayesian version is a little more prevalent

We know Bayes rule already, and that’s essentially what is 
involved in statistical inference problem in Bayesian case, we will 
start with it next time!

Let’s introduce something intuitive first!
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Least mean square estimation

• Imagine a case: give a number for a rv Θ in the absence 
of information (only a prior distribution)

• You only have a prior belief on Θ, as uniformly 
distributed over a range (say 4 – 10)

• You want to have a point estimate (single answer) for Θ, 
how?
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Find estimate 𝑐𝑐, to
minimize 𝐸𝐸 Θ − 𝑐𝑐 2

• Essentially, trying to find a number 𝑐𝑐 to report that has 
minimum error (as measured by expected value of the square 
difference)

• This is called least mean square error estimation (LMS)

𝐸𝐸 Θ − 𝑐𝑐 2 = 𝐸𝐸 Θ2 − 2𝑐𝑐𝑐𝑐 Θ + 𝑐𝑐2

Differentiate with respect to 𝑐𝑐 and set it equal to 0 and solve

𝑐𝑐 = 𝐸𝐸 Θ

So in this case, 𝑐𝑐 = 7
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In this case, how good is your estimate
– Basically: how much expected error there is?

𝐸𝐸 Θ − 𝑐𝑐 2

What is 𝑐𝑐 now? 𝐸𝐸 Θ

𝐸𝐸 Θ − 𝑐𝑐 2 = 𝐸𝐸 Θ − 𝐸𝐸 Θ 2 = 𝑣𝑣𝑣𝑣𝑣𝑣(Θ)

Optimal estimate: 𝑬𝑬 𝜣𝜣
Error associated with this estimate: 𝒗𝒗𝒗𝒗𝒗𝒗(𝜣𝜣)

• Okay now, what would happen if we have data…
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LMS estimation of Θ based on 𝑋𝑋

• Now we have two random variables, Θ and 𝑋𝑋
• We observe that 𝑋𝑋 = 𝑥𝑥

– Essentially, we are just now in a new universe, a conditional 
universe where 𝑋𝑋 = 𝑥𝑥

So again, we want to have an estimate 𝑐𝑐 such that:

𝐸𝐸 Θ − 𝑐𝑐 2|𝑋𝑋 = 𝑥𝑥

Through the same procedure, we can see that the error is 
minimized when report c y 𝑐𝑐 = 𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥
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We can imagine, that the estimator 𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥 is a function of  
data 𝑋𝑋

We know this:
𝐸𝐸 Θ − 𝐸𝐸 Θ|𝑋𝑋 = 𝑥𝑥 2|𝑋𝑋 = 𝑥𝑥 ≤ 𝐸𝐸 Θ − 𝑔𝑔 𝑥𝑥 2|𝑋𝑋 = 𝑥𝑥

This implies
𝐸𝐸 Θ − 𝐸𝐸 Θ|𝑋𝑋 2|𝑋𝑋 ≤ 𝐸𝐸 Θ − 𝑔𝑔 𝑋𝑋 2|𝑋𝑋

Now use law of iterated expectation, take expectation on both 
sides:

𝐸𝐸 Θ − 𝐸𝐸 Θ|𝑋𝑋 2 ≤ 𝐸𝐸 Θ − 𝑔𝑔 𝑋𝑋 2

Mean square error is smallest if 𝑐𝑐 = 𝐸𝐸 Θ|𝑋𝑋 than any other 
function 𝑔𝑔(. ) (estimator) on data 𝑋𝑋
So what is the function that provides the best estimate in least 
mean square error ? 𝐸𝐸 Θ|𝑋𝑋 (r.v. of conditional expectation)
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Mean square error is smallest if 𝑐𝑐 = 𝐸𝐸 Θ|𝑋𝑋 than any other 
function 𝑔𝑔(. ) (estimator) on data 𝑋𝑋

So what is the function that provides the best estimate in 
least mean square error ? 𝐸𝐸 Θ|𝑋𝑋 (r.v. of conditional 
expectation)

We will elaborate this further on its property, and then 
come back to Bayesian statistical estimation
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