
EE 306001 
Probability

Lecture 22: limiting theorem
李祈均



Quick review

Chebyshev inequality

If X is a random variable with mean µ, and variance 𝜎𝜎2 then,

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐 ≤
𝜎𝜎2

𝑐𝑐2
, for all 𝑐𝑐 > 0

2



Convergence

Convergence of a deterministic sequence:
Let 𝑎𝑎1,𝑎𝑎2, … be a sequence of real numbers, and let 𝑎𝑎 be another 
real number. We say that the sequence 𝑎𝑎𝑛𝑛 converges to 𝑎𝑎, or 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 𝑎𝑎, if for every 𝜖𝜖 > 0 there exists some 𝑛𝑛0 such that:

𝑎𝑎𝑛𝑛 − 𝑎𝑎 ≤ 𝜖𝜖, for all 𝑛𝑛 ≥ 𝑛𝑛0
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Convergence in probability
Let 𝑌𝑌1,𝑌𝑌2, … be a sequence of random variables (not necessarily 
independent), and let a be a real number. We say that the 
sequence, 𝑌𝑌𝑛𝑛, converges to 𝑎𝑎 in probability, if for every 𝜖𝜖 > 0 , we 
have:

lim
𝑛𝑛→∞

𝑃𝑃 𝑌𝑌𝑛𝑛 − 𝑎𝑎 ≥ 𝜀𝜀 = 0
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Example

5

• Find the expected value and variance of 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛

𝐸𝐸 𝑋𝑋𝑛𝑛 = 0 ∗ 1 −
1
𝑛𝑛 + 1 ∗

1
𝑛𝑛 =

1
𝑛𝑛

𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋𝑛𝑛 = 0 −
1
𝑛𝑛

2

∗ 1 −
1
𝑛𝑛 + 1 −

1
𝑛𝑛

2

∗
1
𝑛𝑛 =

𝑛𝑛 − 1
𝑛𝑛2
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• Find the expected value and variance of 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛

𝐸𝐸 𝑌𝑌𝑛𝑛 = 0 ∗ 1 −
1
𝑛𝑛

+ 𝑛𝑛 ∗
1
𝑛𝑛

= 1

𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌𝑛𝑛 = 0 − 1 2 ∗ 1 −
1
𝑛𝑛

+ 𝑛𝑛 − 1 2 ∗
1
𝑛𝑛

= 𝑛𝑛 − 1



What does the Chebyshev inequality tells us about the 
convergence:

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐 ≤
𝜎𝜎2

𝑐𝑐2

lim
𝑛𝑛→∞

𝑃𝑃 𝑋𝑋𝑛𝑛 −
1
𝑛𝑛
≥ 𝜖𝜖 ≤ lim

𝑛𝑛→∞

𝑛𝑛 − 1
𝑛𝑛2𝜖𝜖2

= 0

Moreover, 

lim
𝑛𝑛→∞

1
𝑛𝑛

= 0

So, 𝑋𝑋𝑛𝑛 converges to 0 in probability
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lim
𝑛𝑛→∞

𝑃𝑃 𝑌𝑌𝑛𝑛 − 1 ≥ 𝜖𝜖 ≤ lim
𝑛𝑛→∞

𝑛𝑛 − 1
𝜖𝜖2

= ∞

We can conclude anything about the convergence using 
Chebyshev inequality, only Chebyshev
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Lets look more closely, Is 𝑌𝑌𝑛𝑛 convergent in probability, if so 
what value?

lim
𝑛𝑛→∞

𝑃𝑃( 𝑌𝑌𝑛𝑛 − 0 ≥ 𝜖𝜖) ≤ lim
𝑛𝑛→∞

1
𝑛𝑛

= 0
So 𝑌𝑌𝑛𝑛 converges to 0 with in probability
Chebyshev only one of the tools, make sure you check (use) 
more
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A sequence of random variable converges to a number c in 
the mean-square sense:

lim
𝑛𝑛→∞

𝐸𝐸 𝑋𝑋𝑛𝑛 − 𝑐𝑐 2 = 0

Show that convergence in mean square implies 
convergence in probability

𝑃𝑃 𝑋𝑋𝑛𝑛 − 𝑐𝑐 ≥ 𝜖𝜖 = 𝑃𝑃 𝑋𝑋𝑛𝑛 − 𝑐𝑐 2 ≥ 𝜖𝜖2 ≤
𝐸𝐸 𝑋𝑋𝑛𝑛 − 𝑐𝑐 2

𝑐𝑐2

Take limit as n goes to infinity, we can easily see that 
convergence in mean square implies convergence in 
probability
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Does 𝑌𝑌𝑛𝑛 converge in mean square?

𝐸𝐸 𝑌𝑌𝑛𝑛 − 0 2 = 0 ∗ 1 −
1
𝑛𝑛

+ 𝑛𝑛2 ∗
1
𝑛𝑛

= 𝑛𝑛

Take 𝑛𝑛 goes to infinity, 

This goes to infinity, does not converge in mean square, but 
converge in probability !

Converge ? What type? Makes a difference
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Weak law of large numbers

Let 𝑋𝑋1,𝑋𝑋2, … be independent identically distributed random 
variables with mean µ. For every 𝜖𝜖 > 0 , we have

𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝜇𝜇 ≥ 𝜖𝜖 = 𝑃𝑃
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
− 𝜇𝜇 ≥ 𝜖𝜖 → 0,

as 𝑛𝑛 → ∞
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Central limit theorem

Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of independent identically 
distributed random variables with common mean µ, and 
variance, σ2, and define:

𝑍𝑍𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 − 𝑛𝑛𝜇𝜇

𝜎𝜎 𝑛𝑛
Then, the CDF of 𝑍𝑍𝑛𝑛 converges to the standard normal CDF

Φ 𝑧𝑧 =
1
2𝜋𝜋

�
−∞

𝑧𝑧
𝑒𝑒−𝑥𝑥2/2𝑑𝑑𝑑𝑑

In the sense that:
lim
𝑛𝑛→∞

𝑃𝑃 𝑍𝑍𝑛𝑛 ≤ 𝑧𝑧 = Φ 𝑧𝑧
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Proof of CLT

Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of independent identically 
distributed random variables with common mean 0, and 
variance, σ2, and associated transform 𝑀𝑀𝑋𝑋 𝑠𝑠 is finite when 
–𝑑𝑑 < 𝑠𝑠 < 𝑑𝑑, where 𝑑𝑑 is some positive number:

Let:

𝑍𝑍𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝜎𝜎 𝑛𝑛
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a) Show that the transform of 𝑍𝑍𝑛𝑛 is

𝑀𝑀𝑧𝑧𝑛𝑛 𝑠𝑠 = 𝑀𝑀𝑋𝑋
𝑠𝑠

𝜎𝜎 𝑛𝑛

𝑛𝑛

We have, using the independent of 𝑋𝑋𝑖𝑖

𝑀𝑀𝑧𝑧𝑛𝑛 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑍𝑍𝑛𝑛

= 𝐸𝐸 exp 𝑠𝑠
𝜎𝜎 𝑛𝑛

∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛
𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋𝑖𝑖/𝜎𝜎 𝑛𝑛

= 𝑀𝑀𝑋𝑋
𝑠𝑠

𝜎𝜎 𝑛𝑛

𝑛𝑛
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b)  Suppose that the transform 𝑀𝑀𝑋𝑋(𝑠𝑠) has a second order 
Tylor series expansion around 𝑠𝑠 = 0, of the form (Maclaurin 
series):

𝑀𝑀𝑋𝑋 𝑠𝑠 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑠𝑠2 + 𝑜𝑜(𝑠𝑠2)

where 𝑜𝑜(𝑠𝑠3) is a function that satisfies lim
𝑠𝑠→0

𝑜𝑜(𝑠𝑠2)/𝑠𝑠2 = 0, 
find 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 in terms of 𝜎𝜎2

𝑓𝑓 𝑎𝑎 +
𝑓𝑓′ 𝑎𝑎

1!
𝑥𝑥 − 𝑎𝑎 +

𝑓𝑓𝑓𝑓(𝑎𝑎)
2!

(𝑥𝑥 − 𝑎𝑎)2+
𝑓𝑓𝑓𝑓𝑓(𝑎𝑎)

3!
(𝑥𝑥 − 𝑎𝑎)3+⋯
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• Using the moment generating property of the transform, 
we have:

𝑎𝑎 = 𝑀𝑀𝑋𝑋 0 = 1 (by definition)

𝑏𝑏 =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑋𝑋 𝑠𝑠 �

𝑠𝑠 = 0
= 𝐸𝐸 𝑋𝑋 = 0

𝑐𝑐 =
1
2
𝑑𝑑2

𝑑𝑑𝑑𝑑
𝑀𝑀𝑋𝑋 𝑠𝑠 �

𝑠𝑠 = 0
=
𝐸𝐸 𝑋𝑋2

2
=
𝜎𝜎2

2
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𝑀𝑀𝑋𝑋 𝑠𝑠 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑠𝑠2 + 𝑜𝑜(𝑠𝑠2)



c) Combine the result from part a) and part b) to show that 
the transform of 𝑀𝑀𝑍𝑍𝑛𝑛(𝑠𝑠) converges to the transform 
associated with a standard normal random variable, that is,

𝑀𝑀𝑧𝑧𝑛𝑛 𝑠𝑠 = 𝑀𝑀𝑋𝑋
𝑠𝑠

𝜎𝜎 𝑛𝑛

𝑛𝑛

lim
𝑛𝑛→∞

𝑀𝑀𝑍𝑍𝑛𝑛(𝑠𝑠) = 𝑒𝑒𝑠𝑠2/2
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Combining part a) and part b)

𝑀𝑀𝑧𝑧𝑛𝑛 𝑠𝑠 = 𝑀𝑀𝑋𝑋
𝑠𝑠

𝜎𝜎 𝑛𝑛

𝑛𝑛

= 𝑎𝑎 +
𝑏𝑏𝑏𝑏
𝜎𝜎 𝑛𝑛

+
𝑐𝑐𝑠𝑠2

𝜎𝜎2𝑛𝑛
+ 𝑜𝑜

𝑠𝑠2

𝜎𝜎2𝑛𝑛

𝑛𝑛

= 1 +
𝑠𝑠2

2𝑛𝑛
+ 𝑜𝑜

𝑠𝑠2

𝜎𝜎2𝑛𝑛

𝑛𝑛
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Now take the limit as 𝑛𝑛 → ∞

lim
𝑛𝑛→∞

1 +
𝑐𝑐
𝑛𝑛

𝑛𝑛
= 𝑒𝑒𝑐𝑐

To obtain:
lim
𝑛𝑛→∞

𝑀𝑀𝑧𝑧𝑛𝑛 𝑠𝑠 = 𝑒𝑒𝑠𝑠2/2

So if the transform 𝑀𝑀𝑧𝑧𝑛𝑛 𝑠𝑠 goes to 𝑀𝑀𝑍𝑍 𝑠𝑠 , where Z is a 
standard normal, then the CDF 𝑍𝑍𝑛𝑛 goes to CDF of 𝑍𝑍 (this 
requires a separate proof… will not covered here)

Hence proved
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usefulness

• Universal: only means and variances matter
– 𝑋𝑋 can be any distribution (as long as finite mean and variance)
– You only need to know mean and variance of 𝑋𝑋

• Accurate computational shortcut

• Justification of normal models
– Classic examples goes back in 100 years (dust in a fluid, and see 

the placement of that dust)
– What is that? Brownian motion in physics

• Movement of financial markets 
• Though recently has changed a little somewhat (Tail probability)
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More notes

What exactly does it say?

• CDF of 𝑍𝑍𝑛𝑛 converges to normal CDF
– Not a statement about convergence of PDFs or PMFs

How to use:
• Treat 𝑍𝑍𝑛𝑛 as if it’s normal variable

– Then you can treat 𝑆𝑆𝑛𝑛 as if it’s normal
– Linear transformation of normal rv is a normal rv (a lot of if – if –

if here…)
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Can we use it when 𝑛𝑛 is not that large

• Yes, but there is no nice theorem to say what is a good ‘𝑛𝑛 ’
• Symmetry in the original distribution helps!
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Back to our Coke poll’s problem

• f: fraction of population that likes coke
• 𝑖𝑖𝑡𝑡𝑡 (randomly selected) person polled:

𝑋𝑋𝑖𝑖 = �1, if yes
0, if no

𝑀𝑀𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛

• We want:
𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01 ≤ 0.05
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• The event of interest:
𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01

Try to massage this expression to make it look like 
standardize variable:

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 − 𝑛𝑛𝑛𝑛
𝑛𝑛

≥ 0.01

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝜎𝜎

≥
0.01 𝑛𝑛

𝜎𝜎
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𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01 ≈ 𝑃𝑃 𝑍𝑍 ≥
0.01 𝑛𝑛

𝜎𝜎

Since we don’t know anything about 𝜎𝜎 up front 

𝜎𝜎2 = 𝑓𝑓 ∗ 1 − 𝑓𝑓

𝜎𝜎 ≤ 0.5

𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01 ≈ 𝑃𝑃 𝑍𝑍 ≥
0.01 𝑛𝑛

𝜎𝜎
≤ 𝑃𝑃 𝑍𝑍 ≥ 0.02 𝑛𝑛
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• Now, we can use normal tables to calculate probabilities 
of interest

𝑃𝑃 𝑍𝑍 ≥ 0.02 𝑛𝑛 = 2 ∗ 𝑃𝑃 𝑍𝑍 ≥ 0.02 𝑛𝑛

How small of 𝑛𝑛 can we take to make it within 5% of error

If you read it off the normal table (find z that gives you 97.5, 
back solve for n), 

You can do the math and see that 𝑛𝑛 = 9604

Much less than 50,000 using Chebyshev inequality
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CLT Apply to binomial

• Fix 𝑝𝑝, where 0 < 𝑝𝑝 < 1
• 𝑋𝑋𝑖𝑖: Bernoulli(𝑝𝑝)
• 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛: Binomial(𝑛𝑛, 𝑝𝑝)

– Mean 𝑛𝑛𝑛𝑛, variance 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)
• Apply CLT:

CDF of 𝑆𝑆𝑛𝑛−𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛(1−𝑝𝑝)

→ standard normal
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Quick example

𝑛𝑛 = 36, 𝑝𝑝 = 0.5 find 𝑃𝑃(𝑆𝑆𝑛𝑛 ≤ 21)

Exact answer using Binomial distribution

�
𝑘𝑘=0

21
36
𝑘𝑘

1
2

36

= 0.8785
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Approximation

𝐸𝐸 𝑆𝑆𝑛𝑛 = 𝑛𝑛 ∗ 𝑝𝑝 = 18

𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑛𝑛 = 𝑛𝑛 ∗ 𝑝𝑝 ∗ 1 − 𝑝𝑝 = 9

𝜎𝜎𝑆𝑆𝑛𝑛 = 3

𝑃𝑃
𝑆𝑆𝑛𝑛 − 18

3
≤

21 − 18
3

= 1 = 0.841
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By invoking central limit theorem:

Compute the mean and variance, 

And pretend the distribution is normal, 

Think about what we did in the previous slide, we pretend 
𝑆𝑆𝑛𝑛 to be normal
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½ correction

You understand that Binomial is discrete:

𝑃𝑃 𝑆𝑆𝑛𝑛 ≤ 21 = 𝑃𝑃 𝑆𝑆𝑛𝑛 < 22

Because 𝑆𝑆𝑛𝑛 is integer
Let’s compromise: 𝑃𝑃 𝑆𝑆𝑛𝑛 ≤ 21.5
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Let’s see is this a little closer

𝑃𝑃
𝑆𝑆𝑛𝑛 − 18

3
≤

21.5 − 18
3

= 1.167 = 0.8769

�
𝑘𝑘=0

21
36
𝑘𝑘

1
2

36

= 0.8785

It is actually a better approximation!
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De Moivre-Laplace CLT for binomial

This ½ correction is used, CLT can then be used to 
approximate the binomial p.m.f. (not just the binomial CDF)

𝑃𝑃 𝑆𝑆𝑛𝑛 = 19 = 𝑃𝑃 18.5 ≤ 𝑆𝑆𝑛𝑛 ≤ 19.5

18.5 ≤ 𝑆𝑆𝑛𝑛 ≤ 19.5
18.5 − 18

3
≤ (𝑆𝑆𝑛𝑛−18)/3 ≤

19.5 − 18
3

0.17 ≤ 𝑍𝑍𝑛𝑛 ≤ 0.5
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𝑃𝑃 𝑆𝑆𝑛𝑛 = 19 ≈ 𝑃𝑃 0.17 ≤ 𝑍𝑍 ≤ 0.5
= 𝑃𝑃 𝑍𝑍 < 0.5 − 𝑃𝑃 𝑍𝑍 < 0.17
= 0.6915 − 0.5675 = 0.124

Let’s look at the exact answer:

36
19

1
2

36

= 0.1251
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Good rule of thumb
Poisson vs. normal approximation of binomial

• Binomial(𝑛𝑛, 𝑝𝑝)
– 𝑝𝑝 fixed, 𝑛𝑛 → ∞: normal
– 𝑛𝑛𝑛𝑛 fixed, 𝑛𝑛 → ∞, 𝑝𝑝 → 0: Poisson

• 𝑝𝑝 = 1
100

,𝑛𝑛 = 100: Poisson

• 𝑝𝑝 = 1/10,𝑛𝑛 = 500; normal
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Examples

Random variable 𝑋𝑋 is uniformly distributed between 
− 1.0 – 1.0. Let 𝑋𝑋1,𝑋𝑋2, … , be independent identically 
distributed random variables with the same distribution as 
𝑋𝑋.

Determine which, if any, of the following sequences (all 
with 𝑖𝑖 = 1,2, …) are convergent in probability.
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a) 𝑋𝑋𝑖𝑖

• 𝑋𝑋𝑖𝑖 is definitely not convergent, since they are all just 
uniform random variable as stated in the problem 
definition
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b) 𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖
𝑖𝑖

• Yes it is convergent in probability to 0

lim
𝑖𝑖→∞

𝑃𝑃 𝑌𝑌𝑖𝑖 − 0 > 𝜖𝜖 = lim
𝑖𝑖→∞

𝑃𝑃
𝑋𝑋𝑖𝑖
𝑖𝑖
− 0 > 𝜖𝜖

= lim
𝑖𝑖→∞

𝑃𝑃 𝑋𝑋𝑖𝑖 > 𝑖𝑖𝜖𝜖 + 𝑃𝑃(𝑋𝑋𝑖𝑖 < −𝑖𝑖𝜖𝜖)

= 0
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c) 𝑍𝑍𝑖𝑖 = 𝑋𝑋𝑖𝑖 𝑖𝑖

• Yes convergent in probability to 0

lim
𝑖𝑖→∞

𝑃𝑃 𝑋𝑋𝑖𝑖 𝑖𝑖 − 0 > 𝜖𝜖

= lim
𝑖𝑖→∞

𝑃𝑃 𝑋𝑋𝑖𝑖 > 𝜖𝜖
1
𝑖𝑖 + 𝑃𝑃 𝑋𝑋𝑖𝑖 < −𝜖𝜖

1
𝑖𝑖

= lim
𝑖𝑖→∞

1
2

1 − 𝜖𝜖
1
𝑖𝑖 +

1
2

1 − 𝜖𝜖
1
𝑖𝑖

= lim
𝑖𝑖→∞

1 − 𝜖𝜖1/𝑖𝑖 = 0
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Central limit theorem

Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of independent identically 
distributed random variables with common mean µ, and 
variance, σ2, and define:

𝑍𝑍𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 − 𝑛𝑛𝜇𝜇

𝜎𝜎 𝑛𝑛
Then, the CDF of 𝑍𝑍𝑛𝑛 converges to the standard normal CDF

Φ 𝑧𝑧 =
1
2𝜋𝜋

�
−∞

𝑧𝑧
𝑒𝑒−𝑥𝑥2/2𝑑𝑑𝑑𝑑

In the sense that:
lim
𝑛𝑛→∞

𝑃𝑃 𝑍𝑍𝑛𝑛 ≤ 𝑧𝑧 = Φ 𝑧𝑧
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Normal approximation based on the CLT

Let 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛, where 𝑋𝑋𝑖𝑖 are independent 
identically distributed random variables with mean µ, 
variance σ2. If 𝑛𝑛 is large, the probability 𝑃𝑃(𝑆𝑆𝑛𝑛 ≤ 𝑐𝑐) can be 
approximated by treating 𝑆𝑆𝑛𝑛 as if it were normal, according 
to the following procedure:

1. Calculate the mean 𝑛𝑛𝜇𝜇 and variance 𝑛𝑛𝜎𝜎2 of 𝑆𝑆𝑛𝑛
2. Calculate the normalized value 𝑧𝑧 = 𝑐𝑐 − 𝑛𝑛𝜇𝜇 /𝜎𝜎 𝑛𝑛
3. Use the approximation

𝑃𝑃(𝑆𝑆𝑛𝑛 ≤ 𝑐𝑐) ≈ Φ(𝑧𝑧)
where Φ(𝑧𝑧) is available from the standard normal CDF tables
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Strong law of large numbers

• It still deals with the convergence of the sample mean to 
the true mean

Let 𝑋𝑋1,𝑋𝑋2, … be a sequence of independent identically 
distributed random variables with mean µ. Then, the 
sequence of sample means 𝑀𝑀𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛 /𝑛𝑛
converges to µ, with probability 1

𝑃𝑃 lim
𝑛𝑛→∞

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛
𝑛𝑛

= 𝜇𝜇 = 1
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Think about this for a little

• Recall on the sample space
• The experiment is:

– The experiment is infinitely long
– Each experiment generate a sequence of value (one value for 

each of the random variable sequence, 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛)
– So sample space as a set of infinite sequences of real numbers 

(𝑥𝑥1, 𝑥𝑥2 … ,)
– Consider the set 𝐴𝐴 consisting of those sequences whose long 

term averages is µ

(𝑥𝑥1, 𝑥𝑥2, … ) ∈ 𝐴𝐴 ↔ lim
𝑛𝑛→∞

𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛
𝑛𝑛 = 𝜇𝜇
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• Strong law of large number
– The collection of outcomes that do not belong to A has 

probability zero

– 𝑃𝑃 lim
𝑛𝑛→∞

𝑋𝑋1+⋯+𝑋𝑋𝑛𝑛
𝑛𝑛

= 𝜇𝜇 = 1

• Weak law of large number

– lim
𝑛𝑛→∞

𝑃𝑃 𝑋𝑋1+⋯+𝑋𝑋𝑛𝑛
𝑛𝑛

− 𝜇𝜇 ≥ 𝜖𝜖 → 0

• The difference is subtle, but should be noted
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Convergence with probability 1

Let 𝑌𝑌1,𝑌𝑌2 … be a sequence of random variables (not 
necessarily independent). Let 𝑐𝑐 be a real value. We say that 
𝑌𝑌𝑛𝑛 converges to 𝑐𝑐 with probability 1 (almost surely) if

𝑃𝑃 lim
𝑛𝑛→∞

𝑌𝑌𝑛𝑛 = 𝑐𝑐 = 1

Sample space consisting of infinite sequences: all of the 
probability is concentrates on those sequences that 
converge to 𝑐𝑐.
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