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Logistics change

• 5/3 project proposal announcement
• 5/10 homework 4 due (no class)
• 5/15 quiz 4 
• 5/17 project proposal 
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Final Projects
• Team-based project

– Final project: (25%)

• Find your topic
– Present 5/17 your ideas (2)

• What does it involve 
– How do you collect data (show us you have actually collected the data)
– How ‘good’ is your inference
– Probabilistic reasoning processs
– Q&A from every body

• Idea: probabilistic reasoning -> inference -> real data 
collection
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Final Projects : Exemplary Topics

• 測量每一次等電梯要等幾秒才搭得到 (detla 貨梯 or 客
梯)
– 測量：每次從按電梯到真的搭到電梯的時間

– infer: 哪一台電梯

– Decide which distribution
• Estimate: parameter
• Make probabilistic reasoning (inference)

• 測量小吃部小七有幾秒收銀員結帳一個人

– 測量：時間

– infer : 哪間小七
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• 二十分鐘內進小七的人數

– 測量：人的數量

– infer: 哪一家小七

• 珍珠奶茶裏面的珍珠量

– 測量：珍珠的數量

– infer: 哪一家飲料店
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Proposal presentation

• Present 2 – 3 different ideas that your team wish to 
explore (each team)

• What do you want to infer?
– Classes? (discrete category)
– Numbers? (continuous number)

• How do you plan to collect your data
– How much data do you need?

• TA will be in class, find a single topic
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7

Law of iterated Expectations
𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌

Law of total variance
𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋|𝑌𝑌 + 𝑣𝑣𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌

Total variance of X = expected within-Y X variance + variance of the between-X averages

𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑠𝑠 = 𝐸𝐸 𝐸𝐸 𝑒𝑒𝑠𝑠𝑠𝑠|𝑁𝑁 = 𝐸𝐸 𝑀𝑀𝑋𝑋(𝑠𝑠) 𝑁𝑁 = �
𝑛𝑛=0

∞

𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛𝑝𝑝𝑁𝑁(𝑛𝑛)

𝑀𝑀𝑌𝑌 𝑠𝑠 = �
𝑛𝑛=0

∞

𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛𝑝𝑝𝑁𝑁 𝑛𝑛 = �
𝑛𝑛=0

∞

𝑒𝑒𝑛𝑛 log 𝑀𝑀𝑋𝑋(𝑠𝑠)𝑝𝑝𝑁𝑁 𝑛𝑛

Now let’s look at:

𝑀𝑀𝑁𝑁 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑠𝑠 = �
𝑛𝑛=0

∞

𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝑁𝑁 𝑛𝑛

Comparing these two:
𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝑀𝑀𝑁𝑁 log𝑀𝑀𝑋𝑋(𝑠𝑠)



Example

Romeo and Juliet have a date at a given time, and each, 
independently will be late by amounts of time X and Y, 
respectively, that are exponentially distributed with 
parameter λ

Find the PDF of 𝑍𝑍 = 𝑋𝑋 − 𝑌𝑌 using two step approach
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• Let’s break into 2 regions (𝑧𝑧 ≥ 0, 𝑧𝑧 < 0)

𝐹𝐹𝑍𝑍 𝑧𝑧 = 𝑃𝑃 𝑋𝑋 − 𝑌𝑌 ≤ 𝑧𝑧 = 𝑃𝑃(𝑋𝑋 ≤ 𝑌𝑌 + 𝑧𝑧)

= �
0

∞
�
0

𝑦𝑦+𝑧𝑧
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= �
0

∞
λ𝑒𝑒−λ𝑦𝑦 �

0

𝑦𝑦+𝑧𝑧
λ𝑒𝑒−λ𝑥𝑥𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

= 1 −
1
2
𝑒𝑒−λ𝑧𝑧, 𝑧𝑧 ≥ 0
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• 𝑧𝑧 < 0
• By symmetry

– We know the distribution 𝑍𝑍 = 𝑋𝑋 − 𝑌𝑌 is the same as –𝑍𝑍 =
𝑌𝑌 − 𝑋𝑋

𝐹𝐹𝑍𝑍 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≤ 𝑧𝑧 = 𝑃𝑃 −𝑍𝑍 ≥ −𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≥ −𝑧𝑧
= 1 − 𝐹𝐹𝑍𝑍 −𝑧𝑧

Put it together:

𝐹𝐹𝑍𝑍 𝑧𝑧 =
1 −

1
2
𝑒𝑒−λ𝑧𝑧, if 𝑧𝑧 ≥ 0

1
2
𝑒𝑒λ𝑧𝑧, if 𝑧𝑧 < 0
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• Simply differentiate it to get the PDF:

𝑓𝑓𝑍𝑍 𝑧𝑧 =

λ
2
𝑒𝑒−λ𝑧𝑧, if 𝑧𝑧 ≥ 0

λ
2
𝑒𝑒λ𝑧𝑧, if 𝑧𝑧 < 0

=
λ
2

𝑒𝑒−λ 𝑧𝑧

This is called two-sided exponential PDF, also note as 
Laplace PDF
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Example

How do we find the moment transform of Binomial?

Knowing that binomial distribution essentially is a 
summation of Bernoulli,

First, let’s find the moment transform of Bernoulli

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥

𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝑋𝑋(𝑥𝑥)
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𝑀𝑀𝑋𝑋𝑖𝑖 𝑠𝑠 = 1 − 𝑝𝑝 𝑒𝑒0𝑠𝑠 + 𝑝𝑝𝑒𝑒1𝑠𝑠 = 1 − 𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑠𝑠

Summation of random variable? 

Multiplication in transform,

Binomial is a sum of ‘n’ independent Bernoulli (parameter: 
𝑛𝑛, 𝑝𝑝), expectation of joint factors, hence, moment function 
multiplies

𝑀𝑀𝑍𝑍 𝑠𝑠 = (1 − 𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑠𝑠)𝑛𝑛
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Example

We toss 𝑛𝑛 times a biased coin whose probability of heads, 
denoted by 𝑞𝑞, is the value of a random variable 𝑄𝑄, with 
mean 𝜇𝜇 and positive variance, 𝜎𝜎2

Let 𝑋𝑋𝑖𝑖 be a Bernoulli rv. That models the outcome of the 𝑖𝑖th

toss (i.e., 𝑋𝑋𝑖𝑖 = 1 if 𝑖𝑖th toss is a head). 

We assume that 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are conditionally independent, 
given 𝑄𝑄 = 𝑞𝑞. Let 𝑋𝑋 be the number of heads obtained in the 
𝑛𝑛 tosses
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a) Find 𝐸𝐸 𝑋𝑋𝑖𝑖 and 𝐸𝐸[𝑋𝑋]

From law of iterated expectations:
First:

𝐸𝐸 𝑋𝑋𝑖𝑖|𝑄𝑄 = 𝑄𝑄

So,
𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝐸𝐸 𝐸𝐸 𝑋𝑋𝑖𝑖|𝑄𝑄 = 𝐸𝐸 𝑄𝑄 = 𝜇𝜇

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑋𝑋1 + ⋯+ 𝐸𝐸 𝑋𝑋𝑛𝑛 = 𝑛𝑛𝜇𝜇
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b) Find 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗), are 𝑋𝑋𝑖𝑖’s independent of one another?

First for 𝑖𝑖 ≠ 𝑗𝑗
With conditional independent:

𝐸𝐸 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗|𝑄𝑄 = 𝐸𝐸 𝑋𝑋𝑖𝑖 𝑄𝑄 𝐸𝐸 𝑋𝑋𝑗𝑗 𝑄𝑄 = 𝑄𝑄2

Using law of iterated expectation:
𝐸𝐸[𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗] = 𝐸𝐸 𝐸𝐸 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗|𝑄𝑄 = 𝐸𝐸[𝑄𝑄2]

Now we can compute covariance:
𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 = 𝐸𝐸 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 − 𝐸𝐸 𝑋𝑋𝑖𝑖 𝐸𝐸 𝑋𝑋𝑗𝑗 = 𝐸𝐸 𝑄𝑄2 − 𝜇𝜇2 = 𝜎𝜎2

We are told that 𝜎𝜎2 is strictly positive,
So 𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 ≠ 0, hence, they are not independent
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For the case of 𝑖𝑖 = 𝑗𝑗

First noting that 𝑋𝑋𝑖𝑖2 = 𝑋𝑋𝑖𝑖

𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋𝑖𝑖 = 𝐸𝐸 𝑋𝑋𝑖𝑖2 − 𝐸𝐸 𝑋𝑋𝑖𝑖 2

= 𝐸𝐸 𝑋𝑋𝑖𝑖 − 𝐸𝐸 𝑋𝑋𝑖𝑖 2

= 𝜇𝜇 − 𝜇𝜇2
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New topic: limit theorem

Imagine a case:

• Assume there is a population of penguins down at the 
south pole

You are asked to perform a task: 
– Find the expected value of the penguin’s height
What is that?

• Pick a penguin at random and measure their height
• Expected value (with equally-likely) essentially is just the average
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That is an extremely tedious time-consuming task 
(impossible actually!):

Alternatively,
– Pick a number 𝑛𝑛 (that is less than the total), the take the 

average of the height
– We call this the ‘estimate’ of the expected value

This is also called sample mean
– Mean value within the samples that you measure (not all)
– Not the same as the true expected value (that’s over the entire 

population)

– Expected value is a number
– Sample mean is a random variable 

• Why? Because the sample that you compute is random!
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Okay, we can think that is sample mean is a reasonable way of 
estimating the expectation

So we are thinking, 

In the limit, 𝑛𝑛 goes to infinity, 
Does it (sample mean – a function) get close to the true 
expected value (a number)?

What does this mean to get close?
– Get close in what manner (in what sense?)
– Is it true that we actually get close ? (converged?)

This will the topic centered around limit theorem

𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 iids,𝑀𝑀𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
What happens as 𝑛𝑛 → ∞

20



Why bother

• First:
– Of course if you are in the sampling business (e.g., marketing, 

polls, etc), you want to know this whether this way of 
estimating the true expected value gets you close to the true 
answer

• Second:
– In terms of probabilistic reasoning: it’s easy to work out 

probability problems if you have say 1 or 2 random variables 
that you can write down their mass functions, joint pdf, etc
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• If you have lots of variables, this calculation quickly 
becomes intractable!

• Now, if you assume you are working with millions of 
variables, then you are in the realm of ‘taking the limits’

• By taking the limits, many formulas start to simplify, and 
you can get useful answers easily!

We are going to talk about different ways of ‘getting close’
– First, we will introduce a few tools
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Outline

• Tools: Markov and Chebyshev inequality
– Easy to obtain mean and variance
– PDF is not

• Define the meaning of convergence for random variables
• Convergence “in probability”
• Then we will see about that sample mean’s convergence

– Weak law of large numbers

• Central limit theorem
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Markov Inequality

If a random variable X can only take non-negative values, 
then 

𝑃𝑃 𝑋𝑋 ≥ 𝑎𝑎 ≤
𝐸𝐸[𝑋𝑋]
𝑎𝑎

• It relates expected values to probabilities
• Loosely speaking, it asserts that if a nonnegative random 

variable has a small mean, then the probability that it 
takes a large value must also be small
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Let’s justify a little

• Let fix a positive number 𝑎𝑎 and consider the following 
variable

𝑌𝑌𝑎𝑎 = �0, if 𝑋𝑋 < 𝑎𝑎
𝑎𝑎, if 𝑋𝑋 ≥ 𝑎𝑎

From this, we know
𝑌𝑌𝑎𝑎 ≤ 𝑋𝑋

Always holds, and therefore,
𝐸𝐸 𝑌𝑌𝑎𝑎 ≤ 𝐸𝐸[𝑋𝑋]
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𝐸𝐸 𝑌𝑌𝑎𝑎 = 𝑎𝑎𝑎𝑎 𝑌𝑌𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎𝑎𝑎 𝑋𝑋 ≥ 𝑎𝑎
𝑎𝑎𝑎𝑎 𝑋𝑋 ≥ 𝑎𝑎 ≤ 𝐸𝐸 𝑋𝑋

𝑃𝑃 𝑋𝑋 ≥ 𝑎𝑎 ≤
𝐸𝐸[𝑋𝑋]
𝑎𝑎

Quick example:
Let 𝑋𝑋 be uniformly distributed in the interval [0,4] and note 
that 𝐸𝐸[𝑋𝑋] = 2. Then, the Markov inequality assert that:

𝑃𝑃 𝑋𝑋 ≥ 2 ≤
2
2

= 1,𝑃𝑃 𝑋𝑋 ≥ 3 ≤
2
3

= 0.67,𝑃𝑃 𝑋𝑋 ≥ 4 ≤
2
4

= 0.5

Compare this with exact probability
𝑃𝑃 𝑋𝑋 ≥ 2 ≤ 0.5,𝑃𝑃 𝑋𝑋 ≥ 3 ≤ 0.25,𝑃𝑃 𝑋𝑋 ≥ 4 = 0

Markov inequality is a very conservative bound
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Chebyshev’s inequality

• Definition
If X is a random variable with mean µ, and variance σ2, then:

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐 ≤
𝜎𝜎2

𝑐𝑐2

• Loosely speaking, if a random variable has a small 
variance, the probability that it takes a value far from its 
mean is also small

• Chebyshev does not require the random variable to be 
nonnegative
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Justify a little

• Consider this random variable:
𝑋𝑋 − 𝜇𝜇 2

Now apply the Markov inequality with 𝑎𝑎 = 𝑐𝑐2

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 2 ≥ 𝑐𝑐2 ≤
𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2

𝑐𝑐2
=
𝜎𝜎2

𝑐𝑐2

Now observing that the event 𝑋𝑋 − 𝜇𝜇 2 ≥ 𝑐𝑐2 is identical to 
the event 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐, so that:

𝑃𝑃( 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐) = 𝑃𝑃 𝑋𝑋 − 𝜇𝜇 2 ≥ 𝑐𝑐2 ≤
𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2

𝑐𝑐2
=
𝜎𝜎2

𝑐𝑐2
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𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑐𝑐 ≤
𝜎𝜎2

𝑐𝑐2

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑘𝑘𝜎𝜎 ≤
𝜎𝜎2

𝑘𝑘𝜎𝜎 2 =
1
𝑘𝑘2

,

Now, a quick example:
Let 𝑋𝑋 be exponentially distributed with parameter λ = 1, 
so that 𝐸𝐸[𝑋𝑋] = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = 1

𝑃𝑃 𝑋𝑋 ≥ 𝑐𝑐 = 𝑃𝑃 𝑋𝑋 − 1 ≥ 𝑐𝑐 − 1 ≤ 𝑃𝑃 𝑋𝑋 − 1 ≥ 𝑐𝑐 − 1 ≤
1

𝑐𝑐 − 1 2

This is still conservative compared to the exact answer 
𝑃𝑃 𝑋𝑋 ≥ 𝑐𝑐 = 𝑒𝑒−𝑐𝑐
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Now let’s talk about convergence…

• Deterministic limits

• Given:
– There is a sequence of values, 𝑎𝑎𝑛𝑛
– There is a value, 𝑎𝑎

• We say 𝑎𝑎𝑛𝑛 converges to 𝑎𝑎
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 𝑎𝑎

“𝑎𝑎𝑛𝑛 eventually gets and stays (arbitrarily) close to 𝑎𝑎”
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Officially define this form of convergence:

For every 𝜖𝜖 > 0,

There exists a 𝑛𝑛0

Such that for every 𝑛𝑛 > 𝑛𝑛0

We have 𝑎𝑎𝑛𝑛 − 𝑎𝑎 ≤ 𝜖𝜖

31



Convergence in probability

• Say we have a sequence of random variables 𝑌𝑌𝑛𝑛

• Converges in probability to a number 𝑎𝑎:
– “(almost all) of the PMF/PDF of 𝑌𝑌𝑛𝑛 eventually gets concentrated 

(arbitrarily) close to a number 𝑎𝑎”

• That means: for every 𝜖𝜖 > 0
lim
𝑛𝑛→∞

𝑃𝑃 𝑌𝑌𝑛𝑛 − 𝑎𝑎 ≥ 𝜖𝜖 = 0
In words:
For every 𝜖𝜖 > 0, there exists a 𝑛𝑛0, such that for every 𝑛𝑛 > 𝑛𝑛0, we 
have𝑃𝑃 𝑌𝑌𝑛𝑛 − 𝑎𝑎 ≤ 𝜖𝜖
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Simple example

• Is there a convergence in probability?
– We can see that as 𝑛𝑛 gets larger and larger, more and more 

probability concentrates around 0
– If we have an ε-band around 0, the probability of falling outside 

of this band as 𝑛𝑛 goes to infinity, is 0
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Interesting point:
𝑌𝑌𝑛𝑛 in probability converges to 0

Let’s compute expected value:

𝐸𝐸 𝑌𝑌𝑛𝑛 = 𝑛𝑛 ∗
1
𝑛𝑛

= 1

𝐸𝐸 𝑌𝑌𝑛𝑛2 = 𝑛𝑛
𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌𝑛𝑛 = 𝑛𝑛 − 1

As 𝑛𝑛 goes to infinity, variance goes to infinity
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• Convergence in probability does not imply anything 
about convergence of expected values or variances and 
so on … (be careful)

• Hand-wavy reason:
– Convergence in probability tells you that tail probability is 

extremely small
– It does not tell you how far does that tail go

– In the previous example
• That tail’s probability is extremely small, but that tail is extremely 

far away
• That gives a disproportionate contribution to the expected value 

or variance
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Now back to the sample mean we started…

• Convergence of the sample mean

• Let’s define it
𝑋𝑋1,𝑋𝑋2, … iids

Assume each has mean µ and variance σ2

𝑀𝑀𝑛𝑛 =
𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
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Find 𝐸𝐸[𝑀𝑀𝑛𝑛]

𝐸𝐸[𝑀𝑀𝑛𝑛] = 𝐸𝐸 𝑋𝑋1+⋯+𝑋𝑋𝑛𝑛
𝑛𝑛

= 𝜇𝜇

There is a subtle point here
• There are two kinds of averages going on here
• Sample mean is the average of the heights collected at a single 

round 
• Expectation can be imagined as the averages over a huge number 

of rounds

• So what this means:
– You do a random experiment get an average, and if you do this 

over zillion number of times, on average your sample mean is 
the overall mean
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So 𝑀𝑀𝑛𝑛 is a random variable, how random it is?
– Let’s try to compute the variance

𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀𝑛𝑛 =
1
𝑛𝑛2 𝑛𝑛 𝜎𝜎2 =

𝜎𝜎2

𝑛𝑛

– So as 𝑛𝑛 gets larger, variance gets smaller smaller
– So that means if you take a large number of samples, the 

variance of the sample mean is very small
– Randomness of your estimate gets removed
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The weak law of large number

Definition: sample mean, 𝑀𝑀𝑛𝑛

𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝜇𝜇 ≥ 𝜖𝜖 ≤
𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀𝑛𝑛

𝜖𝜖2
=

𝜎𝜎2

𝑛𝑛𝜖𝜖2

Now if we take the limit as 𝑛𝑛 goes to infinity, that 
probability goes to 0

• It means sample mean, 𝑀𝑀𝑛𝑛 converges in probability to 𝜇𝜇
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Example

Say if you are doing a sampling poll for Coke and Pepsi 
preference,

You want to know out of the a population of 100 million 
people what is the fraction, 𝑓𝑓 ,of people prefer Coke? 

Say the exact number is 20 million, then 𝑓𝑓 = 0.2

However, we can’t ask everybody, so we sample 𝑛𝑛 people
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Now let’s set:
– 𝑖𝑖th (randomly selected) person polled:

𝑋𝑋𝑖𝑖 = �1, if prefers Coke
0, otherwise

– 𝑀𝑀𝑛𝑛 = 𝑋𝑋1+⋯+𝑋𝑋𝑛𝑛
𝑛𝑛

• This sample mean essentially is the fraction of ‘prefers coke’ in our 
sample

– So it is impossible to get the true ‘fraction’, but you are given 
this task, how do you go about answering your boss’ request?

– You can design a goal for this task (95% confident within 1% 
error)

𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01 ≤ 0.05
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How do we go about computing this:

𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01 ≤
𝜎𝜎𝑀𝑀𝑛𝑛
2

0.01 2 =
𝜎𝜎𝑥𝑥2

𝑛𝑛 0.01 2 <
1

4𝑛𝑛 0.01 2

• So if 𝑛𝑛 = 50,000
– 𝑃𝑃 𝑀𝑀𝑛𝑛 − 𝑓𝑓 ≥ 0.01 ≤ 0.05

• This is very conservative bound why?
– Chebyshev inequality
– Also 1% error (changing to 3%, it shrinks close to a factor of 10)
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Different scalings of 𝑀𝑀𝑛𝑛

• 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 i.i.d. with finite variance 𝜎𝜎2

• If you simply add it:
𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

– Expectation: 𝑛𝑛𝑛𝑛[𝑋𝑋], variance: 𝑛𝑛𝜎𝜎2

– Expectation goes to infinity and variance does too

• Now, if we scale it by 𝑛𝑛

𝑀𝑀𝑛𝑛 =
1
𝑛𝑛
𝑆𝑆𝑛𝑛,

– This rv converges in probability to 𝐸𝐸[𝑋𝑋]
– Weak law of large number
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• You can think about these two as two extreme cases
– No scaling: it flattens out, grows to infinitiy
– 𝑛𝑛 scaling: it concentrates narrowly around a number µ

• 𝑆𝑆𝑛𝑛
𝑛𝑛

– This rv would have expected value: 𝑛𝑛
𝑛𝑛
𝐸𝐸 𝑋𝑋

– This rv would be variance, 𝜎𝜎2

• Does this one has any asymptotic shape in the limit?
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The central limit theorem

• Let’s standardize this summation of random variable
– 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛

𝑍𝑍𝑛𝑛 =
𝑆𝑆𝑛𝑛 − 𝐸𝐸[𝑆𝑆𝑛𝑛]

𝜎𝜎𝑆𝑆𝑛𝑛
=
𝑆𝑆𝑛𝑛 − 𝑛𝑛𝑛𝑛[𝑋𝑋]

𝑛𝑛𝜎𝜎
– This new r.v. has zero mean and unit variance
– Does this look like anything?

• Let 𝑍𝑍 be a standard normal r.v.
• CLT: for every 𝑐𝑐

𝑃𝑃 𝑍𝑍𝑛𝑛 ≤ 𝑐𝑐 → 𝑃𝑃(𝑍𝑍 ≤ 𝑐𝑐)
– 𝑃𝑃(𝑍𝑍 ≤ 𝑐𝑐) is the standard normal CDF
– 𝑍𝑍𝑛𝑛 CDF converges to standard normal CDF
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• 𝑍𝑍𝑛𝑛 pdf can be extremely complicated
– We can compute probability using this shortcut
– Now we can pretend 𝑍𝑍𝑛𝑛 is normal, 𝑆𝑆𝑛𝑛 can be pretended as 

normal
– Strictly speaking, CLT talks about CDF function of 𝑍𝑍𝑛𝑛 NOT 𝑆𝑆𝑛𝑛

• We will try to prove it next time!
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