Problem 1
Let X be a random variable that takes nonnegative integer values, and is associated with a transform of the form  𝑥(𝑠)=    Find  

Answer 1 
(1)  𝑀𝑥(0) = E[1]=1 , so  k=1/16

(2) Since X only take nonnegative integer values  ：
 𝑀(𝑠) = px(0) +px(1)  + px(2) …… and so on
 Use long division, we know 𝑀(𝑠)=
 thus we know px(0)=3/16 px(1)=4/16 px(2)=3/16 …

(3) Now use total expectation theorem: 

E[X]=E[X|X=1]P(X=1)+E[X|X=2]P(X=2)+ P()
   Where E[X]= =  and P()= 1-P(X=1,2)
So  = 1* + 2* + (1-) 

Thus  = 
                                                                          

Problem 2
	A vendor machine supplies ‘n’ different types of beverages, and it is visited by a number Y of customers in a certain period of time, we know that X is a nonnegative integer random variable with known transform . Each customer will buy one single beverage, with all types of beverage being equally likely, independent of the number or the types other customers buy. Please derive the formula in terms of  for the expected value of number of different beverage ordered.

Answer 2
	Let’s first define a random variable X:
	
	Then X = X1+X2+X3…..+Xn, X means number of different drinks ordered.
	Using Law of Iterated Expectaiton:
	
	Now, we know the beverage not be ordered by probability p = (n-1)/n
	Then, the expected probability of it being ordered at least once is:
		
	So, we can know 
	Lastly, 
                                                                             

Problem 3
Suppose that X and Y are random variable with the same variance. Show that X-Y and X+Y are uncorrelated?
Answer 3
	Because the covariance remains unchanged when we add a constant to a random variable, we can assume without loss of generality that X and Y have zero mean. We then have
Cov(X-Y , X+Y) = E[(X-Y)(X+Y)] = E[] - E[] = 0  
since X and Y were assumed to have the same variance.
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Problem 4
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Answer 4
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Problem 5
A coin with probability p of heads is tossed until the first head occurs. It is then tossed again until the first tail occurs. Let X be the total number of tosses required.
(i) Find the distribution function of X. (ii) Find the mean and variance of X.

Answer 5
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Solution. We introduce two extra random variables Y and Z, where
e Y is the number of tosses until the first head occurs, and
e Z is the number of extra tosses until the first tail occurs.

Then we have X =Y +Z. Moreover, the standard knowledge on Bernoulli processes tells that ¥ and Z are
independent and ¥ ~ Geometric(p) and Z ~ Geometric(1 — p).

(i) X takes values in {2,3,4,---}, and for each x =2,3.4,--- we have

x—1
px(x) =priz(x) = Y Py =kPZ=x—k] =Y p(1—p)*~"-(1—p)p~*!
k=1

keR
P -(=p!
=p(l-p) =
p—(1-p)
Here we utilized the formula =2 = y7~1 ¢"~'~*b to simplify the sum.

(ii) We have
1 1
EX]=E[Y+Z|=E[Y|+E[Z] = —+—.
(= BlY +2) = ElY|+ElZ = +
As for the variance, we may utilize the independence to write
I-p r
+ .
(1-p)?

Var(X) = Var(Y +Z) = Var(Y) + Var(Z) =




