

EE3700 Introduction to Machine Learning

Modeling Sequential Data Using Recurrent Neural Networks

Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

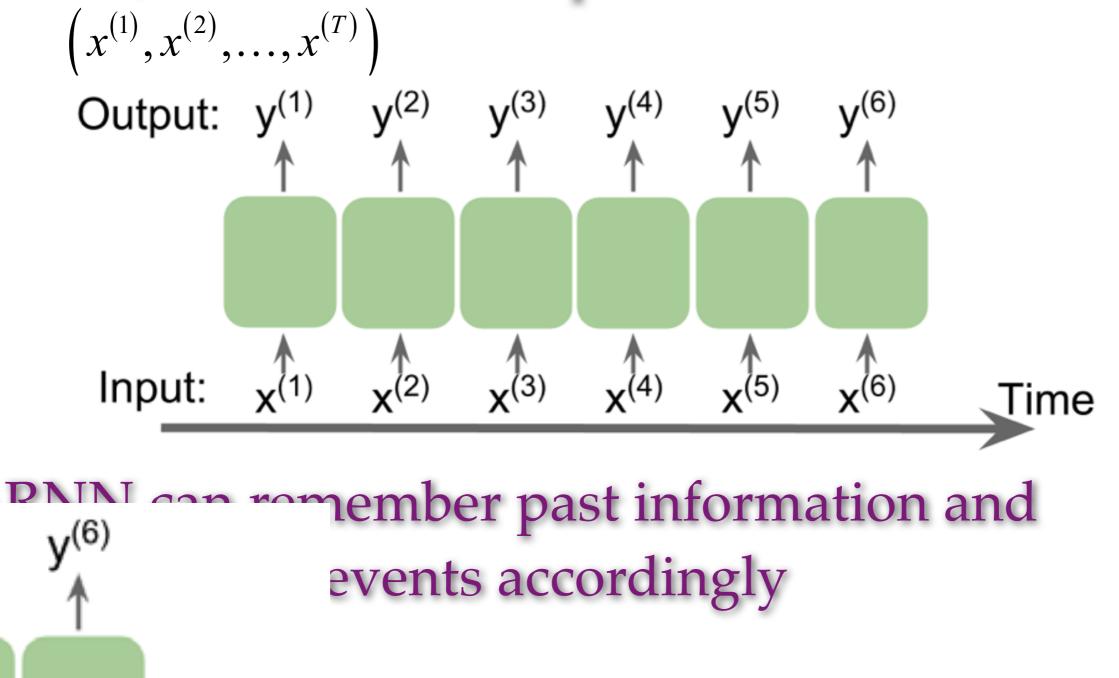
- Introducing Sequential Data
- Recurrent Neural Networks for Modeling Sequences
- Implementing a Multilayer RNN for Sequence Modeling in TensorFlow

Introducing Sequential Data

y⁽⁵⁾

Modeling Sequential Data

• Elements in a sequence appear in a certain order, and are not independent of each other



Different Categories of Sequence Modeling

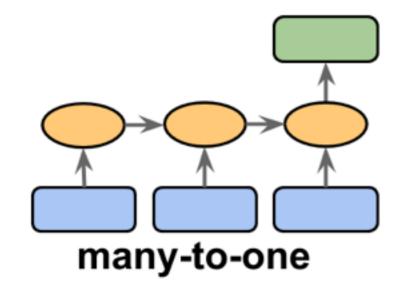
Application examples

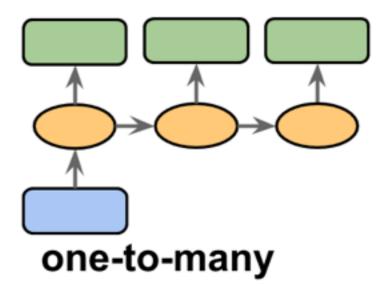
-language translation, image captioning, text generation

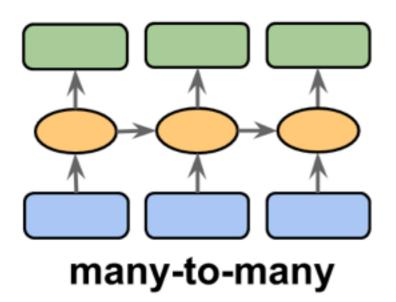
• If either input or output is a sequence, three different categories

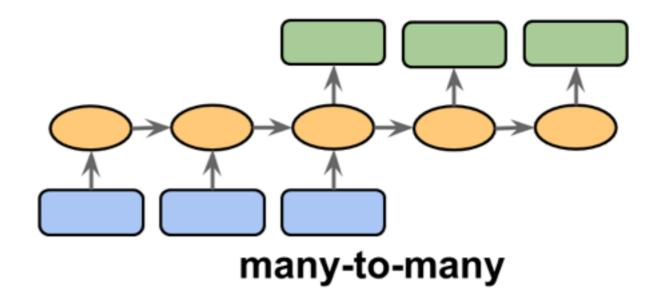
- –Many-to-one: input:sequence, output: a fixed size vector.
 - •Sentiment analysis: input:text-based, output: class label
- One-to-many: input: standard format, output: sequence
 - •Image captioning: input: image, output: an English phrase
- Many-to-many: both input/output are sequences
 - Synchronized many-to-many: Video classification
 - **Delayed** many-to-many: Language translation

Different Categories of Sequence Modeling



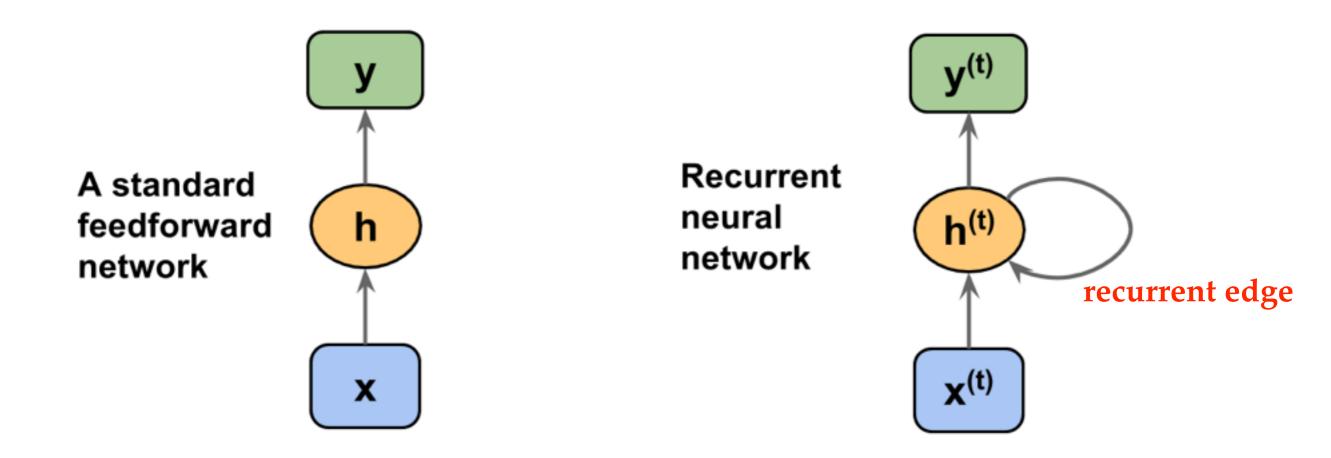




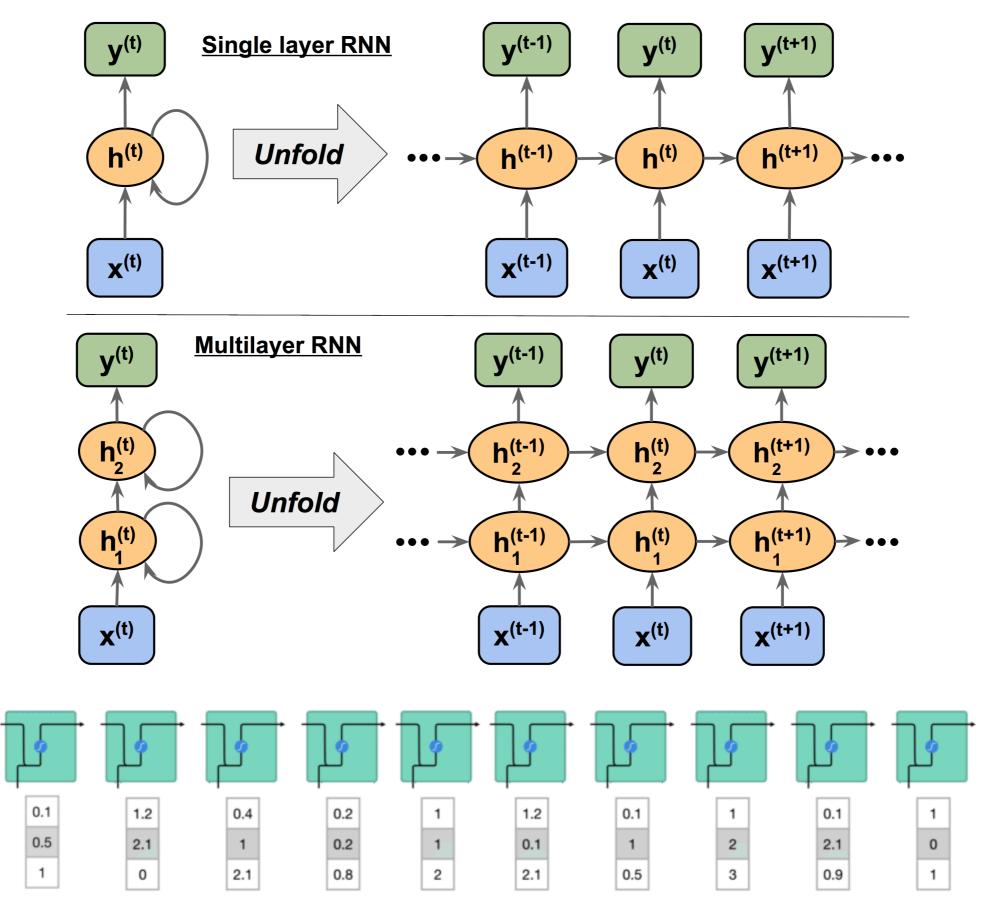


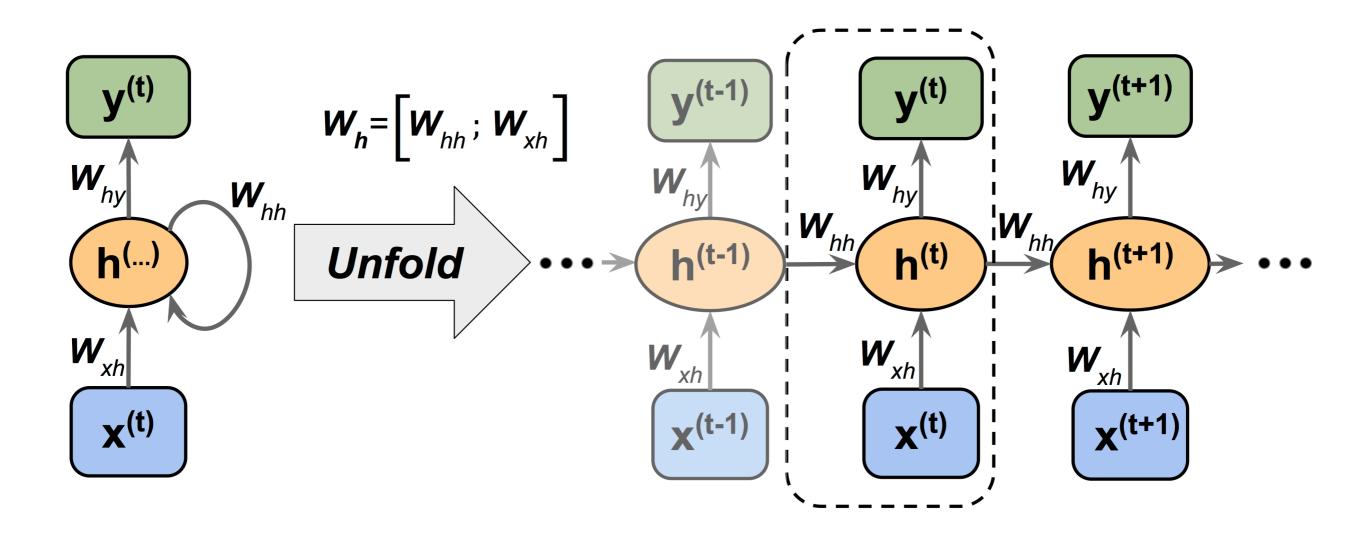
Recurrent Neural Networks for Modeling Sequences

Comparison between Standard Feedforward NN and RNN

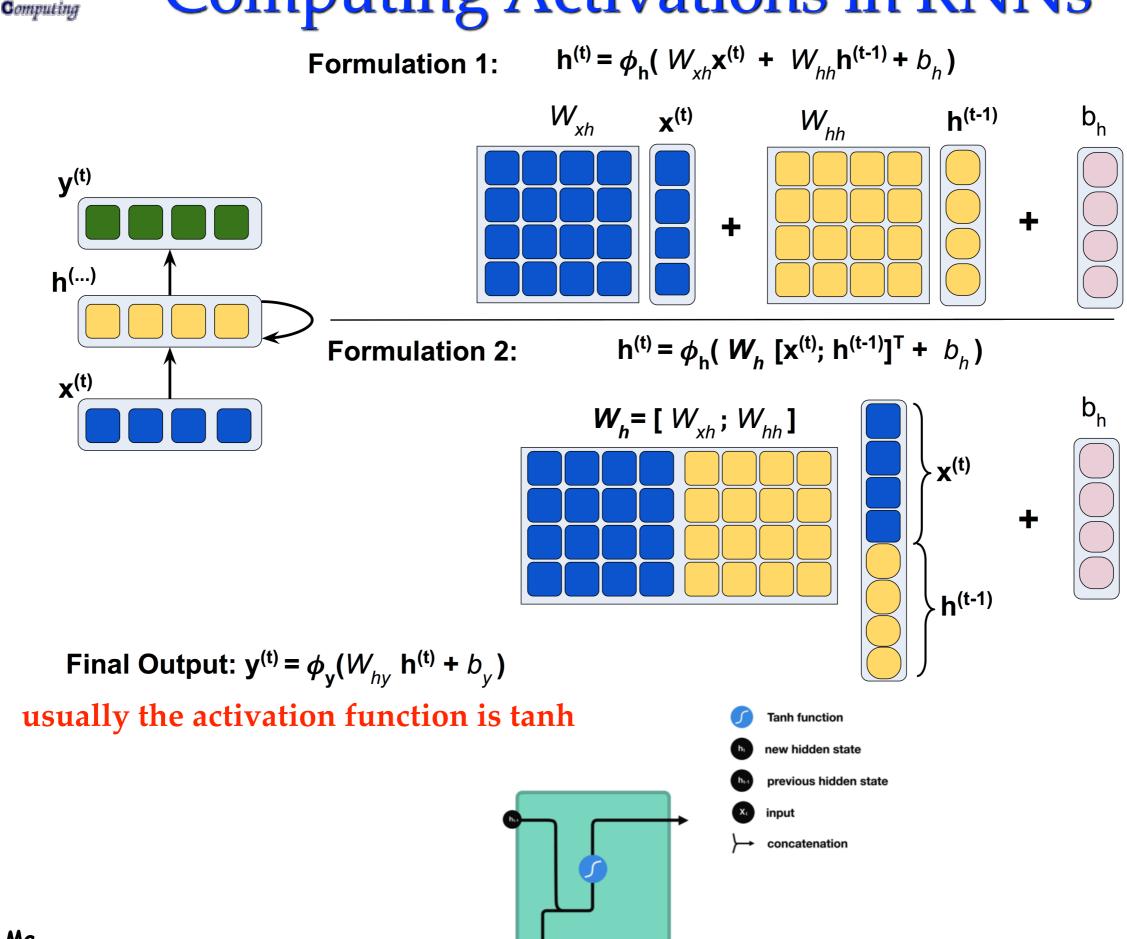


Unrolled RNNs





Computing Activations in RNNs



Laboratory for

Reliable

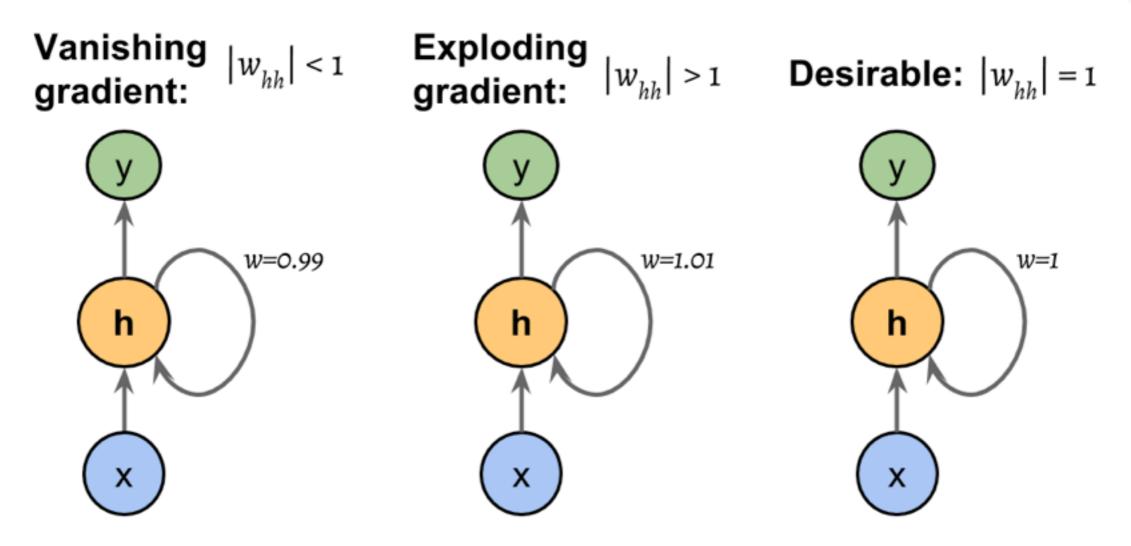
Training RNNs Using BPTT

t = 1 t = T

• **Backpropagation through** time $t = T_{T} = T$ -Overall loss *t* 1 $L = \sum_{\substack{t=1\\1:t}}^{T} L_{1:t}^{(t)} 1_{1:t}^{(t)} t_{1:t}^{(t)}$ 1.7 Derivation of the gradient () $1:t \qquad \stackrel{()}{()} \frac{\partial L^{(t)}}{\partial W_{hh}} = \frac{\partial L^{(t)}}{\partial y^{(t)}} \times \frac{\partial y^{(t)}}{\partial h^{(t)}} \times \left(\sum_{k=1}^{t} \frac{\partial h^{(k)}}{\partial h^{(k)}} \times \frac{\partial h^{(k)}}{\partial W_{hh}}\right)$ () $-() \frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{h}^{(k)}}$ is computed as a multiplication of adjacent time () ∂h $\partial h \text{ steps } \frac{\partial h^{(t)}}{\partial h^{(k)}} = \prod_{i=k+1}^{t} \frac{\partial h^{(i)}}{\partial h^{(i-1)}} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix}$ ()

Gradient Problems

• Vanishing or exploding gradient when *t*-*k* is large



Two practical solutions

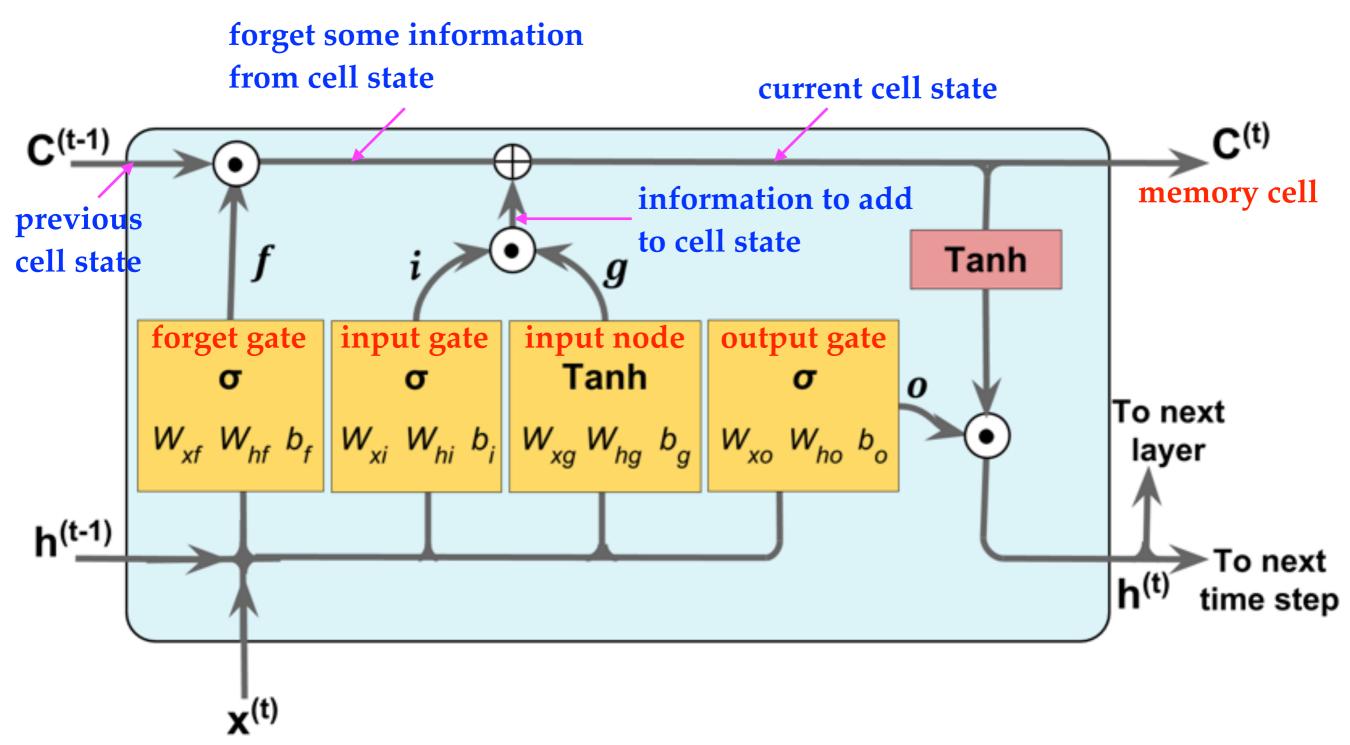
- Truncated back propagation through time (TBPTT)
- Long short-term memory (LSTM) ^{Hsi-Pin Ma}

Long Short-Term Memory (LSTM)

Core concept

- cell state + three gates (forget, input, output)
- cell state: memory of the network
- The forget gate decides what is relevant to keep from prior steps
- The input gate decides what information is relevant to add from the current step
- The output gate determines what the next hidden state should be

LSTM Units



Sigmoid

- Sigmoid activation can squash values between 0 and 1 to help to update or forget data
 - Data multiplied by 0 is 0: to be forgotten

0.1 -0.5

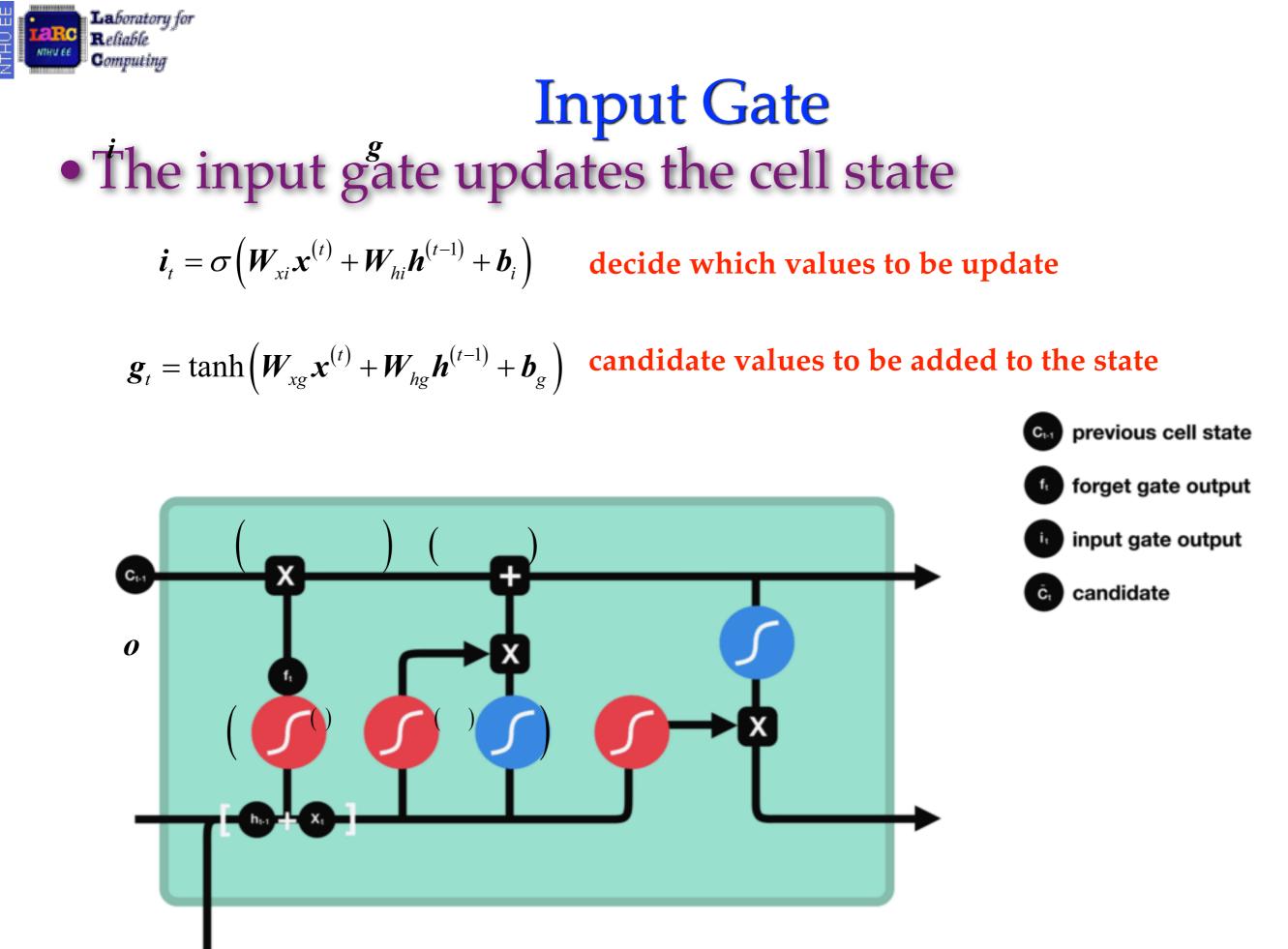
- Data multiplied by 1 is the same value: to be kept
- The network can learn which data is not important so can be forgotten or which data is important to keep

f Forget Gate

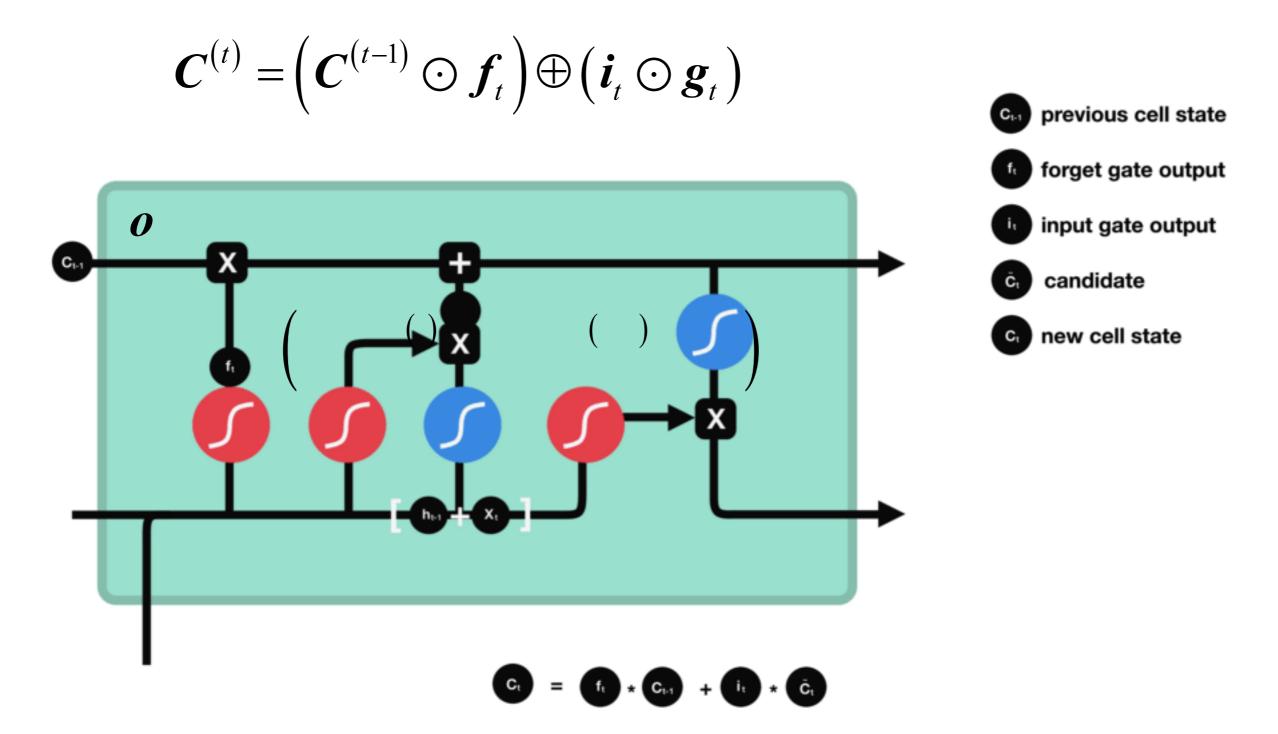
• The gate decides what information should be forgotten or kept $f_t = \sigma \left(W_{xf} x^{(t)} + W_{hf} h^{(t-1)} + b_f \right)$

forget gate output g h_{t-1} ()

previous cell state

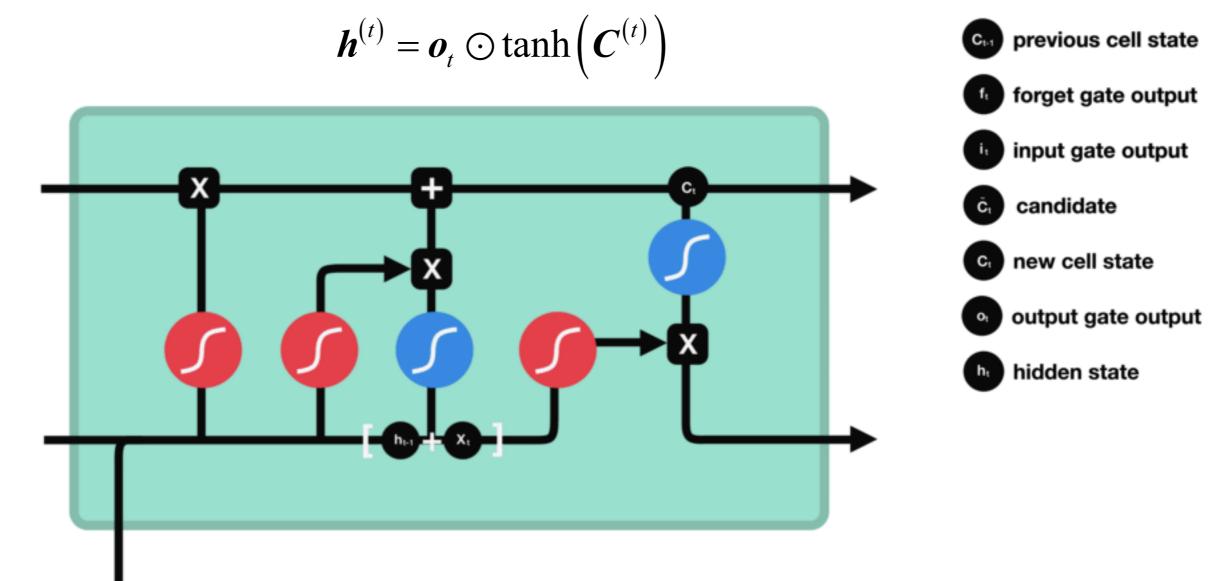


Cell State



(Output Gate)

• The gate decides what the next hidden state should be $o_t = \sigma \left(W_{xo} x^{(t)} + W_{ho} h^{(t-1)} + b_o \right)$



Entropy Inter Computing Implementing a Multilayer RNN for Sequence Modeling in TensorFlow

- Sentiment Analysis
- Language Modeling

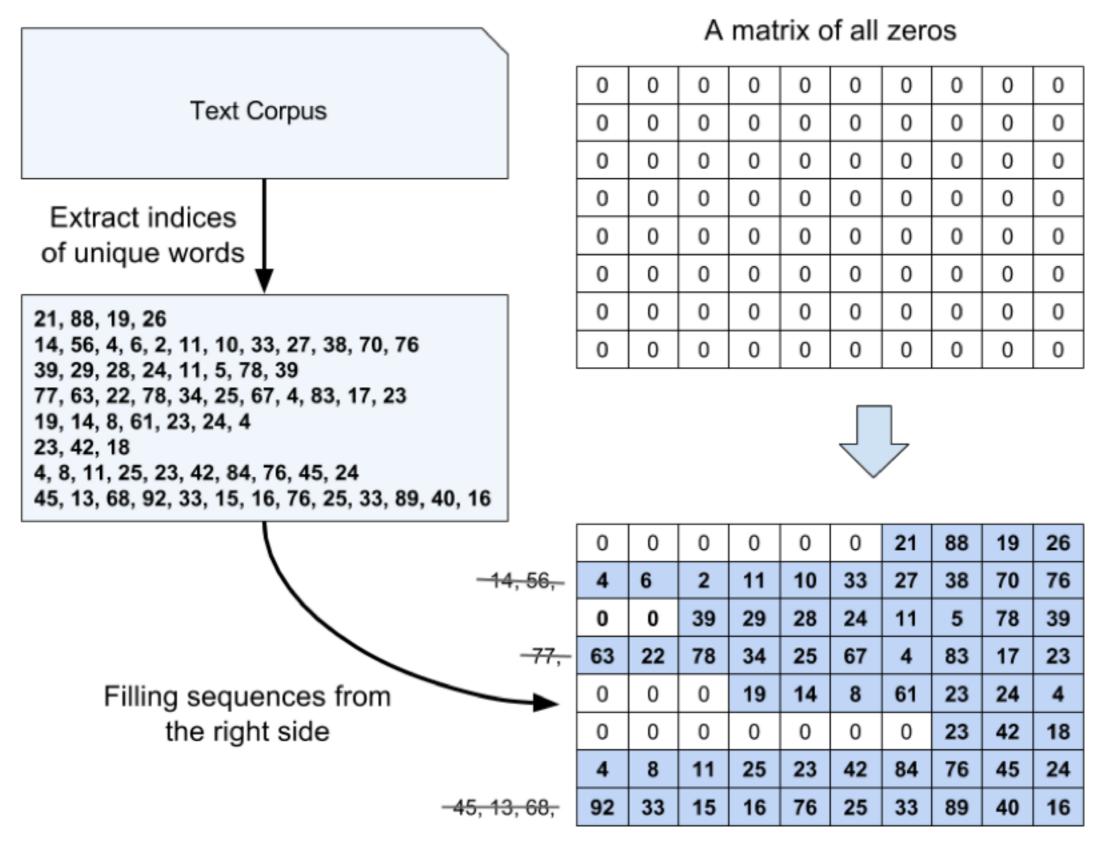
Sentimental Analysis

Preparing the Data (IMDb)

• A multilayer RNN with many-to-one architecture

- Encode the 'review' input data into numerical values
 Find unique words in the entire dataset (Counter)
 - •Create a dictionary to map each unique word into a unique integer number
- To confirm all sequences have the same length, define a hyperparameter *sequence_length*, and fill the index of words in each sequence from the right-hand side of the matrix (others fill with zeros)

Preparing the Data



Read in the IMDb Data

```
import pyprind
import pandas as pd
from string import punctuation
import re
import numpy as np
df = pd.read_csv('movie_data.csv', encoding='utf-8')
print(df.head(3))
```

review sentiment

0	In 1974, the teenager Martha Moxley (Maggie Gr	1
1	OK so I really like Kris Kristofferson a	0
2	***SPOILER*** Do not read this, if you think a	0

Count the Unique Word in the Dataset

Preprocessing the data:

- *## Separate words and*
- ## count each word's occurrence

from collections import Counter

```
Counting words occurences
0% [##############################] 100% | ETA: 00:00:00
Total time elapsed: 00:03:19
```


Create the Word to Integer Mapping

```
## Create a mapping:
## Map each unique word to an integer
word counts = sorted(counts, key=counts.get, reverse=True)
print(word counts[:5])
word to int = {word: ii for ii, word in enumerate(word counts, 1)}
mapped reviews = []
pbar = pyprind.ProgBar(len(df['review']),
                       title='Map reviews to ints')
for review in df['review']:
    mapped reviews.append([word to int[word] for word in review.split()])
    pbar.update()
  Map reviews to ints
  ['the', '.', ',', 'and', 'a']
```

```
0% [###################################] 100% | ETA: 00:00:00
Total time elapsed: 00:00:03
```

```
Laboratory for
             Prepare Fixed-Length Sequences
   Computing
sequence length = 200 ## sequence length (or T in our formulas)
sequences = np.zeros((len(mapped reviews), sequence length), dtype=int)
for i, row in enumerate(mapped reviews):
    review arr = np.array(row)
    sequences[i, -len(row):] = review arr[-sequence length:]
X train = sequences[:25000, :]
y train = df.loc[:25000, 'sentiment'].values
X test = sequences[25000:, :]
y test = df.loc[25000:, 'sentiment'].values
np.random.seed(123) # for reproducibility
## Function to generate minibatches:
def create batch generator(x, y=None, batch size=64):
    n batches = len(x)//batch size
   x= x[:n batches*batch size]
    if y is not None:
       y = y[:n batches*batch size]
    for ii in range(0, len(x), batch size):
        if y is not None:
           yield x[ii:ii+batch size], y[ii:ii+batch size]
        else:
```

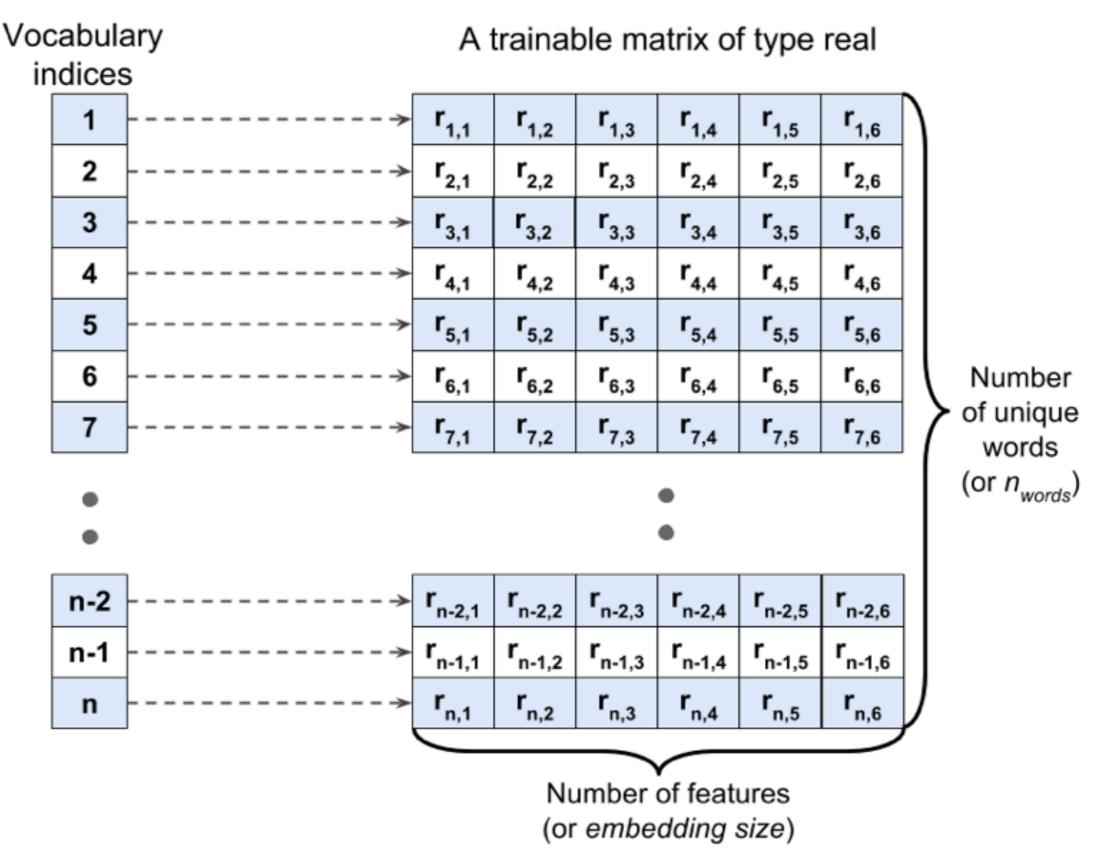
```
yield x[ii:ii+batch_size]
```

Hsi

Embedding (Input Feature Encoding)

- The word indices to be converted into input features
 - One-hot encoding (too many features may suffer from curse of dimensionality, very sparse)
 - Embedding: use finite-sized vectors to represent an infinite number of real numbers
 - A reduction in the dimensionality of the feature space to decrease the effect of the curse of dimensionality
 - The extraction of salient features since the embedding layer in a neural network is trainable

Embedding



Hsi-Pin Ma

Create an Embedded Layer

Create an embedded layer with input layer tf_x

- Create a matrix of size [**n_words** x **n_embedding_size**] as a tensor variable (*embedding*) and initialize its elements] randomly with floats between [-1,1]

– Use *tf.nn.embedding_lookup* function to look up the row in the embedded matrix associated with each element of *tf_x*

embed_x = tf.nn.embedding_lookup(embedding, tf_x)

Building an RNN Model

SentimentRNN class

- A *constructor* to set all the model parameters, create a computation graph and call the self.build to build the multilayer RNN
- -*build*: Declare 3 placeholders (input data, input labels, and the keep-probability for the dropout configuration of the hidden layer), create an embedded layer and build the RNN using the embedded representation as input.
- -*train*: Create a TensorFlow session and save the model after 10 epochs for checkpointing
- -*predict*: Create a new session, restore the last checkpoint and carry out the predictions for the test data

import tensorflow as tf

SentimentRNN: the constructor

```
class SentimentRNN(object):
    def __init__(self, n_words, seq_len=200,
                 lstm size=256, num layers=1, batch size=64,
                 learning rate=0.0001, embed size=200):
        self.n words = n words
        self.seq len = seq len
        self.lstm_size = lstm_size ## number of hidden units
        self.num layers = num layers
        self.batch size = batch size
        self.learning rate = learning rate
        self.embed size = embed size
        self.g = tf.Graph()
        with self.g.as default():
            tf.set random seed(123)
            self.build()
            self.saver = tf.train.Saver()
            self.init op = tf.global variables initializer()
```


SentimentRNN: build() (1/4)

```
def build(self):
    ## Define the placeholders
    tf x = tf.placeholder(tf.int32,
                shape=(self.batch_size, self.seq_len),
                name='tf x')
    tf y = tf.placeholder(tf.float32,
                shape=(self.batch size),
                name='tf y')
    tf keepprob = tf.placeholder(tf.float32,
                name='tf keepprob')
    ## Create the embedding layer
    embedding = tf.Variable(
                tf.random_uniform(
                    (self.n words, self.embed_size),
                    minval=-1, maxval=1),
                name='embedding')
    embed x = tf.nn.embedding lookup(
                embedding, tf_x,
                name='embedded x')
```


SentimentRNN: build() (2/4)

```
## Define LSTM cell and stack them together
cells = tf.contrib.rnn.MultiRNNCell( 3. Make a list of such cells
                                             2. Apply the dropout to the RNN cells
        [tf.contrib.rnn.DropoutWrapper(
           tf.contrib.rnn.BasicLSTMCell(self.lstm_size), 1. create RNN cells
           output keep prob=tf keepprob)
         for i in range(self.num layers)])
## Define the initial state:
self.initial state = cells.zero state(
         self.batch size, tf.float32)
print(' << initial state >> ', self.initial_state)
# Create RNN using the RNN cells and their states
lstm_outputs, self.final_state = tf.nn.dynamic_rnn(
         cells, embed x,
         initial state=self.initial state)
## Note: lstm outputs shape:
## [batch size, max time, cells.output size]
print('\n << lstm output >> ', lstm outputs)
print('\n << final state >> ', self.final_state)
```


SentimentRNN: build() (3/4)

```
## Apply a FC layer after on top of RNN output:
logits = tf.layers.dense(
         inputs=lstm outputs[:, -1],
         units=1, activation=None,
         name='logits')
logits = tf.squeeze(logits, name='logits squeezed')
print ('\n << logits >> ', logits)
y proba = tf.nn.sigmoid(logits, name='probabilities')
predictions = {
    'probabilities': y proba,
    'labels' : tf.cast(tf.round(y_proba), tf.int32,
        name='labels')
}
print('\n << predictions >> ', predictions)
```


SentimentRNN: build() (4/4)

```
## Define the cost function
```

```
cost = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(
    labels=tf_y, logits=logits),
    name='cost')
```

Define the optimizer

```
optimizer = tf.train.AdamOptimizer(self.learning_rate)
train_op = optimizer.minimize(cost, name='train_op')
```

SentimentRNN: train()

```
def train(self, X train, y train, num epochs):
    with tf.Session(graph=self.g) as sess:
        sess.run(self.init op)
        iteration = 1
        for epoch in range(num epochs):
            state = sess.run(self.initial state)
            for batch x, batch y in create batch generator(
                        X train, y train, self.batch size):
                feed = {'tf x:0': batch x,
                         'tf y:0': batch y,
                         'tf keepprob:0': 0.5,
                        self.initial state : state}
                loss, _, state = sess.run(
                         ['cost:0', 'train_op',
                         self.final state],
                        feed dict=feed)
                if iteration % 20 == 0:
                    print("Epoch: %d/%d Iteration: %d "
                           " | Train loss: %.5f" % (
                           epoch + 1, num epochs,
                           iteration, loss))
                iteration +=1
            if (epoch+1)%10 == 0:
                self.saver.save(sess,
                    "model/sentiment-%d.ckpt" % epoch)
```

Laboratory for

Reliable Computing

SentimentRNN: predict()

```
def predict(self, X data, return proba=False):
    preds = []
   with tf.Session(graph = self.g) as sess:
        self.saver.restore(
            sess, tf.train.latest checkpoint('model/'))
        test state = sess.run(self.initial state)
        for ii, batch x in enumerate(
            create batch generator(
                X data, None, batch size=self.batch size), 1):
            feed = { 'tf_x:0' : batch_x,
                    'tf keepprob:0': 1.0,
                    self.initial state : test state}
            if return proba:
                pred, test state = sess.run(
                    ['probabilities:0', self.final state],
                    feed dict=feed)
            else:
                pred, test state = sess.run(
                    ['labels:0', self.final_state],
                    feed dict=feed)
```

preds.append(pred)

Instantiate the SentimentRNN Class

Training the SentimentRNN Model

rnn.train(X_train, y_train, num_epochs=40)

Epoch: 1/	40 Iteration:	20 Train loss: 0.70637
Epoch: 1/	40 Iteration:	40 Train loss: 0.60539
Epoch: 1/	40 Iteration:	60 Train loss: 0.66977
Epoch: 1/	40 Iteration:	80 Train loss: 0.51997
Epoch: 1/	40 Iteration:	100 Train loss: 0.53567
Epoch: 1/	40 Iteration:	120 Train loss: 0.59073
Epoch: 1/	40 Iteration:	140 Train loss: 0.45970
Epoch: 1/	40 Iteration:	160 Train loss: 0.43817
Epoch: 1/	40 Iteration:	180 Train loss: 0.45852
Epoch: 1/	40 Iteration:	200 Train loss: 0.45753
Epoch: 1/	40 Iteration:	220 Train loss: 0.42869
Epoch: 1/	40 Iteration:	240 Train loss: 0.48586
Epoch: 2/	40 Iteration:	260 Train loss: 0.39664
Epoch: 2/	40 Iteration:	280 Train loss: 0.30718
Epoch: 2/	40 Iteration:	300 Train loss: 0.31172

Test and Optimizing the Model

INFO:tensorflow:Restoring parameters from model/sentiment-39.ckpt

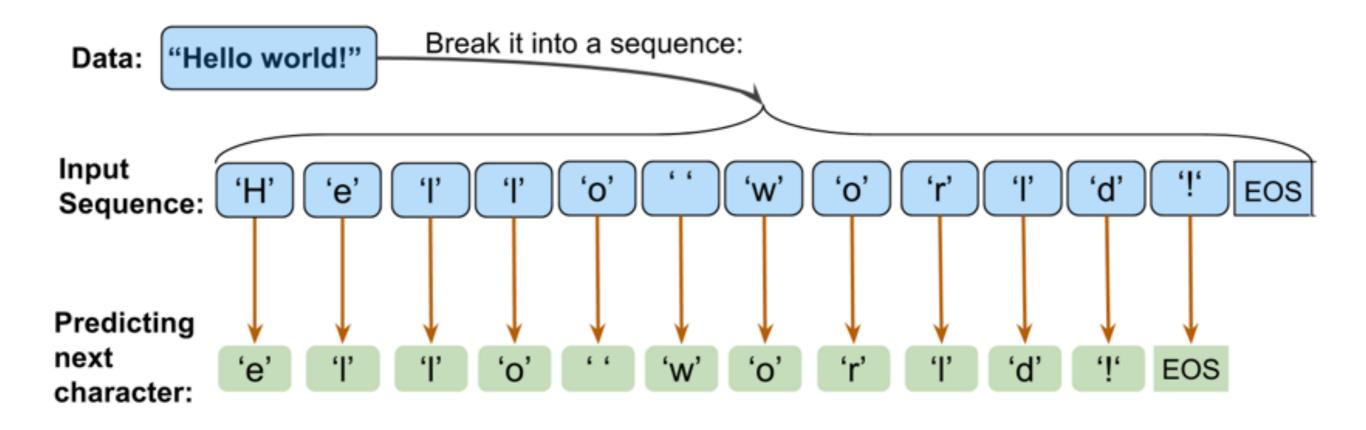
Test Acc.: 0.860

```
## Get probabilities:
```

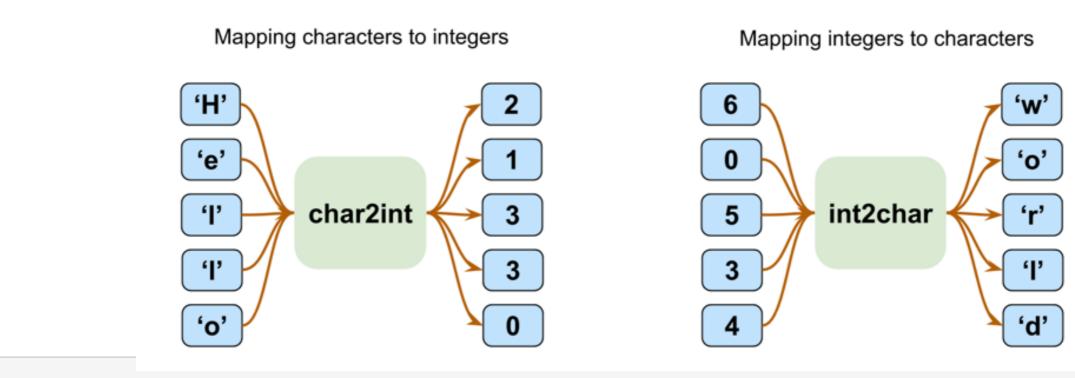
```
proba = rnn.predict(X_test, return_proba=True)
```

INFO:tensorflow:Restoring parameters from model/sentiment-39.ckpt

Character-Level Language Modeling

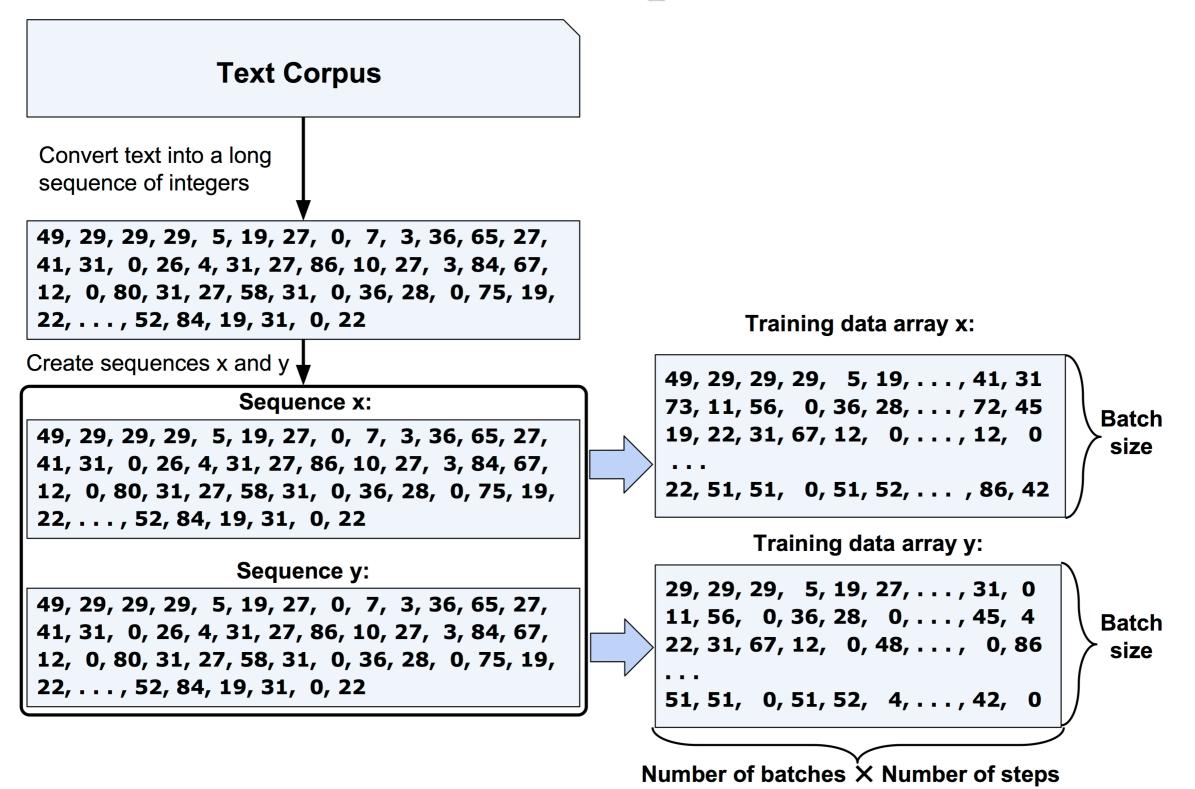


Preparing the Data



import numpy as np

Reshape the Data into Batches of Sequences (1/3)



Reshape the Data into Batches of Sequences (2/3)

```
def reshape data(sequence, batch size, num steps):
    tot batch length = batch size * num steps
    num_batches = int(len(sequence) / tot_batch_length)
    if num batches*tot batch length + 1 > len(sequence):
        num batches = num_batches - 1
    ## Truncate the sequence at the end to get rid of
    ## remaining charcaters that do not make a full batch
    x = sequence[0 : num batches*tot batch length]
    y = sequence[1 : num batches*tot batch length + 1]
    ## Split x & y into a list batches of sequences:
    x batch splits = np.split(x, batch size)
    y batch splits = np.split(y, batch size)
    ## Stack the batches together
    ## batch_size x tot_batch_length
    x = np.stack(x batch splits)
    y = np.stack(y batch splits)
```

return x, y

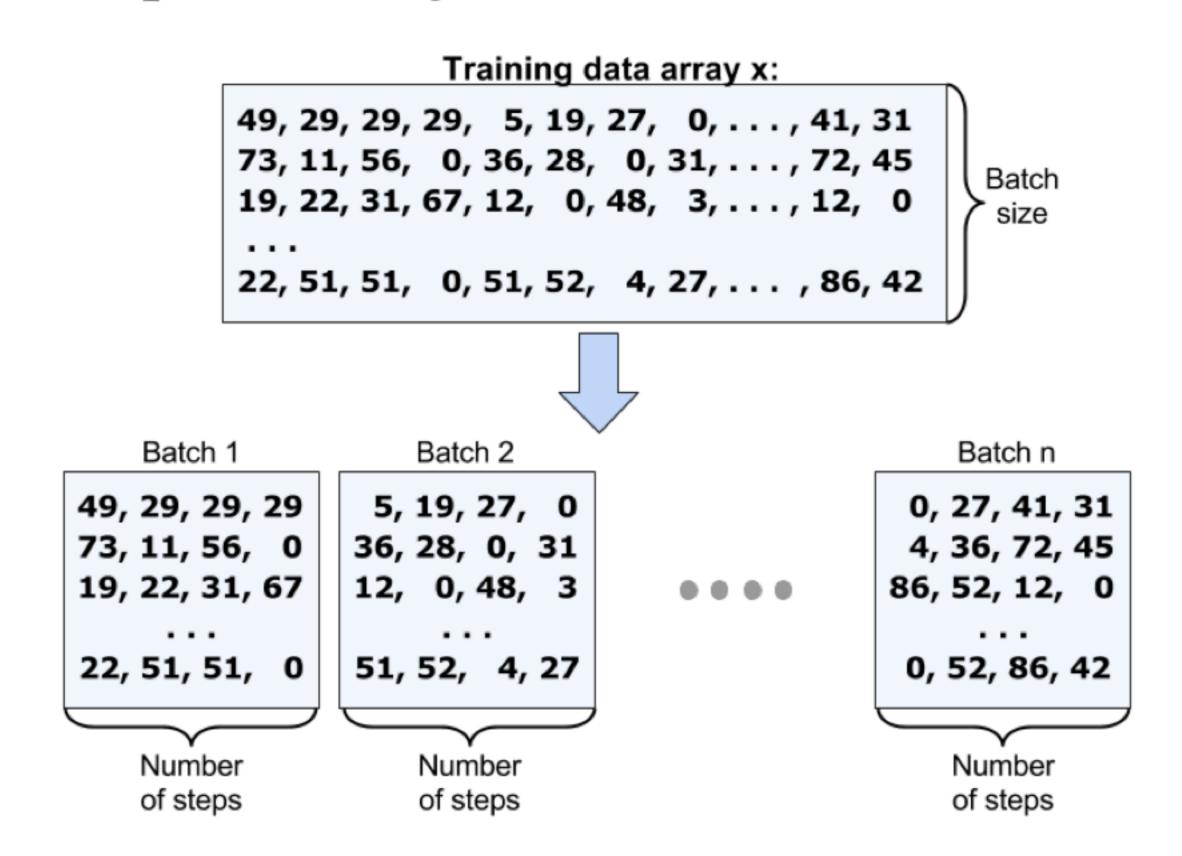
Reshape the Data into Batches of Sequences (3/3)


```
## Testing:
train_x, train_y = reshape_data(text_ints, 64, 10)
print(train_x.shape)
print(train_x[0, :10])
print(train_y[0, :10])
print(''.join(int2char[i] for i in train_x[0, :50]))
```

(64, 2540)
[8 5 41 2 8 39 19 57 41 55]
[5 41 2 8 39 19 57 41 55 47]
The Tragedie of Hamlet

Actus Primus. Scoena Prima

Laboratory for Reliable Computing Split *x* and *y* into Mini-Batches (1/2)



Split x and y into Mini-Batches (2/2)

```
np.random.seed(123)
```

(64, 15) (64, 15)	The Tragedie of	he Tragedie of
(64, 15) (64, 15)	Hamlet**Actus	Hamlet**Actus P
(64, 15) (64, 15)	Primus. Scoena	rimus. Scoena P
(64, 15) (64, 15)	Prima.**Enter B	rima.**Enter Ba
(64, 15) (64, 15)	arnardo and Fra	rnardo and Fran
(64, 15) (64, 15)	ncisco two Cent	cisco two Centi

Beliable Building a Character-Level RNN Model

CharRNN to predict the next character

- A constructor: To set the parameters, create the computation graph, call *build* method to build RNN
- *build*: Define the placeholders for feeding the data, construct RNN using LSTM cells, define the output of the network, cost function, optimizer
- *train*: To iterate through mini-batches and train the network for the specified number of epochs
- *sample*: To start from a given string, calculate the probabilities for the next character, and choose the character accordingly. This process will be repeated, and the sampled characters will be concatenated together to form a string. Once the size of this string reaches specified length, it will return the string

CharRNN: The constructor

import tensorflow as tf
import os

```
class CharRNN(object):
    def init (self, num classes, batch size=64,
                 num steps=100, lstm size=128,
                 num layers=1, learning rate=0.001,
                 keep prob=0.5, grad clip=5,
                 sampling=False):
        self.num classes = num classes
        self.batch size = batch size
        self.num steps = num steps
        self.lstm size = lstm size
        self.num layers = num layers
        self.learning rate = learning rate
        self.keep prob = keep prob
        self.grad clip = grad clip
        self.g = tf.Graph()
       with self.g.as default():
            tf.set random seed(123)
            self.build(sampling=sampling)
            self.saver = tf.train.Saver()
            self.init op = tf.global variables initializer()
```

Hsi-Piı

CharRNN: build() (1/4)

```
def build(self, sampling):
                                                    in sampling mode: \begin{cases} batch_size = 1 \\ num_steps = 1 \end{cases}
     if sampling == True:
         batch size, num steps = 1, 1
                                                     in training mode: 

\begin{cases} batch_size = self.batch_size \\ num_steps = self.num_steps \end{cases}
     else:
          batch_size = self.batch size
         num steps = self.num steps
    tf x = tf.placeholder(tf.int32,
                                shape=[batch size, num steps],
                                name='tf x')
    tf y = tf.placeholder(tf.int32,
                                shape=[batch size, num steps],
                                name='tf y')
     tf keepprob = tf.placeholder(tf.float32,
                                name='tf keepprob')
     # One-hot encoding:
     x_onehot = tf.one_hot(tf_x, depth=self.num_classes)
```

y onehot = tf.one hot(tf y, depth=self.num classes)

CharRNN: build() (2/4)

Build the multi-layer RNN cells
cells = tf.contrib.rnn.MultiRNNCell(
 [tf.contrib.rnn.DropoutWrapper(
 tf.contrib.rnn.BasicLSTMCell(self.lstm_size),
 output_keep_prob=tf_keepprob)
 for _ in range(self.num_layers)])

print(' << lstm_outputs >>', lstm_outputs)

```
seq_output_reshaped = tf.reshape(
    lstm_outputs,
    shape=[-1, self.lstm_size],
    name='seq output reshaped')
```


CharRNN: build() (3/4)

```
logits = tf.layers.dense(
            inputs=seq_output_reshaped,
            units=self.num classes,
            activation=None,
            name='logits')
proba = tf.nn.softmax(
            logits,
            name='probabilities')
print(proba)
y reshaped = tf.reshape(
            y onehot,
            shape=[-1, self.num_classes],
            name='y reshaped')
cost = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(
                logits=logits,
                labels=y_reshaped),
            name='cost')
```


CharRNN: build() (4/4)

CharRNN: train() (1/3)

CharRNN: train() (2/3)

```
# Train network
new state = sess.run(self.initial state)
loss = 0
## Minibatch generator:
bgen = create batch generator(
        train x, train y, self.num steps)
for b, (batch_x, batch_y) in enumerate(bgen, 1):
    iteration = epoch*n batches + b
    feed = {'tf x:0': batch x,
            'tf y:0': batch y,
            'tf keepprob:0': self.keep prob,
            self.initial state : new state}
    batch_cost, _, new_state = sess.run(
            ['cost:0', 'train op',
                self.final state],
            feed dict=feed)
    if iteration % 10 == 0:
        print('Epoch %d/%d Iteration %d'
              '| Training loss: %.4f' % (
              epoch + 1, num_epochs,
              iteration, batch cost))
```


CharRNN: train() (3/3)

Save the trained model
self.saver.save(
 sess, os.path.join(
 ckpt_dir, 'language_modeling.ckpt'))

CharRNN: sample() (1/2)

```
def sample(self, output length,
           ckpt dir, starter seq="The "):
    observed seq = [ch for ch in starter seq]
    with tf.Session(graph=self.g) as sess:
        self.saver.restore(
            sess,
            tf.train.latest checkpoint(ckpt dir))
        ## 1: run the model using the starter sequence
        new state = sess.run(self.initial state)
        for ch in starter seq:
            x = np.zeros((1, 1))
            x[0,0] = char2int[ch]
            feed = {'tf x:0': x,
                    'tf keepprob:0': 1.0,
                    self.initial state: new state}
            proba, new_state = sess.run(
                    ['probabilities:0', self.final state],
                    feed dict=feed)
        ch id = get top char(proba, len(chars))
```

```
observed_seq.append(int2char[ch_id])
```


CharRNN: sample() (2/2)

```
## 2: run the model using the updated observed_seq
for i in range(output_length):
    x[0,0] = ch_id
    feed = {'tf_x:0': x,
        'tf_keepprob:0': 1.0,
        self.initial_state: new_state}
    proba, new_state = sess.run(
        ['probabilities:0', self.final_state],
        feed_dict=feed)
    ch_id = get_top_char(proba, len(chars))
    observed_seq.append(int2char[ch_id])
```

```
return ''.join(observed_seq)
```


get_top_char()

```
def get_top_char(probas, char_size, top_n=5):
    p = np.squeeze(probas)
    p[np.argsort(p)[:-top_n]] = 0.0
    p = p / np.sum(p)
    ch_id = np.random.choice(char_size, 1, p=p)[0]
    return ch_id
```

Reliable Compressions and Training the CharRNN Model

```
<< lstm_outputs >> Tensor("rnn/transpose:0", shape=(64, 100, 128), dtype=float32)
Tensor("probabilities:0", shape=(6400, 65), dtype=float32)
Epoch 1/100 Iteration 10| Training loss: 3.7960
Epoch 1/100 Iteration 20| Training loss: 3.3718
Epoch 2/100 Iteration 30| Training loss: 3.2945
Epoch 2/100 Iteration 40| Training loss: 3.2526
Epoch 2/100 Iteration 50| Training loss: 3.2187
Epoch 3/100 Iteration 60| Training loss: 3.1814
Epoch 4/100 Iteration 80| Training loss: 3.1635
Epoch 4/100 Iteration 90| Training loss: 3.1177
Hsi-Pin Ma
```


CharRNN Model in Sampling Mode

The stall soues tay and the hates, The perse in there is that so the meanes this made there

Ham. Ile teath thes are this makere of a driane, Why shis mestend the Casst of is singe, In this to this, to mers it is for marth, Ase hinees sim thig tald ow a tore andere, In histhene tistere shere this wile and my Lord: And tit mighes the secleer allost heruen, and that hash to sall and hears, If you his moses tonger and mout ofr mesting a forte tis at

Pomin. Where in you dist and sintere shan shall