EE3060 Probability – Proposed questions and answers
Question 1:
Let X and Y be random variables with finite expectations. Show that if P(X≦Y)=1, then E(X) ≦ E(Y).
Answer 1:
[image: ]

Question 2:
Using MGFs prove that if X∼Binomial(m,p) and Y∼Binomial(n,p) are independent, then X+Y∼Binomial(m+n,p).
Answer 2:
[image: ]

Question 3:
Let  be a random number from 0 to.  be random variables, please prove that X and Y are uncorrelated.
Answer 3:
The PDF of  is given by 
	Therefore,



	Thus .
	Uncorrelated.
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Question 4:
Let X,Y and Z be three jointly continuous random variables with joint PDF
				  
							=0   , otherwise

1. Find the constant c.
2. Find the marginal PDF of X.

Answer 4:
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Question 5:
Cards are drawn from an ordinary deck of 52, one at a time, randomly and with replacement. Let X and Y denote the number of draws until the first ace and the first king are drawn, respectively. Find E(X|Y=5).

Answer 5:
[image: ]

image4.png
2. To find the marginal PDF of X, we note that Rx =

[0,1]. For 0 < z < 1, we can write

i@ = [~ [ povateavi:

2y + 3z) dydz

Thus,

+3z) dz

otherwise
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Let p(x, y) be the joint probability mass function of X and Y. Clearly,
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Using these, we have that
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Remark: Tn successive draws of cards from an ordinary deck of 52 cards, one at a time.
randomly. and with replacement. the expected value of the number of draws until the first ace
is 1/(1/13) = 13. This exercise shows that knowing the first king occurred on the fifth trial
will increase, on the average, the number of trials until the first ace 0.412 draws.
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We prove this for the case in which X and ¥ are continuous random variables with joint
probability density function /. For discrete random variables the proof is similar. The refation
P(X = Y) = Limplies that f (v, ¥) = 0if v > v. Hence by Theorem 8.2,
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We have

Since X and Y are independent, we conclude that

Myx.y(s) = Mx(s)My(s)

= (pe* +1-p)""™",

which is the MGF of a Binomial(m+n,p) random variable.

X +Y ~ Binomial(m+ n,p).

Thus,
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