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Outline

Reading 4.1

• Derived distributions
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Derived distribution

Idea:
– Trying to find the distribution of a function of one or more 

known random variable with known probability law
– These types of distributions are called derived distribution

• Say for example:
– You are told (X,Y) is uniform
– You are interested in finding X/Y

• Finding the ratio

3



Derived distribution

• Essentially, you are trying to obtain the pdf for:

𝑔𝑔 𝑋𝑋,𝑌𝑌 =
𝑌𝑌
𝑋𝑋

– Involves deriving a distribution
– Note that 𝑔𝑔 𝑋𝑋,𝑌𝑌 is also a random variable

• *Important: When not to find them
– If you don’t need to find 𝑔𝑔 𝑋𝑋,𝑌𝑌 if not needed
– For example:

𝐸𝐸 𝑔𝑔(𝑋𝑋,𝑌𝑌) = �𝑔𝑔 𝑥𝑥,𝑦𝑦 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
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How to find them?

• Discrete case
– Obtain probability mass for each possible value of 𝑌𝑌 = 𝑔𝑔(𝑋𝑋)

𝑝𝑝𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑔𝑔 𝑋𝑋 = 𝑦𝑦 = �
𝑥𝑥:𝑔𝑔 𝑥𝑥 =𝑦𝑦

𝑝𝑝𝑋𝑋(𝑥𝑥)

• Just sum up the probability in the 𝑋𝑋
that leads to 𝑌𝑌 = 𝑦𝑦 to come up with the
new PMF

5



Continuous case

• Can we do the same thing as in the discrete case?
– Not really, we don’t have probability that operates “points-to-

points”
– Because? 
– Probability in continuous case is zero at every individual point

• So what we want to find is not the probability, 
– We want to find the actual density for Y
– In essence:

• Find the probability of falling in a small interval around 𝑌𝑌 = 𝑦𝑦, and 
look back at the set of x’s that leads to those y’s

• Then set those probability equal to each other to find density
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Continuous case

• Instead of working with intervals, we work directly with 
CDF
– What is CDFs? Cumulative distribution function
– Essentially, a big intervals!

• Two step procedure
– Get CDF of 𝑌𝑌: 𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦)
– Differentiate the CDF to obtain PDF

𝑓𝑓𝑌𝑌 𝑦𝑦 =
𝑑𝑑𝐹𝐹𝑌𝑌
𝑑𝑑𝑦𝑦

(𝑦𝑦)

7



Example

• 𝑋𝑋: uniform on [0,2]
• 𝑌𝑌 = 𝑋𝑋3

– Now how to find the PDF for Y?

• 𝑌𝑌 can take value from [0,8]
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Example

• Lets try to apply the two-step procedure

𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑌𝑌 ≤ 𝑦𝑦 = 𝑃𝑃 𝑋𝑋3 ≤ 𝑦𝑦

= 𝑃𝑃 𝑋𝑋 ≤ 𝑦𝑦1/3

What is this, X is uniform, and this is cumulative distribution 
in the interval of 0,𝑦𝑦1/3
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• 𝑃𝑃 𝑋𝑋 ≤ 𝑦𝑦1/3

– What is the probability (essentially the area)

– Area: 1
2
𝑦𝑦1/3

𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑋𝑋 ≤ 𝑦𝑦1/3 =
1
2
𝑦𝑦1/3

𝑓𝑓𝑌𝑌 𝑦𝑦 =
𝑑𝑑𝐹𝐹𝑌𝑌
𝑑𝑑𝑦𝑦

𝑦𝑦 =
1

6𝑦𝑦
2
3

, 0 ≤ 𝑦𝑦 ≤ 8

This is not a uniform distribution!
10
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Linear case

• Lets say 𝑌𝑌 is linear function of 𝑋𝑋
𝑌𝑌 = 2𝑋𝑋 + 5

• Imagine simple intuition to reason:
– Stretch and rescale
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From figure above,

Let’s write the formula first (in the case of 𝑌𝑌 is linear 
function of 𝑋𝑋: 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏)

𝑓𝑓𝑌𝑌 𝑦𝑦 =
1
𝑎𝑎
𝑓𝑓𝑋𝑋

𝑦𝑦 − 𝑏𝑏
𝑎𝑎

• Multiplying means stretching

• Shifting just moving the pdfs
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Let’s derive this using two step approach

Assume 𝑎𝑎 > 0

𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑌𝑌 ≤ 𝑦𝑦 = 𝑃𝑃(𝑎𝑎𝑋𝑋 + 𝑏𝑏 ≤ 𝑦𝑦)

= 𝑃𝑃 𝑋𝑋 ≤
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

= 𝐹𝐹𝑋𝑋
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

Now, let’s differentiate this, 
Using chain rule:

𝑓𝑓𝑌𝑌 𝑦𝑦 =
𝑑𝑑𝐹𝐹𝑌𝑌(𝑦𝑦)
𝑑𝑑𝑦𝑦

=
1
𝑎𝑎
𝑓𝑓𝑋𝑋

𝑦𝑦 − 𝑏𝑏
𝑎𝑎
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• With 𝑎𝑎 < 0

𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑌𝑌 ≤ 𝑦𝑦 = 𝑃𝑃 𝑎𝑎𝑋𝑋 + 𝑏𝑏 ≤ 𝑦𝑦

= 𝑃𝑃 𝑋𝑋 ≥
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

= 1 − 𝐹𝐹𝑋𝑋
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

Now, let’s differentiate this, 

𝑓𝑓𝑌𝑌 𝑦𝑦 =
𝑑𝑑𝐹𝐹𝑌𝑌(𝑦𝑦)
𝑑𝑑𝑦𝑦

=
1
𝑎𝑎
𝑓𝑓𝑋𝑋

𝑦𝑦 − 𝑏𝑏
𝑎𝑎
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Example on normal random variable

Suppose that X is normal random variable with mean µ, and 
variance 𝜎𝜎2

Now we say, 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏 , a b are scalars, 𝑎𝑎 ≠ 0

15



Let’s apply the formula

𝑓𝑓𝑌𝑌 𝑦𝑦 =
1
𝑎𝑎
𝑓𝑓𝑋𝑋

𝑦𝑦 − 𝑏𝑏
𝑎𝑎

What is X?

𝑓𝑓𝑋𝑋 𝑥𝑥 =
1

2𝜋𝜋𝜎𝜎
𝑒𝑒− 𝑥𝑥−𝜇𝜇 2/2𝜎𝜎2

Now what is Y?

𝑓𝑓𝑌𝑌 𝑦𝑦 =
1
𝑎𝑎

1
2𝜋𝜋𝜎𝜎

exp −
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

− 𝜇𝜇
2

/2𝜎𝜎2
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𝑓𝑓𝑌𝑌 𝑦𝑦 =
1
𝑎𝑎

1
2𝜋𝜋𝜎𝜎

exp −
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

− 𝜇𝜇
2

/2𝜎𝜎2

=
1

2𝜋𝜋𝜎𝜎 𝑎𝑎
exp −

(𝑦𝑦 − 𝑏𝑏 − 𝑎𝑎𝜇𝜇)2

2𝑎𝑎2𝜎𝜎2

We can now recognize this PDF is also just a normal distribution:

𝑌𝑌~𝑁𝑁 𝑎𝑎𝜇𝜇 + 𝑏𝑏,𝑎𝑎2𝜎𝜎2

It’s also a normal distribution
Linear scaling of normal distribution is still a normal distribution
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Monotonic cases

• Generalizing the linear case to monotonic function

• Say let 𝑋𝑋 be a random variable
– Suppose that its range in contained in an interval 𝐼𝐼

• Now, consider 𝑌𝑌 is a function of 𝑋𝑋
– 𝑌𝑌 = 𝑔𝑔 𝑋𝑋
– Assume g is strictly monotonic over that interval 𝐼𝐼
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• Monotonically increasing:
– 𝑔𝑔 𝑥𝑥 < 𝑔𝑔(𝑥𝑥′) for all 𝑥𝑥, 𝑥𝑥𝑥 ∈ 𝐼𝐼, satisfying 𝑥𝑥 < 𝑥𝑥𝑥

• Monotonically decreasing:
– 𝑔𝑔 𝑥𝑥 > 𝑔𝑔(𝑥𝑥′) for all 𝑥𝑥, 𝑥𝑥𝑥 ∈ 𝐼𝐼, satisfying 𝑥𝑥 < 𝑥𝑥𝑥

• Assume g is differentiable
• Also derivative will necessarily be non-negative in the 

increasing case, and non-positive in the decreasing case

• A strict monotonic function can be “inverted”
𝑦𝑦 = 𝑔𝑔 𝑥𝑥 , 𝑥𝑥 = ℎ(𝑦𝑦)

• h is the inverted function
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• Example

𝑔𝑔 𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏, ℎ 𝑦𝑦 =
𝑦𝑦 − 𝑏𝑏
𝑎𝑎

𝑔𝑔 𝑥𝑥 = 𝑒𝑒𝑎𝑎𝑥𝑥,ℎ 𝑦𝑦 =
ln 𝑦𝑦
𝑎𝑎

• If strictly monotonic function is used, we can use the 
following formula directly

𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝑓𝑓𝑋𝑋 ℎ(𝑦𝑦)
𝑑𝑑ℎ
𝑑𝑑𝑦𝑦

(𝑦𝑦)

20



Redo the example

• You are driving from Boston to New York. You are on 
cruise control, hence your speed is uniformly distributed 
between 30 and 60 mph.

• You are going to drive a distance of 200 miles, and the 
time to take for the trip is 200/V
– 𝑇𝑇 𝑉𝑉 = 200

𝑉𝑉
• h(T)=V=200/T

– 𝑉𝑉~𝑈𝑈𝑁𝑁𝐼𝐼𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈(30,60)
– Now we have distribution of V, can we find the distribution of T?
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𝑓𝑓𝑇𝑇 𝑡𝑡 = 𝑓𝑓𝑉𝑉 ℎ(𝑡𝑡)
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

(𝑡𝑡)

𝑓𝑓𝑉𝑉 𝑣𝑣 = ℎ 𝑡𝑡 =
1

30

ℎ 𝑡𝑡 = 200/𝑡𝑡

𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

(𝑡𝑡) = 200/𝑡𝑡2

𝑓𝑓𝑇𝑇 𝑡𝑡 =
1

30
200
𝑡𝑡2
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Another example

Let 𝑌𝑌 = 𝑔𝑔 𝑋𝑋 = 𝑋𝑋2, where 𝑋𝑋 is a continuous uniform 
random variable on the interval 0,1 .

Within this interval, 𝑔𝑔 is strictly monotonic,

First, find the inverse:
ℎ 𝑦𝑦 = 𝑦𝑦
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• Thus,
for any 𝑦𝑦 ∈ (0,1], we have

𝑓𝑓𝑋𝑋 𝑥𝑥 = 𝑦𝑦 = 1,
𝑑𝑑ℎ
𝑑𝑑𝑦𝑦

(𝑦𝑦) =
1

2 𝑦𝑦

So finally,

𝑓𝑓𝑌𝑌 𝑦𝑦 = �
1

2 𝑦𝑦
0, otherwise

, if 𝑦𝑦 ∈ (0,1]
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• Let 𝑌𝑌 = 𝑔𝑔(𝑋𝑋),𝑔𝑔 strictly monotonic

• What is happening?
– Event 𝑥𝑥 ≤ 𝑋𝑋 ≤ 𝑥𝑥 + 𝛿𝛿 is the same as 𝑔𝑔(𝑥𝑥) ≤ 𝑌𝑌 ≤ 𝑔𝑔(𝑥𝑥 + 𝛿𝛿)

– Or approximately, 𝑔𝑔 𝑥𝑥 ≤ 𝑌𝑌 ≤ 𝑔𝑔 𝑥𝑥 + 𝛿𝛿 𝑑𝑑𝑔𝑔
𝑑𝑑𝑥𝑥

(𝑥𝑥)

Quick summarization
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• Hence, it explains the formula (it actually is a mass to 
mass transfer)

𝛿𝛿𝑓𝑓𝑋𝑋 𝑥𝑥 = 𝛿𝛿𝑓𝑓𝑌𝑌(𝑦𝑦)
𝑑𝑑𝑔𝑔
𝑑𝑑𝑥𝑥

(𝑥𝑥)

where 𝑦𝑦 = 𝑔𝑔(𝑥𝑥)
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Example

Let 𝑋𝑋 be a random variable with PDF 𝑓𝑓𝑋𝑋

Find the PDF of the random variable 𝑌𝑌 = 𝑋𝑋

a) When 𝑓𝑓𝑋𝑋 𝑥𝑥 = �
1
3

, if −2 < 𝑥𝑥 ≤ 1
0, otherwise
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• Since 𝑌𝑌 = 𝑋𝑋 , you can visualize the PDF for any given y 
as the following:

𝑓𝑓𝑌𝑌 𝑦𝑦 = �𝑓𝑓𝑋𝑋 𝑦𝑦 + 𝑓𝑓𝑋𝑋 −𝑦𝑦 , if y ≥ 0
0, if y < 0

Since 𝑌𝑌 = 𝑋𝑋 ,𝑌𝑌 ≥ 0

So when 𝑓𝑓𝑋𝑋 𝑥𝑥 = �
1
3

, if −2 < 𝑥𝑥 ≤ 1
0, otherwise
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• Essentially 𝑓𝑓𝑋𝑋 𝑥𝑥 for −1 ≤ 𝑥𝑥 ≤ 0 get added to 𝑓𝑓𝑌𝑌 𝑦𝑦 for 
0 ≤ 𝑦𝑦 ≤ 1

Therefore,

𝑓𝑓𝑌𝑌 𝑦𝑦 =

2
3

, if 0 ≤ 𝑦𝑦 ≤ 1

1
3

, if 1 < 𝑦𝑦 ≤ 2

0, otherwise
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b)

• What if 

𝑓𝑓𝑋𝑋 𝑥𝑥 = �2𝑒𝑒−2𝑥𝑥 , if 𝑥𝑥 > 0
0, otherwise
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• So we are told that X > 0; hence there is no negative 
values of X that need to be considered, thus:

𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑦𝑦 = �2𝑒𝑒−2𝑥𝑥 , if 𝑥𝑥 > 0
0, otherwise
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Example

• Let X be a normal random variable with mean 0, variance 
1

𝑓𝑓𝑋𝑋 𝑥𝑥 =
1
2𝜋𝜋

𝑒𝑒−𝑥𝑥2/2

Let 𝑌𝑌 = 𝑔𝑔(𝑋𝑋)

𝑔𝑔 𝑡𝑡 = �
−𝑡𝑡, for 𝑡𝑡 ≤ 0
𝑡𝑡, for 𝑡𝑡 > 0

Find PDF of Y
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• Because of the definition on 𝑔𝑔, 𝑌𝑌 can only take non-
negative values

𝐹𝐹𝑌𝑌 𝑦𝑦 = 𝑃𝑃 𝑌𝑌 ≤ 𝑦𝑦

= 𝑃𝑃 𝑋𝑋 ∈ −𝑦𝑦, 0 + 𝑃𝑃(𝑋𝑋 ∈ 0,𝑦𝑦2 )

= 𝐹𝐹𝑋𝑋 0 − 𝐹𝐹𝑋𝑋(−𝑦𝑦) + 𝐹𝐹𝑋𝑋 𝑦𝑦2 − 𝐹𝐹𝑋𝑋(0)

= 𝐹𝐹𝑋𝑋 𝑦𝑦2 − 𝐹𝐹𝑋𝑋(−𝑦𝑦)

33

Think back in 
the original X 
space, in what 
region has 
mass been 
moved



• Taking the derivative:

𝑓𝑓𝑌𝑌 𝑦𝑦 = 2𝑦𝑦𝑓𝑓𝑋𝑋 𝑦𝑦2 + 𝑓𝑓𝑋𝑋(−𝑦𝑦)

=
1
2𝜋𝜋

2𝑦𝑦𝑒𝑒−𝑦𝑦4/2 + 𝑒𝑒−𝑦𝑦2/2
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35

Back to the beginning, Find the PDF of 𝑍𝑍 = 𝑔𝑔 𝑋𝑋,𝑌𝑌 = 𝑌𝑌
𝑋𝑋

• What is X?
• Uniform distribution over [0,1]

• What is Y?
• Uniform distribution over [0,1]

• X,Y independent of one another



• So we need to find the CDF of Z, and Z is a ratio between 
X and Y
– Can imagine z is essentially a slope term
– So we need to find 𝑃𝑃(𝑌𝑌/𝑋𝑋 < 𝑧𝑧)

• Split into two cases, and find the area under the curve

36

y

x

z

Case 1: 0 < 𝑧𝑧 < 1

y

x

1/𝑧𝑧

Case 2: 𝑧𝑧 > 1



𝐹𝐹𝑧𝑧 𝑧𝑧 = 𝑃𝑃
𝑌𝑌
𝑋𝑋

< 𝑧𝑧

Area for case 1: 𝑧𝑧
2

Area for case 2: 1 − 1
2𝑧𝑧

Put it together:

=

𝑧𝑧
2

, if 0 ≤ 𝑧𝑧 ≤ 1

1 −
1
2𝑧𝑧

, if 𝑧𝑧 > 1

0, otherwise
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• In order to find the PDF, we then differentiate with 
respect to CDF:

𝑓𝑓𝑍𝑍 𝑧𝑧 =

1
2

, if 0 ≤ 𝑧𝑧 ≤ 1
1

2𝑧𝑧2
, if z > 1

0, otherwise

38

Okay,

So this is the general way of finding a derived distribution, and the steps 
involved when dealing with multiple random variables are exactly the same 
as single random variable



The distribution of X+Y

• Before jumping into continuous case, let’s take a look at 
discrete case:
– 𝑊𝑊 = 𝑋𝑋 + 𝑌𝑌; 𝑋𝑋,𝑌𝑌, are independent

39

Say we want to compute 𝑊𝑊 = 3

We look at each possible values of 
(𝑋𝑋,𝑌𝑌) that would make the sum into 3

And add up the probabilities for each of 
these associations



𝑝𝑝𝑊𝑊 𝑤𝑤 = 𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑤𝑤

= �
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑃𝑃(𝑌𝑌 = 𝑤𝑤 − 𝑥𝑥)

= �
𝑥𝑥

𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌(𝑤𝑤 − 𝑥𝑥)

What is the mechanics of these?
• Put the two pmf’s on top of each other
• Flip the pmf of Y
• Shift the flipped pmf by 𝑤𝑤 (to right if 𝑤𝑤 > 0)
• Cross-multiply and add
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Continuous case?

• Extremely similar to discrete case, as always..
Say Z = 𝑋𝑋 + 𝑌𝑌
First note the following:

𝑃𝑃 𝑍𝑍 ≤ 𝑧𝑧 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 + 𝑌𝑌 ≤ 𝑧𝑧 𝑋𝑋 = 𝑥𝑥

= 𝑃𝑃 𝑥𝑥 + 𝑌𝑌 ≤ 𝑧𝑧 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃 𝑥𝑥 + 𝑌𝑌 ≤ 𝑧𝑧

= 𝑃𝑃 𝑌𝑌 ≤ 𝑧𝑧 − 𝑥𝑥
If we take differentiation on both sides:

𝑓𝑓𝑍𝑍|𝑋𝑋 𝑧𝑧 𝑥𝑥 = 𝑓𝑓𝑌𝑌(𝑧𝑧 − 𝑥𝑥)
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• Knowing that, then invoke multiplication rule for joint 
PDF:

𝑓𝑓𝑋𝑋,𝑍𝑍 𝑥𝑥, 𝑧𝑧 = 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑍𝑍|𝑋𝑋 𝑧𝑧 𝑥𝑥 = 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑧𝑧 − 𝑥𝑥)

Now to find the 𝑓𝑓𝑍𝑍 𝑧𝑧 -> marginal PDF, integrate out x

𝑓𝑓𝑍𝑍 𝑧𝑧 = �
−∞

∞
𝑓𝑓𝑋𝑋,𝑍𝑍 𝑥𝑥, 𝑧𝑧 𝑑𝑑𝑥𝑥 = �

−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑧𝑧 − 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑝𝑝𝑊𝑊 𝑤𝑤 = �
𝑥𝑥

𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝𝑌𝑌 𝑤𝑤 − 𝑥𝑥

Both cases are similar, and intuitions are exactly the same:
This operation is called convolution!
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