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Probability density functions

Cumulative distribution functions

Normal random variables



Summary of PDF properties

Let X be a continuous random variable with PDF fy(x)
e fyx(x) = 0forallx

o [0 fx(dx =1
o Ifdissmall, then P([x,x + 6]) = fx(x)6
e For any subset B on the real line

P(X € B) =j fx(x)dx
B



Expectation properties for continuous random
variable

Let X be a continuous random variable with PDF fy(x)
 The expectation of X is defined by

E|X] = fooxfx(x)dx
e The expected value rule fo_;; function g(X) has the form
Fla0) = | @G
e The variance of X is define_dooby

Var(X) = E[(X — E[X J (x — )2 fy (x)dx



e So we have,
0 < Var(X) = E[X?] — E[X]?
e IfY =aX + b, where a and b are scalars, then

Var(Y) = a?Var(X)



Summary of CDF properties

e The CDF of a random variable X is defined by
Fy(x) = P(X < x),forall x

And has the following properties:

e Fy(x)is monotonically non-decreasing
— If x <y, then Fx(x) < Fy(y)

e Fy(x)tendstoOasx » —oo and tendsto1lasx — o
o If Xis discrete, Fy(x)is piece-wise constant function
e If Xis continuous, Fy(x)is a continuous function



e If Xis discrete and takes integer values, the PMF and the
CDF can be obtained from each other by summing or
differencing:

() =) px(@

px(i) =PX<k)—PX<k-—-1)=Fx(k)—Fx(k—1)

e |f Xis continuous, the PDF and the CDF can be obtained
from each other by integration and differentiation

Fx(x) Zf fx(t)dt

dF
fe() =—= ()

this is valid for those x at which the PDF is continuous



Exponential distribution

e Definition

re M ifx >0
X) = ‘ =
fx () { 0, otherwise

— A is a positive parameter characterizing the PDF
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Legitimate PDF?
J fx(x)dx = f e Mdyx = —e‘kx|o(;) =1
— 00 O

Exponential PDF good for?

— Amount of time until an incident of interest takes place
* Message arrival
* Equipment breakdown
e Light bulb burning out

E[X]=1/A
Var[X]=%



Geometric and Exponential CDFs

e Geometric PMF z" e 1o
— Number of trials until the first success =0 1=
— CDF?
n 1-1-p)*
F.o(n) = z 1—p)k1 =

=1-(1—-p)Yforn=1,2,...

 Exponential PDF

X
Fexp(x) — f 7M€_7\“tdt = —e_kt|x =1 — e—?ux
0



If we set:

Then:

We see that

Foxp (né) = Fyeo (n)

So, if we toss very quickly (every o seconds, where 6 << 1 with a small probability of

gettingahead (p =1 — e‘}“s), the first time to get a head can then be closely
approximated by exponential distribution
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P2

The time until a small meteorite first lands anywhere in the
Sahara desert is modeled as an exponential random
variable with a mean of 10 days. The time is currently
midnight. What is the probability that a meteorite first
lands some time between 6am and 6pm of the first day?



Let X be the time elapsed until the event of interest,
: : : : 1
measured in days. Then X is exponential, with mean =

10 (X = 1—10) The desired probability is:

plicx<)=p(x=2)p(x>>
4=7 74 4 4

= ¢~ 1/40 4 ©—3/40 = 09,0476

Fexp(x) =1- e—?\,x



NORMAL RANDOM VARIABLE

One of the most used random variable (parameter: u,o)
Reason will come clear when we get to limit theorem

PDF:fy (x) = ——e~(x~W)*/20°

2TTO
fz(z) 4 fz(2)
p=2 =2
ﬁ--- o =1 ﬁ--. o =2
| 1
| 1
| 1
fz(z) fz(2) 4
= =92 — -9
) H 2 ) H -2
NECERAE ~{3vEm =2
I :
| 1
| 1
| 1
| 1
: \ i
2 2 —9 E

How to computer probability? (find the area, how?) use CDF



CDF calculation for a normal random variable

* No close form solution for normal CDF

e Two step procedure in calculating the CDF of a normal random
variable

Say a normal random variable X with p and variance c?:

a) “Standardize” X: subtract u and divide by c to obtain a standard
normal random variable Y

a) Think about what happen to Expected value and Variance after
standardization?

b) Read the CDF values from the standard normal table

s =p (FTE ST TE) < p (v s T TE) <o (T




00 .01 02 .03 04 05 .06 07 .08 09
0.0 | .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 || .5398 .5438 5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 | .5793 .5832 .5871 .5910 .5948 5987 .6026 .6064 .6103 .6141
03 || .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
04 | .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 || .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 || .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .751T7 .7549
0.7 | .7580 .7611 .7642 .7673 .7704 .7734 .T764 .7794 7823 .7852
0.8 | .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
09 || .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 || 8413 .8438 .8461 .8485 .B508 .8531 .8554 8577 .8599 .8621
1.1 || .8643 .8665 .8686 .8708 .8729 8749 8770 .8790 .8810 .8830
1.2 || .B849 _.BB69 . 8888 .8007 .8925 .8944 8962 .8980 .8997 .9015
1.3 || 9032 .9049 .9066 .9082 .9099 9115 .9131 .9147 9162 .9177
1.4 || 9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
L5 || 9332 .9345 .9357 .9370 .9382 9394 9406 .9418 .9429 9441
1.6 || 9452 .9463 .9474 .9484 9495 .9505 .9515 .9525 .9535 .9545
1.7 || 9554 .9564 9573 .9582 .9591 .9599 9608 .9616 .9625 .9633
1.8 || 9641 .9649 .9656 .9664 .9671 .9678 96386 .9693 .9699 9706
1.9 || 9713 .9719 9726 .9732 .9738 .9744 9750 .9756 9761 .9767
20 9772 9778 9783 9788 .9793 9798 9803 .9808 9812 9817

Just look up table P(X<x)




p3

Let X and Y be Gaussian random variables, with X~N(0,1)
and Y~N(1,4)



a) Find P(X < 1.5)and P(X < —1)

Just go through the drill (look at the table):
P(X <1.5) = d(1.5) =0.9332

PX<-1)=1-PX<1)=1-®(1)=1-0.8413
= 0.1587




b) What is the distribution of %

Linear transformation of Gaussian random variable is also a random variable
(will prove this next section) -> a very nice property that we will keep using in
the future

Y~N(1,4)
) i By T B
y-1\ Y\ 1 -
Var( > > = Var (E) = ZVar(Y) =1
1 vt
— VO

Standardization of normal random variable



¢)Find P(-1 <Y < 1)

standardize

/

-1-1 vY—-1 1-1
P(—lSYS1)=P< > STST>
= ®(0) — d(—1) = ®(0) — (1 — ®(1)) = 0.3413

/

Look up table




Signal detection

A binary message is transmitted as a signhal s, which is
either -1 or +1. The communication channel corrupts the
transmission with additive normal noise with mean u=0

and variances 2. \
This actually has a proof, we will

do it in later sections

The receiver that the signal -1 (or 1) was transmitted if the
value received is <0 (or =0)

Now what is the probability of error?
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e An error occurs whenever -1 is transmitted and the noise
N is at least 1 so that s+N=-1+N>0

e Or whenever 1 is transmitted and the noise N is smaller
than -1 so that s+N=1+N<0

P(Nz1)=1—P(N<1)=1—P<N_“<1_“>

o(Heel)

By symmetry P(N < —1) is the same
If o =1, probability of error=1- ®(1)=1-0.8413=0.1587




Readings: Section 3.4 —-3.5

Lecture outline

e Multiple random variables
— Conditioning
— Independence

e Examples



Continuous r.v.s and pdf’s

| Tx(x)

Event {a<X<b }

b
Pla<X<b)= f fx(x)dx

25



Joint PDF fx y(x,y)

PV €)= || furCuydrdy
S

fxy(x,y) is non-negative
We can imagine S is a two-dimensional plane

For any given subset, B, say a rectangular region:
X2 Y2
Plx; <X <x3,y, <Y <y,) = j fxy(x,y)dxdy
X1 YY1

For the entire two-dimensional, S, plane:

P((X,Y€S)) = j j fxr (o y)dxdy =1



* [ntuitive interpretation:

— Let 0 be a small positive number, and consider the probability of
a small rectangle

x1+6 y1+6
Px;<X<x1+8y;<Y<y;+9) = j f fxy(x,y)dxdy

X1 Y1

~ fX,Y(x1;Y1) * §°

— Probability per unit area

— Joint PDF contains all relevant probabilistic information between X, Y
and their statistical dependencies

— It can be used to calculate probability of event that are defined by
both event



e Marginal probability

— It can also be used to calculate event involving only one of the
variable

— Say, let A be a subset on the real line (X € A)

P(X€A) =P(X€EAY € (—x,0)) = j f fxr(x, y)dydx
A — 00

e From this we can see that:

Marginal PDF
rOO
fx(x) :J fxy(x,y)dy
) = | fuyry)ds




Independence

The same goes for PDF and for PMF

Two random variables are independent iff their joint PDF
factors into product

fX,Y(xr y) = fx(x) * fy (y)

Intuitively it is the same thing as PMF (knowing one
variable does not matter in calculating the other one)



Buffon’s needle

Say a surface is ruled with parallel lines, which are at
distance d from each other. Suppose that we throw a
needle of length [ on the surface at random, it can happen
either intersecting or non-intersection,

What is the probability that the needle will intersect one of

the lines?
q




Now we suppose | < d, so that the needle can not
intersect two lines simultaneously

Let X be the vertical distance form the midpoint of the
needle to the nearest of the parallel lines

— The midpoint of the needle can only locate between the two
parallel lines

Let O be the acute angle formed by the axis 1
of the needle and the parallel line

Now we can model the pair of the random variable
(X, 8)with a uniform joint PDF over the rectangular set

{eoo=<x<to<o<?}



 Now, with the idea of this is a uniform probability

— The density of X is uniform over d/2
d
fx(x) = 1fO <X<E

— The density of Y is unlform over (0, 71:/2)

fg(@)_ 1f0<9<§

e With that setup:

— Assuming that the orientation and the distance to the parallel
lines are independent

(
fx.0(x, 6) =<nd’ foe[ ] o€l
\ 0, otherwise




* Now, we will go ahead and try to identify
the event of interest:

 The length of the segment between the
mid point of the needle and the point of
intersection of the axis of the needle with
the closest parallel line is x/ sin 6

e So the needle will intersect with the parallel
L : : l
line iff this length is less than E




 Once we identify the event of interest, the only thing left
IS integration:

. L .
Event of interest: X < > Sin 6

l
P (X < (E) sin 9) = Jj fx,g(x, H)dXdQ

xs(%>sin9
/2 (l/2sin 6 4 (T/2] 2] T
d d6?—— — = —
=— j X — 251n9d9 nd( Cosé?)%
_Zl
- nd

It has been used to empirically evaluate the number of &



e More of a side note:
— This way of evaluating is called Monte-Carlo method
— Why?

When you have a function that’s extremely difficult to compute
You can generate random samples over and over

Then estimate the probability, which is then equals to that
function of the number (irrational number)

Especially useful for physicists, statisticians, and even computer
scientists nowadays



Conditioning

Recall:
Px<X<x+4+98)=fy(x)*x6

e Density gives us probabilities of little intervals

e |n the conditional world, we would like to define
conditional density:

Px<X<x+6|lY =y)= fxy(xly) 6
— Why approximation?

— Conditional probability is undefined when you condition on an
event that has 0 probability

— So instead of saying Y=y, we say Y is very close to y



In practice, you may not care, however, to be rigorous,
you should realize that it’s “in the limit” as Y goesy, not Y
equalstoy

This leads to the definition of conditional density:

_fX,Y(x'y) .
fxir(xly) = 0 Jif fy(y) > 0

Interpretation:

— Say, | told you what Y is, given that, tell me what X’s density
looks like (reverse is true too)

— In essence, you can imagine conditional PDF is just a ‘slice’ of a
PDF

— But you need to normalize that slice



Independence

e Given that we know something about conditional PDF

fX|Y(x|}’) = fx(x)



Joint PDF:
Joint, Marginal and Conditional Densities To calculate Probability of an
event — look at how much
mass is sitting on top of the
region

Marginal PDF:
Integrate over all Y=y’s

Slicing the joint for different
x’s and look at how y
behaves for a fixed x

Area of slice = Height of marginal
density at x

Renormalizing slices for
fixed x gives conditional
densities for Y given X =x

\ Conditional PDF:

Slicing -> renormalizing

Slice through
density surface

for fixed x

39



Example: stick-breaking

e We have stick of length [

e Let’s break it twice:
— Break at X: uniform in [0, []
— Break again at Y: uniform in [0, X]

fx(x) f fyx(y!x) 4




What is the joint PDF between X, Y
fxy(x,y) = fX(x)fY|X(y|x)

Essentially the multiplication that we know of

— Sowhatis? fy(x) = 1/1
: 1

— What is? fyx(y|x) = -
— The joint should be: 1(1)

[ \x
— Over what range?

e X can range anywhere from 0 to [
e Y can only be smaller than x



1
o fxly(x,y) =E,OSnySl

* E[Y|X =x] = [yfyix(|X = x)dy
~ frxIX =x) =<
Qa3

— It should be intuitively satisfying, it’s just the expected value of Y
given the new universe where X has been realized

— Since Y is uniform, the expected value has to the midpoint x/2



 Marginal PDF of Y: after breaking it twice, how big is the
little piece that | am left with

) = ffmc V)dx = f ~ dx = —log<—> 0<y<I

* Note, it is not enough to know the formula, you have to
check the ‘range’ of integration, make sure you are
integrating over the range where joint density does not

equalto O



l l 1 l
» E[Y]= [,yfy(dy = [;¥()log (;) dy
— Looks a bit like ‘integration by part’ problem? ylogy

l
— Answer = 2

— Seems obvious at the moment, you break once, %, break again
another 7,
e |t turns out to be okay in this case, but not in general!
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