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• From the above two equation (first – second)
𝑋𝑋 − 𝐸𝐸 𝑋𝑋 = − 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

First calculate the covariance:
𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸[𝑋𝑋] 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

= −𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 = −𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
Now compute correlation coefficient

𝜌𝜌 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋) 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)
=

−𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)

= −1
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Can we prove that −1 ≤ 𝜌𝜌 ≤ 1?

𝜌𝜌 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋) 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)
=

−𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)

= −1

• First we have to know a very important inequality
– Schwarz inequality, for any two random variables X,Y

𝐸𝐸[𝑋𝑋𝑌𝑌] 2 ≤ 𝐸𝐸 𝑋𝑋2 𝐸𝐸 𝑌𝑌2
Now:

0 ≤ 𝐸𝐸 𝑋𝑋 −
𝐸𝐸 𝑋𝑋𝑌𝑌
𝐸𝐸 𝑌𝑌2

𝑌𝑌
2

= 𝐸𝐸 𝑋𝑋2 − 2
𝐸𝐸 𝑋𝑋𝑌𝑌
𝐸𝐸 𝑌𝑌2

𝑋𝑋𝑌𝑌 +
(𝐸𝐸 𝑋𝑋𝑌𝑌 )2

𝐸𝐸[𝑌𝑌2] 2 𝑌𝑌2 =

= 𝐸𝐸 𝑋𝑋2 −
𝐸𝐸 𝑋𝑋𝑌𝑌 2

𝐸𝐸 𝑌𝑌2
𝐸𝐸

2
𝐸𝐸 𝑋𝑋𝑌𝑌

𝑋𝑋𝑌𝑌 −
𝑌𝑌2

𝐸𝐸 𝑌𝑌2
= 𝐸𝐸 𝑋𝑋2 −

𝐸𝐸 𝑋𝑋𝑌𝑌 2

𝐸𝐸 𝑌𝑌2
𝐸𝐸 2 − 1

= 𝐸𝐸 𝑋𝑋2 −
𝐸𝐸 𝑋𝑋𝑌𝑌 2

𝐸𝐸 𝑌𝑌2
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Sum of random number of independent random 
variables

Over the weekend, you are going to visit a random number of 
bookstores, at each store, you are going to spend a random
amount of money

Let N be number of stores that you are visiting, n is an integer 
(non-negative)

Each time you walk into a store, your mind is refreshed, and you 
just buy a random number of books that has nothing to do with 
what you have done for the day, each time you enter a book 
store as a brand new person, buys a random number of books, 
and spend a random amount of money
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• Now let 𝑋𝑋𝑖𝑖 be the money spent in store 𝑖𝑖
– 𝑋𝑋𝑖𝑖 assume i.i.d.
– Independent of 𝑁𝑁

• Now let’s set 𝑌𝑌 be the total money spent on book
– 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 … + 𝑋𝑋𝑁𝑁
– We are dealing with sum of random variable except the N itself 

is also a random variable
– First let’s compute 𝐸𝐸[𝑌𝑌]?
– Let’s work in the conditional universe

• Say if we are given 𝑁𝑁 = 𝑛𝑛

𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝑛𝑛 = 𝐸𝐸 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 … + 𝑋𝑋𝑛𝑛 𝑁𝑁 = 𝑛𝑛
= 𝐸𝐸 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 … + 𝑋𝑋𝑛𝑛 = 𝐸𝐸 𝑋𝑋1 + 𝐸𝐸 𝑋𝑋2 + ⋯+ 𝐸𝐸 𝑋𝑋𝑛𝑛
= 𝑛𝑛𝐸𝐸[𝑋𝑋]
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If we don’t know N before hand,
𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝑁𝑁𝐸𝐸[𝑋𝑋]

– This is a random variable, and if you are given N to a specific value, then you 
get a number!

• Now we can invoke the iterated expectation law
𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝐸𝐸 𝑌𝑌|𝑁𝑁 = 𝐸𝐸 𝑁𝑁𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁

– 𝐸𝐸[𝑋𝑋] is a number

– This should also be intuitively easy!
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• What if I want to know the variance in this case?
𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌|𝑁𝑁) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑌𝑌|𝑁𝑁

– 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑋𝑋 2𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁
• Recall 𝑐𝑐𝑣𝑣𝑣𝑣 𝑣𝑣𝑋𝑋 = 𝑣𝑣2𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
• Variability in how much money you are spending as the 

randomness exists in how many stores you visit
– 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 𝑁𝑁 = 𝑛𝑛 = 𝑛𝑛𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋
– 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 𝑁𝑁 = 𝑁𝑁𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋
– 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 𝑁𝑁 = 𝐸𝐸 𝑁𝑁𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝐸𝐸 𝑁𝑁

• Randomness exists inside each store

So the total variability exists in how much you are going to 
spend

𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝐸𝐸 𝑁𝑁 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 + 𝐸𝐸 𝑋𝑋 2𝑐𝑐𝑣𝑣𝑣𝑣(𝑁𝑁)
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New topic

• Transforms of random variable
– r.v.’s are functions, transform are a different representation of a 

functions, imagine, Fourier transform
– Intuition around transforms in probability is kinda abstract, but 

often quite useful for mathematical manipulation

• Definition:
– For a random variable 𝑋𝑋, the transform (or something called 

moment generating function) is defined below:
𝑀𝑀𝑋𝑋 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋

– 𝑠𝑠 is a scalar parameter
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• Let’s write out the actual formula:

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥

𝑒𝑒𝑠𝑠𝑋𝑋𝑝𝑝𝑋𝑋(𝑥𝑥)

𝑀𝑀 𝑠𝑠 = �
−∞

∞
𝑒𝑒𝑠𝑠𝑋𝑋𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

• Note that these transforms are not numbers, they are 
still a function of parameter 𝑠𝑠

• Linear function of 𝑋𝑋 (e.g., 𝑌𝑌 = 𝑣𝑣𝑋𝑋 + 𝑏𝑏)

𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠(𝑎𝑎𝑋𝑋+𝑏𝑏) = 𝑒𝑒𝑠𝑠𝑏𝑏𝐸𝐸 𝑒𝑒𝑠𝑠𝑎𝑎𝑋𝑋 = 𝑒𝑒𝑠𝑠𝑏𝑏𝑀𝑀𝑋𝑋(𝑠𝑠𝑣𝑣)
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Sample transforms

• Poisson random variable with parameter λ:

𝑝𝑝𝑋𝑋 𝑥𝑥 =
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!
, 𝑥𝑥 = 0,1,2,3 …

Now, let’s try to transform it:

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥=0

∞

𝑒𝑒𝑠𝑠𝑥𝑥
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!

Now, we can set 𝑣𝑣 = 𝑒𝑒𝑠𝑠λ

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥=0

∞

𝑒𝑒𝑠𝑠𝑥𝑥
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!
= 𝑒𝑒−λ�

𝑥𝑥=0

∞
𝑣𝑣𝑥𝑥

𝑥𝑥!
= 𝑒𝑒−λ𝑒𝑒𝑎𝑎 = 𝑒𝑒𝑎𝑎−λ

= 𝑒𝑒λ 𝑒𝑒𝑠𝑠−1
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Sample transforms

• Poisson random variable with parameter λ:

𝑝𝑝𝑋𝑋 𝑥𝑥 =
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!
, 𝑥𝑥 = 0,1,2,3 …

Now, let’s try to transform it:

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥=0

∞

𝑒𝑒𝑠𝑠𝑥𝑥
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!

Now, we can set 𝑣𝑣 = 𝑒𝑒𝑠𝑠λ

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥=0

∞

𝑒𝑒𝑠𝑠𝑥𝑥
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!
= 𝑒𝑒−λ�

𝑥𝑥=0

∞
𝑣𝑣𝑥𝑥

𝑥𝑥!
= 𝑒𝑒−λ𝑒𝑒𝑎𝑎 = 𝑒𝑒𝑎𝑎−λ

= 𝑒𝑒λ 𝑒𝑒𝑠𝑠−1
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Geometric random variable

𝑓𝑓𝑋𝑋 = λ𝑒𝑒−λ𝑥𝑥, 𝑥𝑥 ≥ 0

𝑀𝑀 𝑠𝑠 = λ�
0

∞
𝑒𝑒𝑠𝑠𝑥𝑥𝑒𝑒−λ𝑥𝑥𝑑𝑑𝑥𝑥

= λ�
0

∞
𝑒𝑒(𝑠𝑠−λ)𝑥𝑥𝑑𝑑𝑥𝑥

= λ
𝑒𝑒(𝑠𝑠−λ)𝑥𝑥

𝑠𝑠 − λ
|∞0

=
λ

λ− 𝑠𝑠
Note, this is only defined if 𝑠𝑠 < λ
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Now why is this called moment-generating 
function?

• You can compute the moment of a random variable once 
you get the transform, how?

𝑀𝑀 𝑠𝑠 = �
−∞

∞
𝑒𝑒𝑠𝑠𝑋𝑋𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

Let’s take the derivative with respect to the s

𝑑𝑑
𝑑𝑑𝑠𝑠𝑀𝑀 𝑠𝑠 =

𝑑𝑑
𝑑𝑑𝑠𝑠�−∞

∞
𝑒𝑒𝑠𝑠𝑥𝑥𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

= �
−∞

∞ 𝑑𝑑
𝑑𝑑𝑠𝑠 𝑒𝑒

𝑠𝑠𝑥𝑥𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 = �
−∞

∞
𝑥𝑥𝑒𝑒𝑠𝑠𝑥𝑥𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

Now, if we are looking for first moment (𝐸𝐸[𝑋𝑋])
𝑑𝑑
𝑑𝑑𝑠𝑠𝑀𝑀 𝑠𝑠 |

𝑠𝑠 = 0
= �

−∞

∞
𝑥𝑥𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥
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• In general, to find the nth moment
𝑑𝑑𝑛𝑛

𝑑𝑑𝑠𝑠𝑛𝑛 𝑀𝑀 𝑠𝑠 |
𝑠𝑠 = 0

= �
−∞

∞
𝑥𝑥𝑛𝑛𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝐸𝐸 𝑋𝑋𝑛𝑛

• Let’s do a quick example (Geometric random variable)
𝑓𝑓𝑋𝑋 = λ𝑒𝑒−λ𝑥𝑥, 𝑥𝑥 ≥ 0

𝑀𝑀(𝑠𝑠) =
λ

λ− 𝑠𝑠
Lets try to find 𝐸𝐸[𝑋𝑋]

𝑑𝑑
𝑑𝑑𝑠𝑠
𝑀𝑀 𝑠𝑠 =

λ
λ− 𝑠𝑠 2

Evaluate that at 𝑠𝑠 = 0

=
1
λ

= 𝐸𝐸[𝑋𝑋]
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• How about second moment?

𝑑𝑑2

𝑑𝑑𝑠𝑠2
𝑀𝑀 𝑠𝑠 =

2λ
(λ− 𝑠𝑠)3

Evaluating at 𝑠𝑠 = 0

𝐸𝐸 𝑋𝑋2 =
2
λ2

We can then use this to find variance :

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − (𝐸𝐸 𝑋𝑋 )2

15



Inversion property of transform

• An important property of transform is that 𝑀𝑀𝑋𝑋 𝑠𝑠 can be 
inverted to get back to the original probability law (e.g., 
𝑓𝑓𝑋𝑋(𝑥𝑥) – like fourier transform

• Some appropriate conditions need to be matched, 
however, we can safely assume they are all satisfied

• A detailed understanding is beyond the scope of this 
course
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Simple example of this property

Assume we are told the transform for a random variable 𝑋𝑋
is of the following form:

𝑀𝑀 𝑠𝑠 =
𝑝𝑝𝑒𝑒𝑠𝑠

1 − (1 − 𝑝𝑝)𝑒𝑒𝑠𝑠
where 0 < 𝑝𝑝 ≤ 1

We want to find the PDF of X?
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• First let’s recall geometric series is achieved with this 
infinite sum:

1
1 − 𝛼𝛼

= 1 + 𝛼𝛼 + 𝛼𝛼2 + ⋯
Which is valid for 𝛼𝛼 < 1

Now, let’s set 𝛼𝛼 = (1 − 𝑝𝑝)𝑒𝑒𝑠𝑠, and for 𝑠𝑠 close to zero to make 
1 − 𝑝𝑝 𝑒𝑒𝑠𝑠 < 1 (convergence criterion)

We have:

𝑀𝑀 𝑠𝑠 =
𝑝𝑝𝑒𝑒𝑠𝑠

1 − (1 − 𝑝𝑝)𝑒𝑒𝑠𝑠 = 𝑝𝑝𝑒𝑒𝑠𝑠 1 + 1 − 𝑝𝑝 𝑒𝑒𝑠𝑠 + 1 − 𝑝𝑝 2𝑒𝑒2𝑠𝑠 + ⋯

We can then infer (find similar form) back, this is just a geometric 
distribution in the transform space:

𝑃𝑃 𝑋𝑋 = 𝑘𝑘 = 𝑝𝑝 1 − 𝑝𝑝 𝑘𝑘−1
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• Quick exercise:

• 𝑀𝑀 𝑠𝑠 = 𝑝𝑝𝑒𝑒𝑠𝑠

1−(1−𝑝𝑝)𝑒𝑒𝑠𝑠

Let’s try to find 𝐸𝐸[𝑋𝑋]
𝑑𝑑
𝑑𝑑𝑠𝑠
𝑀𝑀 𝑠𝑠 =

𝑝𝑝𝑒𝑒𝑠𝑠

1 − (1 − 𝑝𝑝)𝑒𝑒𝑠𝑠
+

1 − 𝑝𝑝 𝑝𝑝𝑒𝑒2𝑠𝑠

(1 − 1 − 𝑝𝑝 𝑒𝑒𝑠𝑠)2

Setting 𝑠𝑠 = 0

𝐸𝐸[𝑋𝑋] = 1/𝑝𝑝
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Sums of independent random variables

A particular convenient way to look at sums of independent 
random variable is to look at its transform

Transforms makes the summation results in ‘multiplication’ 
instead of ‘convolution’

Much easier to work with and analyze it
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Let 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌

𝑀𝑀𝑧𝑧 𝑧𝑧 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠(𝑋𝑋+𝑌𝑌) = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋𝑒𝑒𝑠𝑠𝑌𝑌

Since, X and Y are independent, 𝑒𝑒𝑠𝑠𝑋𝑋, 𝑒𝑒𝑠𝑠𝑌𝑌 are also independent

Then expectation factors:
𝑀𝑀𝑧𝑧 𝑧𝑧 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋𝑒𝑒𝑠𝑠𝑌𝑌 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋 𝐸𝐸 𝑒𝑒𝑠𝑠𝑌𝑌 = 𝑀𝑀𝑋𝑋(𝑥𝑥)𝑀𝑀𝑌𝑌(𝑦𝑦)

This can be generalized if you have n independent variables
𝑀𝑀𝑧𝑧 𝑧𝑧 = 𝑀𝑀𝑋𝑋1 𝑥𝑥 𝑀𝑀𝑋𝑋2 𝑥𝑥 𝑀𝑀𝑋𝑋3 𝑥𝑥 …𝑀𝑀𝑋𝑋𝑛𝑛(𝑥𝑥)
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Quick example

• If we have two variables 𝑋𝑋,𝑌𝑌 both Poisson distributed
– Each with mean λ and µ

We can get the transform functions of each as follows:
𝑀𝑀𝑋𝑋 𝑠𝑠 = 𝑒𝑒λ(𝑒𝑒𝑠𝑠−1),𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝑒𝑒𝜇𝜇(𝑒𝑒𝑠𝑠−1)

If they are independent,
𝑀𝑀𝑠𝑠 𝑠𝑠 = 𝑀𝑀𝑋𝑋 𝑠𝑠 𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝑒𝑒λ(𝑒𝑒𝑠𝑠−1)𝑒𝑒𝜇𝜇(𝑒𝑒𝑠𝑠−1)

= 𝑒𝑒(λ+µ)(𝑒𝑒𝑠𝑠−1)

We can tell from this transform function:
𝑍𝑍 is a Poisson distribution with mean λ + µ : sum of Poisson
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Another quick example

Let X and Y be independent normal random variables with 
means 𝜇𝜇𝑋𝑋, 𝜇𝜇𝑌𝑌, and variances 𝜎𝜎𝑋𝑋2,𝜎𝜎𝑌𝑌2, now let 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌

𝑀𝑀𝑋𝑋 𝑠𝑠 = exp
𝜎𝜎𝑋𝑋2𝑠𝑠2

2
+ 𝜇𝜇𝑋𝑋𝑠𝑠 ,𝑀𝑀𝑌𝑌 𝑠𝑠 = exp

𝜎𝜎𝑌𝑌2𝑠𝑠2

2
+ 𝜇𝜇𝑌𝑌𝑠𝑠 ,

So 𝑍𝑍 is the following form:

𝑀𝑀𝑠𝑠 𝑠𝑠 = exp
(𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2)𝑠𝑠2

2
+ (𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌)𝑠𝑠

So, 𝑍𝑍 is also a normal distribution with mean 𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌 and 
variance 𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 (sum of normal distribution)
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Sum of a random number of independent 
random variables

• Say we have 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑁𝑁
– N is a random variable that takes non-negative integer values
– X1, X2, X3… are iids variables

• First:
𝐸𝐸 𝑌𝑌|𝑁𝑁 = 𝑁𝑁𝐸𝐸 𝑋𝑋

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝐸𝐸 𝑌𝑌|𝑁𝑁 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁
• Also:

𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌|𝑁𝑁 + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑌𝑌|𝑁𝑁
= 𝐸𝐸 𝑁𝑁𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁𝐸𝐸 𝑋𝑋

= 𝐸𝐸 𝑁𝑁 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 + 𝐸𝐸 𝑋𝑋 2𝑐𝑐𝑣𝑣𝑣𝑣(𝑁𝑁)
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What about this in terms of moments?

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥

𝑒𝑒𝑠𝑠𝑋𝑋𝑝𝑝𝑋𝑋(𝑥𝑥)

𝑀𝑀 𝑠𝑠 = �
−∞

∞
𝑒𝑒𝑠𝑠𝑋𝑋𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

• Let Y = 𝑋𝑋 + 𝑋𝑋𝑋

𝑀𝑀𝑌𝑌 𝑦𝑦 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋𝑒𝑒𝑠𝑠𝑋𝑋1 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋1 = 𝑀𝑀𝑋𝑋(𝑥𝑥)𝑀𝑀𝑋𝑋1(𝑥𝑥𝑋)
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• Now,
𝐸𝐸 𝑒𝑒𝑠𝑠𝑌𝑌|𝑁𝑁 = 𝑛𝑛 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋1𝑒𝑒𝑠𝑠𝑋𝑋2 … 𝑒𝑒𝑠𝑠𝑋𝑋𝑁𝑁|𝑁𝑁 = 𝑛𝑛

= 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋1𝑒𝑒𝑠𝑠𝑋𝑋2 … 𝑒𝑒𝑠𝑠𝑋𝑋𝑛𝑛

= 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋1 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋2 …𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋𝑁𝑁

= 𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛

• This is transform of 𝑌𝑌 conditioned on 𝑁𝑁 = 𝑛𝑛
– Use iterated expectation to find the transform

𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑌𝑌 = 𝐸𝐸 𝐸𝐸 𝑒𝑒𝑠𝑠𝑌𝑌|𝑁𝑁 = 𝐸𝐸 𝑀𝑀𝑋𝑋(𝑠𝑠) 𝑁𝑁

= �
𝑛𝑛=0

∞

𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛𝑝𝑝𝑁𝑁(𝑛𝑛)
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• Now let’s look at it closer:
𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛 = 𝑒𝑒log 𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛

= 𝑒𝑒𝑛𝑛 log 𝑀𝑀𝑋𝑋(𝑠𝑠)

𝑀𝑀𝑌𝑌 𝑠𝑠 = �
𝑛𝑛=0

∞

𝑀𝑀𝑋𝑋 𝑠𝑠 𝑛𝑛𝑝𝑝𝑁𝑁 𝑛𝑛 = �
𝑛𝑛=0

∞

𝑒𝑒𝑛𝑛 log 𝑀𝑀𝑋𝑋(𝑠𝑠)𝑝𝑝𝑁𝑁 𝑛𝑛

• Now let’s look at:

𝑀𝑀𝑁𝑁 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑁𝑁 = �
𝑛𝑛=0

∞

𝑒𝑒𝑠𝑠𝑛𝑛𝑝𝑝𝑁𝑁 𝑛𝑛

• Comparing these two:
𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝑀𝑀𝑁𝑁 log𝑀𝑀𝑋𝑋(𝑠𝑠)
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Example

Jane visits a number of bookstores, any given bookstore carries 
the book with probability 𝑝𝑝, independent of others.

In a typical bookstore visited, Jane spends a random amount of 
time, exponentially distributed  with parameter, λ, until she 
either find the book or decide that the bookstore does to have it.

We assume that Jane will keep visiting bookstores until she buys 
the book, the time she spend at each time is independent of 
others. We wish to find the mean, variance, and PDF of the total 
time spent in bookstores
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• The total number 𝑁𝑁 of bookstore visited in geometrically-
distributed with parameter 𝑝𝑝

• The total time, Y, spent in bookstores is the sum of N 
exponentially-distributed variables (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁)

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁 =
1
λ

1
𝑝𝑝

𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝐸𝐸 𝑁𝑁 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 + 𝐸𝐸 𝑋𝑋 2𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁

=
1
𝑝𝑝
∗

1
λ2

+
1
λ2

1 − 𝑝𝑝
𝑝𝑝2

=
1

λ2𝑝𝑝2
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• We have the mean and the variance of 𝑌𝑌
• How about the PDF?

– We can do it directly from the transforms

• First:

– Geometric PDF’s transform: 𝑀𝑀𝑁𝑁 𝑠𝑠 = 𝑝𝑝𝑒𝑒𝑠𝑠

1−(1−𝑝𝑝)𝑒𝑒𝑠𝑠

– Exponential PDF’s transform: 𝑀𝑀𝑋𝑋 𝑠𝑠 = λ
λ−𝑠𝑠

How do we find 𝑀𝑀𝑌𝑌(𝑠𝑠)?
𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝑀𝑀𝑁𝑁 log𝑀𝑀𝑋𝑋(𝑠𝑠)

– Start with 𝑀𝑀𝑁𝑁 𝑠𝑠 then replace 𝑠𝑠 = log𝑀𝑀𝑋𝑋(𝑠𝑠) or 𝑒𝑒𝑠𝑠 = 𝑀𝑀𝑋𝑋(𝑠𝑠)
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𝑀𝑀𝑌𝑌 𝑠𝑠 =
𝑝𝑝𝑀𝑀𝑋𝑋(𝑠𝑠)

1 − (1 − 𝑝𝑝)𝑀𝑀𝑋𝑋(𝑠𝑠)
=

𝑝𝑝λ
λ− 𝑠𝑠

1 − (1 − 𝑝𝑝) λ
λ− 𝑠𝑠

Simplification:

𝑀𝑀𝑌𝑌 𝑠𝑠 =
𝑝𝑝λ

𝑝𝑝λ− 𝑠𝑠
What is the PDF associated with this transform?

– That is exponential distribution with parameter of 𝑝𝑝λ

𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝑝𝑝λ𝑒𝑒−𝑝𝑝λ𝑦𝑦,𝑦𝑦 ≥ 0

– Interesting results, if you add ‘fixed’ (known) exponential does not get 
you an exponential distribution, say you add 2 exponentials:

𝑀𝑀𝑌𝑌 𝑠𝑠 =
λ

λ− 𝑠𝑠

2

This is not exponentials , if you know the exact, and if you don’t know the 
exact makes a different
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Review of the sections

• Derived distribution:
– To calculate the PDF of a function 𝑌𝑌 = 𝑔𝑔(𝑋𝑋)

• First: calculate the CDF of Y

𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑔𝑔 𝑋𝑋 ≤ 𝑦𝑦 = �
𝑥𝑥|𝑔𝑔 𝑥𝑥 ≤𝑦𝑦

𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

• Differentiate with respect to CDF to get PDF

𝑓𝑓𝑌𝑌 𝑦𝑦 =
𝑑𝑑𝐹𝐹𝑌𝑌
𝑑𝑑𝑦𝑦

𝑦𝑦

– This is the standard two-step approach
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– Suppose that the function g is a monotonic and that for some 
function ℎ, and all 𝑥𝑥 in the range of 𝑋𝑋 we have:

𝑦𝑦 = 𝑔𝑔(𝑥𝑥) if and only if 𝑥𝑥 = ℎ 𝑦𝑦

– Under this condition, assume that ℎ is differentiable

𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝑓𝑓𝑋𝑋 ℎ 𝑦𝑦
𝑑𝑑ℎ
𝑑𝑑𝑦𝑦 (𝑦𝑦)

• Covariance and Correlation
– The covariance of 𝑋𝑋 and 𝑌𝑌 is defined as follow:

𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

– If two variables are ‘uncorrelated’, that means 𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 = 0
– 𝑋𝑋,𝑌𝑌 independent means uncorrelated, converse is not true
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– 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 + 𝑌𝑌 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 + 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 + 2𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌
– Correlation coefficients (unit-less measurement of linear 

relationship)

𝜌𝜌 𝑋𝑋,𝑌𝑌 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)

and it satisfies:

−1 ≤ 𝜌𝜌 𝑋𝑋,𝑌𝑌 ≤ 1
• Conditional expectation and variance

– Law of iterated Expectations
𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌

– Law of total variance
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋|𝑌𝑌 + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌
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• Transforms
– The transform associated with a random variable 𝑋𝑋 is given by

𝑀𝑀𝑋𝑋 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋 =
�

𝑋𝑋
𝑒𝑒𝑠𝑠𝑥𝑥𝑝𝑝𝑋𝑋(𝑥𝑥)

�
−∞

∞
𝑒𝑒𝑠𝑠𝑥𝑥𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

– The distribution of a random variable is completely determined 
by the corresponding transform

– Moment generating function

𝑀𝑀𝑋𝑋 0 = 1,
𝑑𝑑
𝑑𝑑𝑠𝑠𝑀𝑀𝑋𝑋 𝑠𝑠 �

𝑠𝑠 = 0
= 𝐸𝐸 𝑋𝑋 ,

𝑑𝑑𝑛𝑛

𝑑𝑑𝑠𝑠𝑛𝑛 𝑀𝑀𝑋𝑋 𝑠𝑠 �
𝑠𝑠 = 0

= 𝐸𝐸 𝑋𝑋𝑛𝑛

– If 𝑌𝑌 = 𝑣𝑣𝑋𝑋 + 𝑏𝑏, then 𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝑒𝑒𝑠𝑠𝑏𝑏𝑀𝑀𝑋𝑋 𝑣𝑣𝑠𝑠
– If 𝑋𝑋 and 𝑌𝑌 are independent, then 𝑀𝑀𝑋𝑋+𝑌𝑌 𝑠𝑠 = 𝑀𝑀𝑋𝑋(𝑠𝑠)𝑀𝑀𝑌𝑌(𝑠𝑠)
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Example

a)
You roll a fair six-sided die, and then you flip a fair coin the 
number of times shown by the die. Find the expected value 
and the variance of the number of heads obtained
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• Let 𝑋𝑋𝑖𝑖 be independent Bernoulli random variable
– 1 when the coin flipped results in head

• Let 𝑁𝑁 be the number of flips

• 𝐸𝐸 𝑋𝑋𝑖𝑖 = 1
2

• 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋𝑖𝑖 = 1
4

• 𝐸𝐸 𝑁𝑁 = 7
2
∶ 1 + 2 + 3 + 4 + 5 + 6 ∗ 1

6

• 𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁 = 35
12

∶ (𝑛𝑛2−1) ∗ 1
12

- discrete uniform 
distribution
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• Now we have all the information available:
We want to compute the expected number of heads (𝑌𝑌 is 
sum of 𝑋𝑋𝑖𝑖′𝑠𝑠)

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑋𝑋𝑖𝑖 𝐸𝐸 𝑁𝑁 =
1
2
∗

7
2

=
7
4

𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋𝑖𝑖 𝐸𝐸 𝑁𝑁 + 𝐸𝐸 𝑋𝑋𝑖𝑖 2𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁

=
1
4
∗

7
2

+
1
4
∗

35
12

=
77
48

38



• Repeat part (a) for the case when you roll two dice

How do we proceed?

Imagine you do it twice, with each experiment independent 
of one another,

So what should the expectation to be (a summation)?
7
2

So what should be the variance to be (also a summation)?
77
24
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Example

Consider 𝑛𝑛 independent tosses of a 𝑘𝑘-sided fair die. Let 𝑋𝑋𝑖𝑖
be the number of tosses that result in 𝑖𝑖

a) Are 𝑋𝑋1, 𝑋𝑋2 uncorrelated, positively correlated, negative 
correlated? Give an intuitive answer

They should negatively correlated, if you are getting a large 
number of 1’s you are of course getting a fewer number of 
2’s
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b) Compute the covariance 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋1,𝑋𝑋2)

𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋1,𝑋𝑋2 = 𝐸𝐸 𝑋𝑋1𝑋𝑋2 − 𝐸𝐸 𝑋𝑋1 𝐸𝐸 𝑋𝑋2

Now let’s define some variable:
• 𝐴𝐴𝑡𝑡: Bernoulli random variable that is 1 when the dice 

shows 1 at 𝑡𝑡th toss
• 𝐵𝐵𝑡𝑡: Bernoulli random variable that is 1 when the dice 

shows 2 at 𝑡𝑡th toss
So,

𝑋𝑋1 = 𝐴𝐴1 + ⋯+ 𝐴𝐴𝑡𝑡 + ⋯+ 𝐴𝐴𝑛𝑛
𝑋𝑋2 = 𝐵𝐵1 + ⋯+ 𝐵𝐵𝑡𝑡 + ⋯+ 𝐵𝐵𝑛𝑛
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First,
𝐸𝐸 𝐴𝐴𝑡𝑡𝐵𝐵𝑡𝑡 = 0

Why, because if one of them is 1, the other has to be 0

Then,

𝐸𝐸 𝐴𝐴𝑡𝑡𝐵𝐵𝑠𝑠 = 𝐸𝐸 𝐴𝐴𝑡𝑡]𝐸𝐸[𝐵𝐵𝑠𝑠 =
1
k
∗

1
k

, for s ≠ 𝑡𝑡

Now,
𝐸𝐸 𝑋𝑋1𝑋𝑋2
= 𝐸𝐸( 𝐴𝐴1 + ⋯+ 𝐴𝐴𝑡𝑡 + ⋯+ 𝐴𝐴𝑛𝑛 )( 𝐵𝐵1 + ⋯+ 𝐵𝐵𝑡𝑡 + ⋯+ 𝐵𝐵𝑛𝑛)

= 𝑛𝑛𝐸𝐸 𝐴𝐴1 𝐵𝐵1 + ⋯+ 𝐵𝐵𝑛𝑛
= 𝑛𝑛 ∗ 𝑛𝑛 − 1 ∗

1
𝑘𝑘
∗

1
𝑘𝑘
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• Now, we have everything needed to compute

𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋1,𝑋𝑋2 = 𝐸𝐸 𝑋𝑋1𝑋𝑋2 − 𝐸𝐸 𝑋𝑋1 𝐸𝐸 𝑋𝑋2

=
𝑛𝑛(𝑛𝑛 − 1)

𝑘𝑘2
−
𝑛𝑛2

𝑘𝑘2
= −

𝑛𝑛
𝑘𝑘2

As what we have argued in problem 1, X1, X2 are negatively 
correlated
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Example

• A club has 𝑁𝑁 members, where 𝑁𝑁 is a random variable 
with PMF as follows:

𝑝𝑝𝑁𝑁 𝑛𝑛 = 𝑝𝑝𝑛𝑛−1 1 − 𝑝𝑝 , for n=1,2,3 …

On the second Tuesday night of every month, the club holds 
a meeting. Each member attends the meeting with 
probability 𝑞𝑞, independently of all the other members. If a 
member attends the meeting, he bring an amount of 
money, 𝑀𝑀, which is a continuous random variable:

𝑓𝑓𝑀𝑀 𝑚𝑚 = λ𝑒𝑒−λ𝑚𝑚,𝑚𝑚 ≥ 0
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𝑁𝑁,𝑀𝑀, and whether the member attends the meeting are all 
independent

a) Find the expectation and variance of the number of 
members showing up at the meeting

Let’s start by having all information at hand:
• 𝐾𝐾 is the number of members attend the meeting
• 𝐵𝐵 denotes whether a member would attend the meeting 

(Bernoulli)
• 𝑁𝑁 is like Geometric (with success rate (1 − 𝑝𝑝))

𝐸𝐸 𝑁𝑁 =
1

1 − 𝑝𝑝
, 𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁 =

𝑝𝑝
(1 − 𝑝𝑝)2
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𝐸𝐸 𝑀𝑀 =
1
λ

, 𝑐𝑐𝑣𝑣𝑣𝑣 𝑀𝑀 =
1
λ2

𝐸𝐸 𝐵𝐵 = 𝑞𝑞, 𝑐𝑐𝑣𝑣𝑣𝑣 𝐵𝐵 = 𝑞𝑞 1 − 𝑞𝑞
• 𝐾𝐾 is the number of members attend the meeting

𝐾𝐾 = 𝐵𝐵1 + 𝐵𝐵2 + ⋯+ 𝐵𝐵𝑁𝑁

𝐸𝐸 𝐾𝐾 = 𝐸𝐸 𝑁𝑁 𝐸𝐸 𝐵𝐵 =
1

1 − 𝑝𝑝
∗ 𝑞𝑞

𝑐𝑐𝑣𝑣𝑣𝑣 𝐾𝐾 = 𝐸𝐸 𝑁𝑁 𝑐𝑐𝑣𝑣𝑣𝑣 𝐵𝐵 + 𝐸𝐸 𝐵𝐵 2𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁

=
𝑞𝑞(1 − 𝑞𝑞)

1 − 𝑝𝑝
+

𝑝𝑝𝑞𝑞2

(1 − 𝑝𝑝)2
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b) Find the expectation and variance for the total amount of 
money brought to the meeting

• Let 𝐺𝐺 be the total money brought to the meeting
𝐺𝐺 = 𝑀𝑀1 + ⋯+ 𝑀𝑀𝐾𝐾

𝐸𝐸 𝐺𝐺 = 𝐸𝐸 𝑀𝑀 𝐸𝐸 𝐾𝐾 =
1
λ
∗

𝑞𝑞
1 − 𝑝𝑝

𝑐𝑐𝑣𝑣𝑣𝑣 𝐺𝐺 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑀𝑀 𝐸𝐸 𝐾𝐾 + 𝐸𝐸 𝑀𝑀 2𝑐𝑐𝑣𝑣𝑣𝑣(𝐾𝐾)

=
𝑞𝑞

λ2(1 − 𝑝𝑝)
+

1
λ2

𝑞𝑞(1 − 𝑝𝑝)
1 − 𝑝𝑝

+
𝑝𝑝𝑞𝑞2

(1 − 𝑝𝑝)2
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Example

Romeo and Juliet have a date at a given time, and each, 
independently will be late by amounts of time X and Y, 
respectively, that are exponentially distributed with 
parameter λ

Find the PDF of 𝑍𝑍 = 𝑋𝑋 − 𝑌𝑌 using two step approach
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• Let’s break into 2 regions (𝑧𝑧 ≥ 0, 𝑧𝑧 < 0)

𝐹𝐹𝑠𝑠 𝑧𝑧 = 𝑃𝑃 𝑋𝑋 − 𝑌𝑌 ≤ 𝑧𝑧 = 𝑃𝑃(𝑋𝑋 ≤ 𝑌𝑌 + 𝑧𝑧)

= �
0

∞
�
0

𝑦𝑦+𝑧𝑧
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= �
0

∞
λ𝑒𝑒−λ𝑦𝑦 �

0

𝑦𝑦+𝑧𝑧
λ𝑒𝑒−λ𝑥𝑥𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

= 1 −
1
2
𝑒𝑒−λ𝑧𝑧, 𝑧𝑧 ≥ 0
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• 𝑧𝑧 < 0
• By symmetry

– We know the distribution 𝑍𝑍 = 𝑋𝑋 − 𝑌𝑌 is the same as –𝑍𝑍 =
𝑌𝑌 − 𝑋𝑋

𝐹𝐹𝑠𝑠 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≤ 𝑧𝑧 = 𝑃𝑃 −𝑍𝑍 ≥ −𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≥ −𝑧𝑧
= 1 − 𝐹𝐹𝑠𝑠 −𝑧𝑧

Put it together:

𝐹𝐹𝑠𝑠 𝑧𝑧 =
1 −

1
2
𝑒𝑒−λ𝑧𝑧, if 𝑧𝑧 ≥ 0

1
2
𝑒𝑒λ𝑧𝑧, if 𝑧𝑧 < 0
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• Simply differentiate it to get the PDF:

𝑓𝑓𝑠𝑠 𝑧𝑧 =

λ
2
𝑒𝑒−λ𝑧𝑧, if 𝑧𝑧 ≥ 0

λ
2
𝑒𝑒λ𝑧𝑧, if 𝑧𝑧 < 0

=
λ
2

𝑒𝑒−λ 𝑧𝑧

This is called two-sided exponential PDF, also note as 
Laplace PDF
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Example

How do we find the moment transform of Binomial?

Knowing that binomial distribution essentially is a 
summation of Bernoulli,

First, let’s find the moment transform of Bernoulli

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥

𝑒𝑒𝑠𝑠𝑋𝑋𝑝𝑝𝑋𝑋(𝑥𝑥)
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𝑀𝑀𝑋𝑋𝑖𝑖 𝑠𝑠 = 1 − 𝑝𝑝 𝑒𝑒0𝑠𝑠 + 𝑝𝑝𝑒𝑒1𝑠𝑠 = 1 − 𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑠𝑠

Summation of random variable? 

Multiplication in transform,

Binomial is a sum of ‘n’ independent Bernoulli (parameter: 
𝑛𝑛, 𝑝𝑝), expectation of joint factors, hence, moment function 
multiplies

𝑀𝑀𝑠𝑠 𝑠𝑠 = (1 − 𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑠𝑠)𝑛𝑛
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Example

We toss 𝑛𝑛 times a biased coin whose probability of heads, 
denoted by 𝑞𝑞, is the value of a random variable 𝑄𝑄, with 
mean 𝜇𝜇 and positive variance, 𝜎𝜎2

Let 𝑋𝑋𝑖𝑖 be a Bernoulli rv. That models the outcome of the 𝑖𝑖th

toss (i.e., 𝑋𝑋𝑖𝑖 = 1 if 𝑖𝑖th toss is a head). 

We assume that 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are conditionally independent, 
given 𝑄𝑄 = 𝑞𝑞. Let 𝑋𝑋 be the number of heads obtained in the 
𝑛𝑛 tosses
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a) Find 𝐸𝐸 𝑋𝑋𝑖𝑖 and 𝐸𝐸[𝑋𝑋]

From law of iterated expectations:
First:

𝐸𝐸 𝑋𝑋𝑖𝑖|𝑄𝑄 = 𝑄𝑄

So,
𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝐸𝐸 𝐸𝐸 𝑋𝑋𝑖𝑖|𝑄𝑄 = 𝐸𝐸 𝑄𝑄 = 𝜇𝜇

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑋𝑋1 + ⋯+ 𝐸𝐸 𝑋𝑋𝑛𝑛 = 𝑛𝑛𝜇𝜇
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b) Find 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗), are 𝑋𝑋𝑖𝑖’s independent of one another?

First for 𝑖𝑖 ≠ 𝑗𝑗
With conditional independent:

𝐸𝐸 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗|𝑄𝑄 = 𝐸𝐸 𝑋𝑋𝑖𝑖 𝑄𝑄 𝐸𝐸 𝑋𝑋𝑗𝑗 𝑄𝑄 = 𝑄𝑄2

Using law of iterated expectation:
𝐸𝐸[𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗] = 𝐸𝐸 𝐸𝐸 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗|𝑄𝑄 = 𝐸𝐸[𝑄𝑄2]

Now we can compute covariance:
𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 = 𝐸𝐸 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 − 𝐸𝐸 𝑋𝑋𝑖𝑖 𝐸𝐸 𝑋𝑋𝑗𝑗 = 𝐸𝐸 𝑄𝑄2 − 𝜇𝜇2 = 𝜎𝜎2

We are told that 𝜎𝜎2 is strictly positive,
So 𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 ≠ 0, hence, they are not independent
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For the case of 𝑖𝑖 = 𝑗𝑗

First noting that 𝑋𝑋𝑖𝑖2 = 𝑋𝑋𝑖𝑖

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋𝑖𝑖 = 𝐸𝐸 𝑋𝑋𝑖𝑖2 − 𝐸𝐸 𝑋𝑋𝑖𝑖 2

= 𝐸𝐸 𝑋𝑋𝑖𝑖 − 𝐸𝐸 𝑋𝑋𝑖𝑖 2

= 𝜇𝜇 − 𝜇𝜇2
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