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• Suppose that X and Y are independent, identically 
distributed (iid), geometric random variables with 
parameter p, we want to show the following:

• 𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = 1
𝑛𝑛−1

, for 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1
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𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 =
𝑃𝑃({𝑋𝑋 = 𝑖𝑖} ∩ {𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛)

𝑃𝑃(𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛)

The event {𝑋𝑋 = 𝑖𝑖} ∩ {𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛} in the numerator in equivalent to 
{𝑋𝑋 = 𝑖𝑖} ∩ {𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖}, taking this in combination with the fact hat X 
and Y are independent

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛−1

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛|𝑋𝑋 = 𝑖𝑖) =

�
𝑖𝑖=1

𝑛𝑛−1

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑖𝑖 + 𝑌𝑌 = 𝑛𝑛|𝑋𝑋 = 𝑖𝑖) =

�
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖 𝑋𝑋 = 𝑖𝑖

= ∑𝑖𝑖=1𝑛𝑛−1 𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖)
3Total probability theorem



We only get non-zero probability for i=1, …, n-1 since X and 
Y are both geometric random variables

So now we can write it completely from the previous slides:

𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 =
𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖)

∑𝑖𝑖=1𝑛𝑛−1 𝑃𝑃 𝑋𝑋 = 𝑖𝑖 𝑃𝑃(𝑌𝑌 = 𝑛𝑛 − 𝑖𝑖)

=
1 − 𝑝𝑝 𝑖𝑖−1𝑝𝑝(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖−1𝑝𝑝

∑𝑖𝑖=1𝑛𝑛−1(1 − 𝑝𝑝)𝑖𝑖−1𝑝𝑝(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖−1𝑝𝑝
=

(1 − 𝑝𝑝)𝑛𝑛

∑𝑖𝑖=1𝑛𝑛−1(1 − 𝑝𝑝)𝑛𝑛

=
(1 − 𝑝𝑝)𝑛𝑛

(1 − 𝑝𝑝)𝑛𝑛∑𝑖𝑖=1𝑛𝑛−1 1
=

1
𝑛𝑛 − 1
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Summary of conditional PMF

Conditional PMF of X given an event A with P(A) > 0, is 
defined by,

𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝐴𝐴
and satisfy:

�
𝑥𝑥
𝑝𝑝𝑋𝑋|𝐴𝐴 𝑥𝑥 = 1

If A1,…,An are disjoint events that form a partition of the 
sample space, with P(Ai) > 0 for all i, then

𝑝𝑝𝑋𝑋 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝐴𝐴𝑖𝑖)𝑝𝑝𝑋𝑋|𝐴𝐴𝑖𝑖(𝑥𝑥)
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• Furthermore, for any event B, with P(Ai ∩ B) > 0 for all i, 
we have:

𝑝𝑝𝑋𝑋|𝐵𝐵 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝐴𝐴𝑖𝑖 𝐵𝐵 𝑝𝑝𝑋𝑋|𝐴𝐴𝑖𝑖∩𝐵𝐵(𝑥𝑥)

• The conditional PMF of X of given Y=y is related to the 
joint PMF by:

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑝𝑝𝑌𝑌(𝑦𝑦)𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦)
• The conditional PMF of X given Y can be used to calculate 

the marginal PMF of X through the formula:

𝑝𝑝𝑋𝑋 𝑥𝑥 = �
𝑦𝑦

𝑝𝑝𝑌𝑌(𝑦𝑦)𝑝𝑝𝑋𝑋|𝑌𝑌(𝑦𝑦)
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Conditional expectation

• The conditional expectation of X given an event A with P(A) > 
0 is defined by:

𝐸𝐸 𝑋𝑋 𝐴𝐴 = �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋|𝐴𝐴(𝑥𝑥)

For a function g(X), we have:

𝐸𝐸 𝑔𝑔 𝑋𝑋 𝐴𝐴 = �
𝑥𝑥

𝑔𝑔(𝑥𝑥)𝑝𝑝𝑋𝑋|𝐴𝐴(𝑥𝑥)

• Conditional expectation of X given a value of y of Y is defined 
as follow:

𝐸𝐸 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥
𝑥𝑥𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦)

7



• If A1, … , An be disjoint events that form a partition of the 
sample space, with P(Ai) > 0 for all i, then:

𝐸𝐸 𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝐴𝐴𝑖𝑖)𝐸𝐸[𝑋𝑋|𝐴𝐴𝑖𝑖]

Furthermore, for any event B with P(Ai ∩ B) > 0 for all i, we 
have:

𝐸𝐸 𝑋𝑋 𝐵𝐵 = �
𝑖𝑖=1

𝑛𝑛
𝑃𝑃(𝐴𝐴𝑖𝑖|𝐵𝐵)𝐸𝐸[𝑋𝑋|𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵]

We have:

𝐸𝐸 𝑋𝑋 = �
𝑦𝑦
𝑝𝑝𝑌𝑌 𝑦𝑦 𝐸𝐸[𝑋𝑋|𝑌𝑌 = 𝑦𝑦]

8

Generalize to multiple variables should be straightforward



Independence of random variables

Say a three-variable multiplication rule:
𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝𝑌𝑌|𝑋𝑋 𝑦𝑦 𝑥𝑥 𝑝𝑝𝑍𝑍|𝑋𝑋,𝑌𝑌 𝑧𝑧 𝑥𝑥,𝑦𝑦

Random variables are independent iff:
𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝𝑌𝑌 𝑦𝑦 𝑝𝑝𝑍𝑍 𝑧𝑧 , for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧

The intuitive content is the same as for events. Random variables are 
independent if knowing something about the realized values of some 
of these random variables does not change our beliefs about the 
likelihood of various values for the remaining random variables
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• Are x, y independent of on another?
• Let’s try with simple inspection:
• Say if Y=1, then X must be 2
• Has this changed our belief? Of course!

• Are x, y conditionally independent 
• Say conditioning on ( 𝑋𝑋 ≤ 2,𝑌𝑌 ≥ 3 )
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• Are x, y conditionally independent 
• Say conditioning on ( 𝑋𝑋 ≤ 2,𝑌𝑌 ≥ 3 )
• New universe: 

• Ratio 1, 2, 2, 4
• So say in this universe:

• If we know Y=3 or Y=4, does it change our belief 
about the likely occurrence of X?

• No! (33.33 vs. 66.66)

4 1/9 2/9

3 2/9 4/9

Y/X 1 2



• We can try the following:
P(X=1, Y=3| X ≤ 2, Y ≥ 3) = 2/9

P(X=1 | X ≤ 2, Y ≥ 3 ) = 1/9 + 2/9 = 3/9
P(Y=3 | X ≤ 2, Y ≥ 3 ) = 2/9 + 4/9 = 6/9

P(X=1 | X ≤ 2, Y ≥ 3 ) * P(Y=3 | X ≤ 2, Y ≥ 3 ) = 3/9 * 6/9 = 
2/9

P(X=1, Y=3| X ≤ 2, Y ≥ 3) = P(X=1 | X ≤ 2, Y ≥ 3 ) * P(Y=3 | X 
≤ 2, Y ≥ 3 ) 

Yes! Conditionally-independent
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4 1/9 2/9

3 2/9 4/9

Y/X 1 2



Expectations

𝐸𝐸 𝑋𝑋 = �
𝑥𝑥
𝑥𝑥𝑝𝑝𝑋𝑋(𝑥𝑥)

If X, Y are independent variables then:
𝐸𝐸 𝑋𝑋𝑌𝑌 = 𝐸𝐸 𝑋𝑋 𝐸𝐸[𝑌𝑌]

Proof:

𝐸𝐸 𝑋𝑋𝑌𝑌 = �
𝑥𝑥
�

𝑦𝑦
𝑥𝑥𝑦𝑦𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦) = �

𝑥𝑥
�

𝑦𝑦
𝑥𝑥𝑦𝑦𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌(𝑦𝑦)

= �
𝑥𝑥
𝑥𝑥𝑝𝑝𝑋𝑋(𝑥𝑥)�

𝑦𝑦
𝑦𝑦𝑝𝑝𝑌𝑌(𝑦𝑦) = 𝐸𝐸 𝑋𝑋 𝐸𝐸[𝑌𝑌]

13



• If X, Y are independent:
𝐸𝐸 𝑔𝑔 𝑋𝑋 ℎ 𝑌𝑌 = 𝐸𝐸 𝑔𝑔 𝑋𝑋 ∗ 𝐸𝐸 ℎ 𝑌𝑌

Proof:
Let U=g(X), V=h(Y)

𝑝𝑝𝑈𝑈,𝑉𝑉 𝑢𝑢, 𝑣𝑣 = �
𝑥𝑥,𝑦𝑦 𝑔𝑔 𝑥𝑥 =𝑢𝑢,ℎ 𝑦𝑦 =𝑣𝑣

𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)

= �
𝑥𝑥,𝑦𝑦 𝑔𝑔 𝑥𝑥 =𝑢𝑢,ℎ 𝑦𝑦 =𝑣𝑣

𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑌𝑌(𝑦𝑦)

= �
𝑥𝑥 𝑔𝑔 𝑥𝑥 =𝑢𝑢

𝑝𝑝𝑋𝑋(𝑥𝑥)�
𝑦𝑦|ℎ 𝑦𝑦 =𝑣𝑣

𝑝𝑝𝑌𝑌(𝑦𝑦) = 𝑝𝑝𝑈𝑈(𝑢𝑢)𝑝𝑝𝑉𝑉(𝑣𝑣)
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Variances

• If X, Y are independent,
𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

Say we know from variance property:
𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋

Proof:
Define: �𝑋𝑋 = 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 , �𝑌𝑌 = 𝑌𝑌 − 𝐸𝐸[𝑌𝑌]

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋 + �𝑌𝑌 = 𝐸𝐸 �𝑋𝑋 + �𝑌𝑌 2

= 𝐸𝐸 �𝑋𝑋2 + 2𝐸𝐸 �𝑋𝑋 �𝑌𝑌 + 𝐸𝐸[ �𝑌𝑌2]
𝐸𝐸 �𝑋𝑋 �𝑌𝑌 = 𝐸𝐸 �𝑋𝑋 𝐸𝐸 �𝑌𝑌 = 0

15
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𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋 + �𝑌𝑌 = 𝐸𝐸 �𝑋𝑋 + �𝑌𝑌 2

= 𝐸𝐸 �𝑋𝑋2 + 2𝐸𝐸 �𝑋𝑋 �𝑌𝑌 + 𝐸𝐸 �𝑌𝑌2 = 𝐸𝐸 �𝑋𝑋2 + 𝐸𝐸 �𝑌𝑌2

= 𝑣𝑣𝑉𝑉𝑉𝑉 �𝑋𝑋 + 𝑣𝑣𝑉𝑉𝑉𝑉 �𝑌𝑌 = 𝑣𝑣𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑣𝑣𝑉𝑉𝑉𝑉(𝑌𝑌)
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• Examples:
Think about another variance property that we talked 
about:

𝑣𝑣𝑉𝑉𝑉𝑉 𝑉𝑉𝑋𝑋 = 𝑉𝑉2𝑣𝑣𝑉𝑉𝑉𝑉(𝑋𝑋)
If X = Y, Var(X+Y)=?

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 2𝑋𝑋 = 4𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
If X = -Y, Var(X+Y)=?

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + −𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 0 = 0
If X, Y are independent, and Z = X – 3Y

𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 − 3𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + −3𝑌𝑌
= 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉𝑉𝑉𝑉𝑉 −3𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + −3 2𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌
= 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 9𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)
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The hat problem

• n people throw their hats in a box and then pick one at 
random (imagining this at a cocktail party, where 
everybody wears identical hat, but needs to be checked 
in at the front gate!)
– X: number of people who get their own hat back

– Find E[X]?

18



• First we realize that X:
𝑋𝑋 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑋𝑋𝑖𝑖 = �1, if i selects own hat
0, otherwise

These random variables are much easier to handle!

So what is :
𝑃𝑃 𝑋𝑋𝑖𝑖 = 1 ?

19



• That probability, which is the probability at random, the 
ith person will get his hat back among n hat is

𝑃𝑃 𝑋𝑋𝑖𝑖 = 1 =
1
𝑛𝑛

𝑃𝑃 𝑋𝑋𝑖𝑖 = 0 = 1 −
1
𝑛𝑛

So,

𝐸𝐸 𝑋𝑋𝑖𝑖 = 1 ∗
1
𝑛𝑛

+ 0 ∗ 1 −
1
𝑛𝑛

=
1
𝑛𝑛

20



• We want to compute E[X] not E[Xi]
• Are the Xi independent ?

• Let’s think about the case:
– If we know that out of 10 people, 9 of them got their own hat 

back, does that tell you something about 10th person?
– Of course!
– That means Xi are not really independent of one another!
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• But does it matter in computing E[X]?

– Linearity of expectation does not require independence!

𝐸𝐸 𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑛𝑛
1
𝑛𝑛

= 1

– Out of n people in this hat problem: on average 1 person will get 
it back!
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Variance in the hat problem

• Since these are not independent, summation does not 
apply here:

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2 = 𝐸𝐸 𝑋𝑋2 − 1

What is X2:

𝑋𝑋2 = (�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖)2= �
𝑖𝑖

𝑋𝑋𝑖𝑖2 + �
𝑖𝑖,𝑗𝑗:𝑖𝑖≠𝑗𝑗

𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗
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𝐸𝐸 𝑋𝑋𝑖𝑖2 =
1
𝑛𝑛

1 + 1 −
1
𝑛𝑛

0 =
1
𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛

= 1

Now look at the cross term, let’s look at X1, X2 for now:
To compute E[X1 X2], only thing that matters is when X1 = 1, 
X2 = 1
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𝑃𝑃 𝑋𝑋1𝑋𝑋2 = 1 = 𝑃𝑃 𝑋𝑋1 = 1 𝑃𝑃 𝑋𝑋2 = 1 𝑋𝑋1 = 1

=
1
n
∗

1
n − 1

𝐸𝐸 𝑋𝑋1𝑋𝑋2 =
1
𝑛𝑛
∗

1
𝑛𝑛 − 1

�
𝑖𝑖,𝑗𝑗:𝑖𝑖≠𝑗𝑗

𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 = 𝑛𝑛2 − 𝑛𝑛
1
n
∗

1
n − 1

25



𝐸𝐸 𝑋𝑋2 = 1 +
𝑛𝑛2 − 𝑛𝑛
𝑛𝑛2 − 𝑛𝑛

= 2

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 2 − 1 = 1

26



p1

27

Random variable X, Y can take 
value in the set {1,2,3}. We are 
given the joint PMF on the right, 
the entries indicated by * are left 
unspecified



a) What is pX(1)

𝑝𝑝𝑋𝑋 1
= 𝑃𝑃 𝑋𝑋 = 1,𝑌𝑌 = 1 + 𝑃𝑃 𝑋𝑋 = 1,𝑌𝑌 = 2 + 𝑃𝑃 𝑋𝑋 = 1,𝑌𝑌 = 3

=
1

12
+

2
12

+
1

12
= 1/3

28



b) Provide a clearly labeled sketch of the 
conditional PMF of Y given that X=1

𝑝𝑝𝑌𝑌|𝑋𝑋 𝑦𝑦 1 =
𝑝𝑝𝑌𝑌,𝑋𝑋(𝑦𝑦, 1)
𝑝𝑝𝑋𝑋(1)

=

1
4

,𝑦𝑦 = 1
1
2

,𝑦𝑦 = 2
1
4

,𝑦𝑦 = 3

0, otherwise

29



c) What is E[Y|X=1]?

𝐸𝐸 𝑌𝑌 𝑋𝑋 = 1 = �
𝑦𝑦=1

3
𝑦𝑦𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|1) = 1 ∗

1
4

+ 2 ∗
1
2

+ 3 ∗
1
4

= 2

30



Let B be the event that X ≤ 2 and Y ≤ 2. We are told that 
conditioned on B, the random variables X and Y are 
independent

e) What is PX,Y(2,2)? Or do we have enough information?

31



Knowing that X and Y are conditionally independent given B, 

We first concentrate on 2x2 grid points

P(XY|B)=P(X|B)P(Y|B)
We can expand this or just realize:

𝑝𝑝𝑋𝑋,𝑌𝑌(1,1)
𝑝𝑝𝑋𝑋,𝑌𝑌(1,2) =

𝑝𝑝𝑋𝑋,𝑌𝑌(2,1)
𝑝𝑝𝑋𝑋,𝑌𝑌(2,2) =

1
2

𝑝𝑝𝑋𝑋,𝑌𝑌 2,2 =
4

12

32



e) What is PX,Y|B(2,2|B)

𝑃𝑃 𝐵𝐵 =
9

12
=

3
4

Now just need to normalize the PX,Y(2,2) in the universe of B

𝑝𝑝𝑋𝑋,𝑌𝑌|𝐵𝐵 2,2 =
𝑝𝑝𝑋𝑋,𝑌𝑌(2,2)
𝑃𝑃(𝐵𝐵)

=
4
9
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P2 mean and variance of sample mean

Say we wish to estimate the approval rating of a president, 
to be called B. To do this, we ask n persons drawn at 
random from the voter population, and we let Xi be a 
random variable that encodes the response of the ith person:

𝑋𝑋𝑖𝑖 = � 1, if the i𝑡𝑡ℎ person approves B
0, if the i𝑡𝑡ℎ person disapproves B

34



We can treat each of this Xi as independent Bernoulli 
random variables with common mean p and variance (1-p)

We can see this ‘p’ as the true approval rate of B

Let’s take an average of the response from each Xi that we 
get:

𝑆𝑆𝑛𝑛 =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛

We can see this random variable Sn, as the approval rate of 
B within our n-person population
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What is the expected value of this random variable?

𝐸𝐸 𝑆𝑆𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛
𝐸𝐸[𝑋𝑋𝑖𝑖] =

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑝𝑝 = 𝑝𝑝

Making use of independence to compute variance:

𝑣𝑣𝑉𝑉𝑉𝑉 𝑆𝑆𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛2
𝑣𝑣𝑉𝑉𝑉𝑉 𝑋𝑋𝑖𝑖 =

𝑝𝑝(1 − 𝑝𝑝)
𝑛𝑛
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• Sample mean as a random variable, Sn, on average is a 
‘good’ estimate of the true approval rating

• We can see the variance of this random variable, Sn, it 
gets smaller and smaller as we have larger and larger n

• The estimation to the true approval rating is more and 
more ‘pinpointing-accurate’ as we have more and more 
samples!

37



Justification of Poisson approximation property

• Consider the PMF of a binomial random variable with 
parameters n and p, show that asymptotically, as 

n -> ∞ and p -> 0,
While np is fixed at a given value λ, this PMF approaches 
the PMF of a Poisson random variable with parameter λ
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Set λ = np

𝑝𝑝𝑋𝑋 𝑘𝑘 =
𝑛𝑛!

𝑛𝑛 − 𝑘𝑘 ! 𝑘𝑘!
𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘

=
𝑛𝑛 𝑛𝑛 − 1 … 𝑛𝑛 − 𝑘𝑘 + 1

𝑘𝑘!
λ
𝑛𝑛

𝑘𝑘

1 −
λ
𝑛𝑛

𝑛𝑛−𝑘𝑘

=
𝑛𝑛 𝑛𝑛 − 1 … (𝑛𝑛 − 𝑘𝑘 + 1)

𝑛𝑛𝑘𝑘
λ𝑘𝑘

𝑘𝑘!
1 −

λ
𝑛𝑛

𝑛𝑛−𝑘𝑘

Fix k, let n->∞
𝑛𝑛 𝑛𝑛−1 …(𝑛𝑛−𝑘𝑘+1)

𝑛𝑛𝑘𝑘
goes to 1

1 − λ
𝑛𝑛

−𝑘𝑘
goes to 1
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1 −
λ
𝑛𝑛

𝑛𝑛

goes to 𝑒𝑒−λ

Remember exponential is defined as : lim
𝑛𝑛→∞

1 + 1
𝑛𝑛

𝑛𝑛

Put it together now we can for each k, as n -> ∞

𝑝𝑝𝑋𝑋 𝑘𝑘 → 𝑒𝑒−λ
λ𝑘𝑘

𝑘𝑘!
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