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Final Projects
• Team-based project

– 360 degree evaluation (final presentation)

• Find your topic

• Presentation 
– How do you collect data (show us you have actually collected the data)
– How ‘good’ is your inference
– Probabilistic reasoning processs
– Q&A from every body

• Idea: probabilistic reasoning -> inference -> real data 
collection
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Final Projects : Exemplary Topics

• 測量每一次等電梯要等幾秒才搭得到 (detla 貨梯 or 客
梯)
– 測量：每次從按電梯到真的搭到電梯的時間

– infer: 哪一台電梯

– Decide which distribution
• Estimate: parameter
• Make probabilistic reasoning (inference)

• 測量小吃部小七有幾秒收銀員結帳一個人

– 測量：時間

– infer : 哪間小七
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• 二十分鐘內進小七的人數

– 測量：人的數量

– infer: 哪一家小七

• 珍珠奶茶裏面的珍珠量

– 測量：珍珠的數量

– infer: 哪一家飲料店
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The distribution of X+Y

• Before jumping into continuous case, let’s take a look at 
discrete case:
– 𝑊𝑊 = 𝑋𝑋 + 𝑌𝑌; 𝑋𝑋,𝑌𝑌, are independent
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Say we want to compute 𝑊𝑊 = 3

We look at each possible values of 
(𝑋𝑋,𝑌𝑌) that would make the sum into 3

And add up the probabilities for each of 
these associations



𝑝𝑝𝑊𝑊 𝑤𝑤 = 𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑤𝑤

= �
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑃𝑃(𝑌𝑌 = 𝑤𝑤 − 𝑥𝑥)

= �
𝑥𝑥

𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌(𝑤𝑤 − 𝑥𝑥)

What is the mechanics of these?
• Put the two pmf’s on top of each other
• Flip the pmf of Y
• Shift the flipped pmf by 𝑤𝑤 (to right if 𝑤𝑤 > 0)
• Cross-multiply and add
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Continuous case?

• Extremely similar to discrete case, as always..
Say Z = 𝑋𝑋 + 𝑌𝑌
First note the following:

𝑃𝑃 𝑍𝑍 ≤ 𝑧𝑧 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 + 𝑌𝑌 ≤ 𝑧𝑧 𝑋𝑋 = 𝑥𝑥

= 𝑃𝑃 𝑥𝑥 + 𝑌𝑌 ≤ 𝑧𝑧 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃 𝑥𝑥 + 𝑌𝑌 ≤ 𝑧𝑧

= 𝑃𝑃 𝑌𝑌 ≤ 𝑧𝑧 − 𝑥𝑥
If we take differentiation on both sides:

𝑓𝑓𝑍𝑍|𝑋𝑋 𝑧𝑧 𝑥𝑥 = 𝑓𝑓𝑌𝑌(𝑧𝑧 − 𝑥𝑥)
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• Knowing that, then invoke multiplication rule for joint 
PDF:

𝑓𝑓𝑋𝑋,𝑍𝑍 𝑥𝑥, 𝑧𝑧 = 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑍𝑍|𝑋𝑋 𝑧𝑧 𝑥𝑥 = 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑧𝑧 − 𝑥𝑥)

Now to find the 𝑓𝑓𝑍𝑍 𝑧𝑧 -> marginal PDF, integrate out x

𝑓𝑓𝑍𝑍 𝑧𝑧 = �
−∞

∞
𝑓𝑓𝑋𝑋,𝑍𝑍 𝑥𝑥, 𝑧𝑧 𝑑𝑑𝑥𝑥 = �

−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑧𝑧 − 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑝𝑝𝑊𝑊 𝑤𝑤 = �
𝑥𝑥

𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝𝑌𝑌 𝑤𝑤 − 𝑥𝑥

Both cases are similar, and intuitions are exactly the same:
This operation is called convolution
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• Essentially, we are trying to compute the probability 
using the following:

𝑃𝑃(𝑧𝑧 ≤ 𝑋𝑋 + 𝑌𝑌 ≤ 𝑧𝑧 + 𝛿𝛿) ≈ 𝑓𝑓𝑍𝑍(𝑧𝑧)𝛿𝛿
So,

𝑓𝑓𝑍𝑍 𝑧𝑧 𝛿𝛿 = 𝑃𝑃 𝑧𝑧 ≤ 𝑋𝑋 + 𝑌𝑌 ≤ 𝑧𝑧 + 𝛿𝛿

= �
−∞

∞
�
𝑧𝑧−𝑥𝑥

𝑧𝑧−𝑥𝑥+𝛿𝛿
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥 ≈ 𝛿𝛿�

−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑧𝑧 − 𝑥𝑥 𝑑𝑑𝑥𝑥
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x

z 𝑧𝑧 + 𝛿𝛿

𝑥𝑥 + 𝑦𝑦 = 𝑧𝑧



Graphical representation of convolution
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New topic: quantitative measure of the strength and 
direction of the relationship between two r.v.s

• Definition of covariance (expected value operator)

𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌

Or alternatively,

𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝑋𝑋𝐸𝐸 𝑌𝑌 − 𝑌𝑌𝐸𝐸 𝑋𝑋 + 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

= 𝑬𝑬 𝑿𝑿𝑿𝑿 − 𝑬𝑬 𝑿𝑿 𝑬𝑬 𝑿𝑿
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• Uncorrelated random variables 
– Covariance is zero

• Roughly speaking: positive or negative covariance 
indicates that the values of 𝑋𝑋 − 𝐸𝐸[𝑋𝑋] and 𝑌𝑌 − 𝐸𝐸[𝑌𝑌] in an 
experiment tend to have the same or opposite sign
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Properties of covariance

These can be derived easily from the definition

• 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑋𝑋) = 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
• 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋, 𝑣𝑣𝑌𝑌 + 𝑏𝑏) = 𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
• 𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 + 𝑍𝑍 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑍𝑍

Note, if X,Y are independent:
𝐸𝐸[𝑋𝑋𝑌𝑌] = 𝐸𝐸[𝑋𝑋]𝐸𝐸[𝑌𝑌], then 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) = 𝐸𝐸[𝑋𝑋𝑌𝑌] −
𝐸𝐸[𝑋𝑋]𝐸𝐸[𝑌𝑌] = 0
Is converse true? (think about it for a moment)

13



Textbook example

The pair of random variables X,Y takes the value (1,0), (0,1), (-
1,0), (0,-1), each with probability ¼

What is 𝐸𝐸[𝑋𝑋𝑌𝑌]?
– Since at least one of X or Y take on the value of 0
– 𝐸𝐸[𝑋𝑋𝑌𝑌] = 0

What is 𝐸𝐸[𝑋𝑋],𝐸𝐸[𝑌𝑌]?
– Since X, Y are symmetric around 0
– 𝐸𝐸 𝑋𝑋 ,𝐸𝐸[𝑌𝑌] = 0

So are they uncorrelated? Yes
Are the independent ? No (knowing X is non-zero.., y can not be)

14
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• Let’s generalize this concept:

As long as you have the following condition, they are 
uncorrelated:

𝐸𝐸 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 = 𝐸𝐸 𝑋𝑋 , for all y

Using total expectation theorem:

𝐸𝐸 𝑋𝑋𝑌𝑌 = �
𝑦𝑦
𝑦𝑦𝑝𝑝𝑌𝑌 𝑦𝑦 𝐸𝐸[𝑋𝑋|𝑌𝑌 = 𝑦𝑦] = 𝐸𝐸 𝑋𝑋 �

𝑦𝑦
𝑦𝑦𝑝𝑝𝑌𝑌 𝑦𝑦

= 𝐸𝐸 𝑋𝑋 𝐸𝐸[𝑌𝑌]
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Variance of the sum of random variables

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋1 + 𝑋𝑋2 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋1 + 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋2 + 2𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋1,𝑋𝑋2
Generally,

𝑐𝑐𝑣𝑣𝑣𝑣 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 |𝑖𝑖≠𝑗𝑗

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗)

• Let’s derive it
– First set �𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 𝐸𝐸 𝑋𝑋𝑖𝑖

𝑐𝑐𝑣𝑣𝑣𝑣 �
𝑖𝑖=1

𝑛𝑛
𝑋𝑋𝑖𝑖 = 𝐸𝐸 �

𝑖𝑖=1

𝑛𝑛

�𝑋𝑋𝑖𝑖

2
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= 𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛

�𝑋𝑋𝑖𝑖 �𝑋𝑋𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛

𝐸𝐸 �𝑋𝑋𝑖𝑖 �𝑋𝑋𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 �𝑋𝑋𝑖𝑖
2 + �

𝑖𝑖,𝑗𝑗 |𝑖𝑖≠𝑗𝑗

𝐸𝐸 �𝑋𝑋𝑖𝑖 �𝑋𝑋𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 |𝑖𝑖≠𝑗𝑗

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗)

Recall that we have essentially used this formula to derive the 
variance of the hat problem back in chapter 2!
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Correlation coefficients

• A dimensionless version of covariance
– Can also be imagined as normalized version of covariance
– General notion is the same as covariance
– Definition as follows:

𝜌𝜌 = 𝐸𝐸
𝑋𝑋 − 𝐸𝐸[𝑋𝑋]

𝜎𝜎𝑋𝑋
∗

(𝑌𝑌 − 𝐸𝐸 𝑌𝑌 )
𝜎𝜎𝑌𝑌

=
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

– −1 ≤ 𝜌𝜌 ≤ 1
– |𝜌𝜌| provides a normalized measure of the association
– Independence means that 𝜌𝜌 = 0, but reverse is not true
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• Property of correlation coefficients

𝜌𝜌 = 1 ↔ 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 = 𝑐𝑐(𝑌𝑌 − 𝐸𝐸[𝑌𝑌])

– Linearly related makes coefficient to be 1 or -1!

• Example
Consider n independent tosses of a coin with probability of a 
head equal to 𝑝𝑝. Let X and Y be the numbers of heads and tails, 
respectively, and let us look at the correlation coefficients of X 
and Y.

We have 
𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛

(𝐸𝐸[𝑋𝑋] + 𝐸𝐸[𝑌𝑌] = 𝑛𝑛)
intuitively, the correlation coefficient is -1
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• From the above two equation (first – second)
𝑋𝑋 − 𝐸𝐸 𝑋𝑋 = − 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

First calculate the covariance:
𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸[𝑋𝑋] 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

= −𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 2 = −𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
Now compute correlation coefficient

𝜌𝜌 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋) 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)
=

−𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)

= −1
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Can we prove that −1 ≤ 𝜌𝜌 ≤ 1?

• First we have to know a very important inequality
– Schwarz inequality, for any two random variables X,Y

𝐸𝐸[𝑋𝑋𝑌𝑌] 2 ≤ 𝐸𝐸 𝑋𝑋2 𝐸𝐸 𝑌𝑌2

Now:

0 ≤ 𝐸𝐸 𝑋𝑋 −
𝐸𝐸 𝑋𝑋𝑌𝑌
𝐸𝐸 𝑌𝑌2 𝑌𝑌

2

= 𝐸𝐸 𝑋𝑋2 − 2
𝐸𝐸 𝑋𝑋𝑌𝑌
𝐸𝐸 𝑌𝑌2 𝑋𝑋𝑌𝑌 +

(𝐸𝐸 𝑋𝑋𝑌𝑌 )2

𝐸𝐸[𝑌𝑌2] 2 𝐸𝐸 𝑌𝑌2 = 𝐸𝐸 𝑋𝑋2 −
𝐸𝐸 𝑋𝑋𝑌𝑌 2

𝐸𝐸 𝑌𝑌2

Hence, proved.
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• Now, if we let:
�𝑋𝑋 = 𝑋𝑋 − 𝐸𝐸[𝑋𝑋]

�𝑌𝑌 = 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

Using the Schwarz inequality:

𝜌𝜌(𝑋𝑋,𝑌𝑌) 2 =
𝐸𝐸 �𝑋𝑋 �𝑌𝑌 2

𝐸𝐸 �𝑋𝑋2 𝐸𝐸 �𝑌𝑌2
≤ 1

22

𝐸𝐸[𝑋𝑋𝑌𝑌] 2 ≤ 𝐸𝐸 𝑋𝑋2 𝐸𝐸 𝑌𝑌2
𝐸𝐸 𝑋𝑋𝑌𝑌 2

𝐸𝐸 𝑋𝑋2 𝐸𝐸 𝑌𝑌2 ≤ 1



Another problem on correlation coefficients

Show that 𝜌𝜌 𝑣𝑣𝑋𝑋 + 𝑏𝑏,𝑌𝑌 = 𝜌𝜌 𝑋𝑋,𝑌𝑌

𝜌𝜌 𝑣𝑣𝑋𝑋 + 𝑏𝑏,𝑌𝑌 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑋𝑋 + 𝑏𝑏,𝑌𝑌)

𝑐𝑐𝑣𝑣𝑣𝑣 𝑣𝑣𝑋𝑋 + 𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)

=
𝐸𝐸 𝑣𝑣𝑋𝑋 + 𝑏𝑏 − 𝐸𝐸 𝑣𝑣𝑋𝑋 + 𝑏𝑏 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

𝑣𝑣2𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)

=
𝐸𝐸 𝑣𝑣𝑋𝑋 + 𝑏𝑏 − 𝑣𝑣𝐸𝐸 𝑋𝑋 − 𝑏𝑏 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

𝑣𝑣 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)

=
𝑣𝑣𝐸𝐸 (𝑋𝑋 − 𝐸𝐸 𝑋𝑋 )(𝑌𝑌 − 𝐸𝐸 𝑌𝑌 )

𝑣𝑣 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)
23



=
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌)
= 𝜌𝜌(𝑋𝑋,𝑌𝑌)

As an example where this is relevant, consider  the  homework and 
exam scores. We expect the homework and exam scores to be 
positively correlated. In this example, the above property will mean 
that the correlation coefficient will not change whether the exam is 
out of 105 points, 10 points, or any other number of points.
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Example

Let X be a discrete random variable with PMF, 𝑝𝑝𝑋𝑋 and let Y 
be a continuous random variable, independent from X, with 
PDF, 𝑓𝑓𝑌𝑌. Derive a formula for the PDF of the random 
variable 𝑋𝑋 + 𝑌𝑌
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• Let 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌
– Now use the 2-step CDF approach

𝐹𝐹𝑍𝑍 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≤ 𝑧𝑧 = 𝑃𝑃(𝑋𝑋 + 𝑌𝑌 ≤ 𝑧𝑧)

Let’s now use total probability theorem, we have

𝐹𝐹𝑍𝑍 𝑧𝑧 = �
𝑥𝑥

𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝(𝑥𝑥 + 𝑌𝑌 ≤ 𝑧𝑧)

= �
𝑥𝑥

𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝(𝑌𝑌 ≤𝑧𝑧 − 𝑥𝑥)

= �
𝑥𝑥

𝑝𝑝𝑋𝑋(𝑥𝑥)𝐹𝐹𝑌𝑌(𝑧𝑧 − 𝑥𝑥)
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Now it’s time to differentiate both sides with respect to z to 
obtain the PDF of Z

𝑓𝑓𝑍𝑍 𝑧𝑧 =
𝑑𝑑
𝑑𝑑𝑧𝑧

𝐹𝐹𝑍𝑍 𝑧𝑧 = �
𝑥𝑥

𝑝𝑝𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑧𝑧 − 𝑥𝑥)
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Another example problem

An ambulance travels back and forth, at a constant specific speed 𝑐𝑐, 
along a road of length 𝑙𝑙.

We model the location of the ambulance at any moment in time to be 
uniformly distributed over the interval (0, 𝑙𝑙)

Also at any moment in time, an accident (not involving the ambulance 
itself) occurs at a point uniformly distributed on the road; that is the 
accident’s distance from one of the fixed ends of the road is also 
uniformly distributed over (0, 𝑙𝑙)

Assume the location of the accident and the location of the ambulance 
are independent
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• Further assume that the ambulance is capable of 
immediate U-TURN, compute the CDF and PDF of the 
ambulance’s travel time 𝑇𝑇 to the location of the accident
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Two step approach

• 𝑃𝑃 𝑇𝑇 ≤ 𝑡𝑡 = 𝑃𝑃( 𝑋𝑋 − 𝑌𝑌 ≤ 𝑐𝑐𝑡𝑡)
– X and Y are the locations of the ambulance and accident (both 

uniform over [0, 𝑙𝑙]
– Since X,Y are independent

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = �
1
𝑙𝑙2

0, otherwise
, if 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ 𝑙𝑙

𝑃𝑃 𝑇𝑇 ≤ 𝑡𝑡 = 𝑃𝑃 𝑋𝑋 − 𝑌𝑌 ≤ 𝑐𝑐𝑡𝑡 = 𝑃𝑃 −𝑐𝑐𝑡𝑡 ≤ 𝑌𝑌 − 𝑋𝑋 ≤ 𝑐𝑐𝑡𝑡
= 𝑃𝑃(𝑋𝑋 − 𝑐𝑐𝑡𝑡 ≤ 𝑌𝑌 ≤ 𝑋𝑋 + 𝑐𝑐𝑡𝑡)
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• That corresponds to the shaded area in the following figure:

• Since the joint density if uniform over that entire region: we 
have:

𝐹𝐹𝑇𝑇 𝑡𝑡 =
1
𝑙𝑙2

∗ (shaded area)=

0, 𝑡𝑡 < 0
2𝑐𝑐𝑡𝑡
𝑙𝑙
−

𝑐𝑐𝑡𝑡 2

𝑙𝑙2
, 0 ≤ 𝑡𝑡 ≤

𝑙𝑙
𝑐𝑐

1, 𝑡𝑡 ≥
𝑙𝑙
𝑐𝑐
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• After this, simply differentiate with respect to 𝑡𝑡

𝑓𝑓𝑇𝑇 𝑡𝑡 = �
2𝑐𝑐
𝑙𝑙
−

2𝑐𝑐2𝑡𝑡
𝑡𝑡2

, 0 ≤ 𝑡𝑡 ≤
𝑙𝑙
𝑐𝑐

0, otherwise
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Lecture outline

• Conditional expectation
– Law of iterated expectation
– Law of total variance

• Transforms: moment generating function
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A little background review

Conditional expectations
• Given the value of y of a r.v. Y

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦)

– Continuous?

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
−∞

∞
𝑥𝑥𝑓𝑓𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦)

• Let’s try it with an example
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Stick example

• Stick of length 𝑙𝑙
– Break uniformly chosen at point 𝑌𝑌
– Break again uniformly chosen a point 𝑋𝑋

• First, what is ?

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 =
𝑦𝑦
2

– That is a number
– But before you do any experiment, that 𝑦𝑦 value is unknown, Y is 

random itself
– So conditioned expectation can be seem as a random variable!

𝐸𝐸 𝑋𝑋|𝑌𝑌 =
𝑌𝑌
2
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• Conditional expectation can be seen as a random 
variable instead of a number!
– Once you do the experiment, and get a number for 𝑦𝑦, that 

conditional expectation becomes a number!
– It’s a subtle concept, and abstraction (useful abstraction)

– It is a random variable, then we can take expectation of this 
random variable, let try it:

𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑝𝑝𝑌𝑌(𝑦𝑦)

= 𝐸𝐸[𝑋𝑋]

36
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essentially, the same thing noted in chapt2,3
Total expectation theorem



• That is called law of iterated expectation
𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝐸𝐸[𝑋𝑋]

Now back to stick problem, if we want to compute E[X], 
how?

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌

= 𝐸𝐸 𝑌𝑌/2 =
1
2
𝐸𝐸[𝑌𝑌] =

𝑙𝑙
4
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Conditional variance

• Now we know conditional expectation, now move onto 
conditional variance

Standard conditional variance that we know:
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 2|𝑌𝑌 = 𝑦𝑦

• The same concept that we can imagine cases when we 
actually don’t know the value 𝑌𝑌 takes, and make 
conditional variance a r.v.

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌
• That is a random variable

– Once you know 𝑌𝑌 = 𝑦𝑦, that conditional variance is specified
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• Law of iterated expectation
– Expected value of a conditional expectation is the unconditional 

expectation

• However, law of total variance is a little different:
• Let’s list it first:

• Law of total variance
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌

Let’s prove it:
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Recall:
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2

Now, we can write:
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 𝐸𝐸 𝑋𝑋2|𝑌𝑌 − 𝐸𝐸 𝑋𝑋|𝑌𝑌 2

Now, we can take expected value on both sides
𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 2

Then, let’s take variance of r.v. 𝐸𝐸[𝑋𝑋|𝑌𝑌]
𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝐸𝐸 (𝐸𝐸 𝑋𝑋 𝑌𝑌 )2 − 𝐸𝐸[𝑋𝑋] 2

Okay, now we take sum or 3 and 4
𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2 = 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
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• Law of total variance
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌

Intuition around the proofs, 
not quite, but useful to go through the drill

How to intuitively think about conditional variance
– Some prelude, but save for later
– You can imagine about an inference problem: 

• You want to know X, but you only measure Y, 
• So you estimate X based on Y
• Conditional variance can be thought as estimation error…
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Back to a toy problem

• Say we give a quiz to a class consisting of many sections, 
so the experiment goes as follows,

I pick a student at random, and I look at two variables, one 
is the quiz score (𝑋𝑋) of the randomly selected student, and 
another one is the section number (𝑌𝑌 = 𝑦𝑦, where 𝑌𝑌 =
{1,2}) of the student that I have selected, we know that:

Section1: 10 students
Section2: 20 students
Quiz average in section 1: 90
Quiz average in section 2: 60

42



• What is expected value of X (𝐸𝐸[𝑋𝑋])
– Pretty straightforward, randomly selected, equally-like to pick any 

student

𝐸𝐸 𝑋𝑋 =
1

30
�
𝑖𝑖=1

30

𝑥𝑥𝑖𝑖 =
90 ∗ 10 + 60 ∗ 20

30
= 70

• Now, let’s look at conditional expectation
– Simple case first:

𝐸𝐸 𝑋𝑋 𝑌𝑌 = 1 = 90
𝐸𝐸 𝑋𝑋 𝑌𝑌 = 2 = 60

– Abstract case?

𝐸𝐸 𝑋𝑋 𝑌𝑌 = �60, with 𝑝𝑝 = 1/3
90, with 𝑝𝑝 = 2/3

– Now this is a random variable, with a distribution, let’s compute the 
expected value 𝐸𝐸 𝐸𝐸 𝑋𝑋 𝑌𝑌

𝐸𝐸 𝐸𝐸 𝑋𝑋 𝑌𝑌 =
1
3
∗ 60 +

2
3
∗ 90 = 70 = 𝐸𝐸[𝑋𝑋]
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• That simply means, to get overall average, you take 
averages of each section, and weighted this average by 
the associated probability of picking a student from that 
class

Now let’s try to find 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋) from conditional variance?
– Someone goes and calculate the variance of quiz scores inside 

each of the section, gives the following

1
10�

𝑖𝑖=1

10

(𝑥𝑥𝑖𝑖 − 90)2 = 10,
1

20 �
𝑖𝑖=11

30

(𝑥𝑥𝑖𝑖 − 60)2 = 20

– Now we know,
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 1 = 10, 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 2 = 20
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• So what is 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = �10, with 𝑝𝑝 = 1/3
20, with 𝑝𝑝 = 2/3

– This is a random variable we can take the expectation:

𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) =
1
3
∗ 10 +

2
3
∗ 20 =

50
3

Also, we know:

– 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸[𝑋𝑋|𝑌𝑌] = 1
3

(90 − 70)2+ 2
3

(60 − 70)2= 200

Now, we have all the information available to use law of total variance
𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 =
50
3

+ 200

This is like (average variability within each section + variability between
each section) = total variability of the quiz score
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Another numerical example

Somebody came and ask you the variance of X? 
Complicated, can we divide and conquer?

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋|𝑌𝑌

𝐸𝐸 𝑋𝑋 𝑌𝑌 = 1 =
1
2

,𝐸𝐸 𝑋𝑋 𝑌𝑌 = 2 =
3
2

𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 1 =
1

12
, 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 2 =

1
12
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• With that we can find the overall 𝐸𝐸[𝑋𝑋]
𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋 𝑌𝑌 =

1
3 ∗

1
2 +

2
3 ∗

3
2 =

7
6

• Now, let’s try

𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
1
2,

with 𝑝𝑝 = 1/3
3
2

, with 𝑝𝑝 = 2/3
𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑋𝑋 𝑌𝑌 = 𝐸𝐸 (𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝐸𝐸 𝑋𝑋 𝑌𝑌 )2

=
1
3 ∗

1
2 −

7
6

2

+
2
3 ∗

3
2 −

7
6

2

Now, let’s compute 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) :

𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋|𝑌𝑌) =
1

12
Now we have everything to compute the total variance of X
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𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 1 =
1

12 , 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝑌𝑌 = 2 =
1
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Sum of random number of independent random 
variables

Over the weekend, you are going to visit a random number of 
bookstores, at each store, you are going to spend a random
amount of money

Let N be number of stores that you are visiting, n is an integer 
(non-negative)

Each time you walk into a store, your mind is refreshed, and you 
just buy a random number of books that has nothing to do with 
what you have done for the day, each time you enter a book 
store as a brand new person, buys a random number of books, 
and spend a random amount of money
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• Now let 𝑋𝑋𝑖𝑖 be the money spent in store 𝑖𝑖
– 𝑋𝑋𝑖𝑖 assume i.i.d.
– Independent of 𝑁𝑁

• Now let’s set 𝑌𝑌 be the total money spent on book
– 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 … + 𝑋𝑋𝑁𝑁
– We are dealing with sum of random variable except the N itself 

is also a random variable
– First let’s compute 𝐸𝐸[𝑌𝑌]?
– Let’s work in the conditional universe

• Say if we are given 𝑁𝑁 = 𝑛𝑛

𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝑛𝑛 = 𝐸𝐸 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 … + 𝑋𝑋𝑛𝑛 𝑁𝑁 = 𝑛𝑛
= 𝐸𝐸 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 … + 𝑋𝑋𝑛𝑛 = 𝐸𝐸 𝑋𝑋1 + 𝐸𝐸 𝑋𝑋2 + ⋯+ 𝐸𝐸 𝑋𝑋𝑛𝑛
= 𝑛𝑛𝐸𝐸[𝑋𝑋]
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If we don’t know N before hand,
𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝑁𝑁𝐸𝐸[𝑋𝑋]

– This is a random variable, and if you are given N to a specific value, then you 
get a number!

• Now we can invoke the iterated expectation law
𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝐸𝐸 𝑌𝑌|𝑁𝑁 = 𝐸𝐸 𝑁𝑁𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁

– 𝐸𝐸[𝑋𝑋] is a number

– This should also be intuitively easy!
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• What if I want to know the variance in this case?
𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣(𝑌𝑌|𝑁𝑁) + 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑌𝑌|𝑁𝑁

– 𝑐𝑐𝑣𝑣𝑣𝑣 𝐸𝐸 𝑌𝑌 𝑁𝑁 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑋𝑋 2𝑐𝑐𝑣𝑣𝑣𝑣 𝑁𝑁
• Recall 𝑐𝑐𝑣𝑣𝑣𝑣 𝑣𝑣𝑋𝑋 = 𝑣𝑣2𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋)
• Variability in how much money you are spending as the 

randomness exists in how many stores you visit
– 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 𝑁𝑁 = 𝑛𝑛 = 𝑛𝑛𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋
– 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 𝑁𝑁 = 𝑁𝑁𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋
– 𝐸𝐸 𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 𝑁𝑁 = 𝐸𝐸 𝑁𝑁𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 = 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 𝐸𝐸 𝑁𝑁

• Randomness exists inside each store

So the total variability exists in how much you are going to 
spend

𝑐𝑐𝑣𝑣𝑣𝑣 𝑌𝑌 = 𝐸𝐸 𝑁𝑁 𝑐𝑐𝑣𝑣𝑣𝑣 𝑋𝑋 + 𝐸𝐸 𝑋𝑋 2𝑐𝑐𝑣𝑣𝑣𝑣(𝑁𝑁)
51



New topic

• Transforms of random variable
– r.v.’s are functions, transform are a different representation of a 

functions, imagine, Fourier transform
– Intuition around transforms in probability is kinda abstract, but 

often quite useful for mathematical manipulation

• Definition:
– For a random variable 𝑋𝑋, the transform (or something called 

moment generating function) is defined below:
𝑀𝑀𝑋𝑋 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠𝑋𝑋

– 𝑠𝑠 is a scalar parameter
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• Let’s write out the actual formula:

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥

𝑒𝑒𝑠𝑠𝑋𝑋𝑝𝑝𝑋𝑋(𝑥𝑥)

𝑀𝑀 𝑠𝑠 = �
−∞

∞
𝑒𝑒𝑠𝑠𝑋𝑋𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥

• Note that these transforms are not numbers, they are 
still a function of parameter 𝑠𝑠

• Linear function of 𝑋𝑋 (e.g., 𝑌𝑌 = 𝑣𝑣𝑋𝑋 + 𝑏𝑏)

𝑀𝑀𝑌𝑌 𝑠𝑠 = 𝐸𝐸 𝑒𝑒𝑠𝑠(𝑎𝑎𝑋𝑋+𝑏𝑏) = 𝑒𝑒𝑠𝑠𝑏𝑏𝐸𝐸 𝑒𝑒𝑠𝑠𝑎𝑎𝑋𝑋 = 𝑒𝑒𝑠𝑠𝑏𝑏𝑀𝑀𝑋𝑋(𝑠𝑠𝑣𝑣)
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Sample transforms

• Poisson random variable with parameter λ:

𝑝𝑝𝑋𝑋 𝑥𝑥 =
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!
, 𝑥𝑥 = 0,1,2,3 …

Now, let’s try to transform it:

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥=0

∞

𝑒𝑒𝑠𝑠𝑥𝑥
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!

Now, we can set 𝑣𝑣 = 𝑒𝑒𝑠𝑠λ

𝑀𝑀 𝑠𝑠 = �
𝑥𝑥=0

∞

𝑒𝑒𝑠𝑠𝑥𝑥
λ𝑥𝑥𝑒𝑒−λ

𝑥𝑥!
= 𝑒𝑒−λ�

𝑥𝑥=0

∞
𝑣𝑣𝑥𝑥

𝑥𝑥!
= 𝑒𝑒−λ𝑒𝑒𝑎𝑎 = 𝑒𝑒𝑎𝑎−λ

= 𝑒𝑒λ 𝑒𝑒𝑠𝑠−1
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