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Outline
•Introducing Sequential Data
•Recurrent Neural Networks for Modeling 

Sequences
•Implementing a Multilayer RNN for Sequence 

Modeling in TensorFlow

2



Hsi-Pin Ma

Introducing Sequential Data
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Modeling Sequential Data
•Elements in a sequence appear in a certain 

order, and are not independent of each other

•RNN can remember past information and 
process new events accordingly

4
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Representing sequences
We've established that sequences are a nonindependent order in our input data; we 
QH[W�QHHG�WR�ÀQG�ZD\V�WR�OHYHUDJH�WKLV�YDOXDEOH�LQIRUPDWLRQ�LQ�RXU�PDFKLQH�OHDUQLQJ�
model.

Throughout this chapter, we will represent sequences as ( ) ( ) ( )( )1 2, , , Tx x xK . The 
superscript indices indicate the order of the instances, and the length of the sequence 
is T. For a sensible example of sequences, consider time-series data, where each 
sample point ( )tx  belongs to a particular time t.

7KH�IROORZLQJ�ÀJXUH�VKRZV�DQ�H[DPSOH�RI�WLPH�VHULHV�GDWD�ZKHUH�ERWK�x's and y's 
naturally follow the order according to their time axis; therefore, both x's and y's  
are sequences:

The standard neural network models that we have covered so far, such as MLPs and 
CNNs, are not capable of handling the order of input samples. Intuitively, one can 
say that such models do not have a memory of the past seen samples. For instance, 
the samples are passed through the feedforward and backpropagation steps, and the 
weights are updated independent of the order in which the sample is processed.

RNNs, by contrast, are designed for modeling sequences and are capable of 
remembering past information and processing new events accordingly.
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Different Categories of Sequence Modeling
•Application examples

– language translation, image captioning, text generation

•If either input or output is a sequence, three 
different categories
– Many-to-one: input:sequence, output: a fixed size vector. 

•Sentiment analysis: input:text-based, output: class label
– One-to-many: input: standard format, output: sequence

•Image captioning: input: image, output: an English phrase
– Many-to-many: both input/output are sequences

•Synchronized many-to-many: Video classification
•Delayed many-to-many: Language translation
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Different Categories of Sequence Modeling
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Recurrent Neural Networks for 
Modeling Sequences 
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Comparison between 
Standard Feedforward NN and RNN
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recurrent edge
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Unrolled RNNs
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Computing Activations in RNNs
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Computing Activations in RNNs
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usually the activation function is tanh
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Training RNNs Using BPTT

•Backpropagation through time
– Overall loss

– Derivation of the gradient

–           is computed as a multiplication of adjacent time 
steps

12

Modeling Sequential Data Using Recurrent Neural Networks

[�����]

Training RNNs using BPTT
The learning algorithm for RNNs was introduced in 1990s 
%DFNSURSDJDWLRQ�7KURXJK�7LPH��:KDW�,W�'RHV�DQG�+RZ�WR�'R�,W (Paul Werbos, 
Proceedings of IEEE, 78(10):1550-1560, 1990). 
The derivation of the gradients might be a bit complicated, but the basic 
idea is that the overall loss L is the sum of all the loss functions at times 
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The challenges of learning long-range 
interactions
Backpropagation�WKURXJK�WLPH��RU�%377��ZKLFK�ZH�EULHÁ\�PHQWLRQHG�LQ�WKH�SUHYLRXV�
information box, introduces some new challenges.

Because of the multiplicative factor 
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 in the computing gradients of a loss 

function, the so-called vanishing or exploding gradient problem arises. This 
SUREOHP�LV�H[SODLQHG�WKURXJK�WKH�H[DPSOHV�LQ�WKH�IROORZLQJ�ÀJXUH��ZKLFK�VKRZV�DQ�
RNN with only one hidden unit for simplicity:
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•Vanishing or exploding gradient when t-k is large

•Two practical solutions
– Truncated back propagation through time (TBPTT)
– Long short-term memory (LSTM)

Gradient Problems

13
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Long Short-Term Memory (LSTM)

•Core concept
– cell state + three gates (forget, input, output)
– cell state: memory of the network
– The forget gate decides what is relevant to keep from 

prior steps
– The input gate decides what information is relevant to 

add from the current step
– The output gate determines what the next hidden state 

should be

14
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LSTM Units

15

forget gate input gate output gateinput node

memory cell

current cell state
forget some information 
from cell state

information to add 
to cell state

previous 
cell state
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Sigmoid

16

•Sigmoid activation can squash values between 0 
and 1 to help to update or forget data
– Data multiplied by 0 is 0: to be forgotten
– Data multiplied by 1 is the same value: to be kept

•The network can learn which data is not 
important so can be forgotten or which data is 
important to keep
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Forget Gate
•The gate decides what information should be 

forgotten or kept

17
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Four boxes are indicated with an activation function, either the sigmoid function  
(σ ) or hyperbolic tangent (tanh), and a set of weights; these boxes apply linear 
combination by performing matrix-vector multiplications on their input. These units 
of computation with sigmoid activation functions, whose output units are passed 
through ! , are called gates.

In an LSTM cell, there are three different types of gates, known as the forget gate, the 
input gate, and the output gate:

�� The forget gate ( tf ) allows the memory cell to reset the cell state without 
growing indefinitely. In fact, the forget gate decides which information 
is allowed to go through and which information to suppress. Now, tf  is 
computed as follows:

( ) ( )( )1t t
t xf hf fσ −= + +f W x W h b

Note that the forget gate was not part of the original LSTM cell; it was added 
a few years later to improve the original model (/HDUQLQJ�WR�)RUJHW��&RQWLQXDO�
Prediction with LSTM, )��*HUV, J. Schmidhuber, and )��&XPPLQV, 1HXUDO�
Computation 12, 2451-2471, 2000).

�� The input gate ( ti ) and input node ( tg ) are responsible for updating the cell 
state. They are computed as follows:

( ) ( )( )1t t
t xi hi iσ −= + +i W x W h b

( ) ( )( )1tanh t t
t xg hg g

−= + +g W x W h b

The cell state at time t is computed as follows:

( ) ( )( ) ( )1t t
t t t

−= ⊕! !C C f i g

�� The output gate ( to ) decides how to update the values of hidden units:

( ) ( )( )1t t
t xo ho oσ −= + +o W x W h b
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Input Gate
•The input gate updates the cell state

18
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candidate values to be added to the state

decide which values to be update
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Cell State

19
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Output Gate
•The gate decides what the next hidden state 

should be

20
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Given this, the hidden units at the current time step are computed as follows:

( ) ( )( )tanht t
t= !h o C

The structure of an LSTM cell and its underlying computations might seem too 
complex. However, the good news is that TensorFlow has already implemented 
HYHU\WKLQJ�LQ�ZUDSSHU�IXQFWLRQV�WKDW�DOORZV�XV�WR�GHÀQH�RXU�/670�FHOOV�HDVLO\�� 
We'll see the real application of LSTMs in action when we use TensorFlow later in 
this chapter.

We have introduced LSTMs in this section, which provide a basic 
approach for modeling long-range dependencies in sequences. 
<HW��LW�LV�LPSRUWDQW�WR�QRWH�WKDW�WKHUH�DUH�PDQ\�YDULDWLRQV�RI�/670V�
described in literature ($Q�(PSLULFDO�([SORUDWLRQ�RI�5HFXUUHQW�1HWZRUN�
Architectures, Rafal Jozefowicz, Wojciech Zaremba, and ,O\D�6XWVNHYHU, 
Proceedings of ICML, 2342-2350, 2015).
Also, worth noting is a more recent approach, called Gated 
Recurrent Unit (GRU), which was proposed in 2014. GRUs 
have a simpler architecture than LSTMs; therefore, they are 
FRPSXWDWLRQDOO\�PRUH�HIÀFLHQW�ZKLOH�WKHLU�SHUIRUPDQFH�LQ�VRPH�
tasks, such as polyphonic music modeling, is comparable to 
LSTMs. If you are interested in learning more about these modern 
RNN architectures, refer to the paper, Empirical Evaluation of Gated 
5HFXUUHQW�1HXUDO�1HWZRUNV�RQ�6HTXHQFH�0RGHOLQJ by Junyoung Chung 
and others 2014 (https://arxiv.org/pdf/1412.3555v1.pdf).

Implementing a multilayer RNN for 
sequence modeling in TensorFlow
Now that we introduced the underlying theory behind RNNs, we are ready to move 
on to the more practical part to implement RNNs in TensorFlow. During the rest of 
this chapter, we will apply RNNs to two common problems tasks:

1. Sentiment analysis
2. Language modeling
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Implementing a Multilayer RNN for 
Sequence Modeling in TensorFlow

21

•Sentiment Analysis
•Language Modeling
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Sentimental Analysis
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Preparing the Data (IMDb)

•A multilayer RNN with many-to-one 
architecture
– Encode the ‘review’ input data into numerical values

•Find unique words in the entire dataset (Counter)
•Create a dictionary to map each unique word into a 

unique integer number
– To confirm all sequences have the same length, define a 

hyperparameter sequence_length, and fill the index of 
words in each sequence from the right-hand side of the 
matrix (others fill with zeros)

23
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Preparing the Data
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Read in the IMDb Data
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Count the Unique Word in the Dataset
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Create the Word to Integer Mapping
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Prepare Fixed-Length Sequences
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Embedding (Input Feature Encoding)

•The word indices to be converted into input 
features
– One-hot encoding (too many features may suffer from 

curse of dimensionality, very sparse)
– Embedding: use finite-sized vectors to represent an 

infinite number of real numbers
•A reduction in the dimensionality of the feature space to 

decrease the effect of the curse of dimensionality 
•The extraction of salient features since the embedding 

layer in a neural network is trainable

29
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Embedding

30
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Create an Embedded Layer

•Create an embedded layer with input layer tf_x
– Create a matrix of size [n_words x n_embedding_size] as a 

tensor variable (embedding) and initialize its elements 
randomly with floats between [-1,1]

– Use tf.nn.embedding_lookup function to look up the row in 
the embedded matrix associated with each element of tf_x 

31
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Now let's see how we can create an embedding layer in practice. If we have tf_x 
as the input layer where the corresponding vocabulary indices are fed with type 
tf.int32, then creating an embedding layer can be done in two steps, as follows:

1. We start by creating a matrix of size [ ]_n words embedding_size×  as a tensor 
variable, which we call embedding, and we initialize its elements randomly 
ZLWK�ÁRDWV�EHWZHHQ�>�����@�
embedding = tf.Variable(
                tf.random_uniform(
                    shape=(n_words, embedding_size),
                    minval=-1, maxval=1)
            )

2. Then, we use the tf.nn.embedding_lookup function to look up the row in 
the embedding matrix associated with each element of tf_x:
embed_x = tf.nn.embedding_lookup(embedding, tf_x)

As you may have observed in these steps, to create an embedding layer, 
the tf.nn.embedding_lookup function requires two arguments: the 
embedding tensor and the lookup IDs.
The tf.nn.embedding_lookup function has a few optional arguments 
that allow you to tweak the behavior of the embedding layer, such as 
applying L2 normalization. Feel free to read more about this function 
IURP�LWV�RIÀFLDO�GRFXPHQWDWLRQ�DW�https://www.tensorflow.org/
api_docs/python/tf/nn/embedding_lookup.

Building an RNN model
Now we're ready to build an RNN model. We'll implement a SentimentRNN class 
that has the following methods:

�� A constructor to set all the model parameters and then create a computation 
graph and call the self.build method to build the multilayer RNN model.

�� A build method that declares three placeholders for input data, input 
labels, and the keep-probability for the dropout configuration of the hidden 
layer. After declaring these, it creates an embedding layer, and builds the 
multilayer RNN using the embedded representation as input.

�� A train method that creates a TensorFlow session for launching the 
computation graph, iterates through the mini-batches of data, and runs for a 
fixed number of epochs, to minimize the cost function defined in the graph. 
This method also saves the model after 10 epochs for checkpointing.

Modeling Sequential Data Using Recurrent Neural Networks

[ 558 ]

Now let's see how we can create an embedding layer in practice. If we have tf_x 
as the input layer where the corresponding vocabulary indices are fed with type 
tf.int32, then creating an embedding layer can be done in two steps, as follows:

1. We start by creating a matrix of size [ ]_n words embedding_size×  as a tensor 
variable, which we call embedding, and we initialize its elements randomly 
ZLWK�ÁRDWV�EHWZHHQ�>�����@�
embedding = tf.Variable(
                tf.random_uniform(
                    shape=(n_words, embedding_size),
                    minval=-1, maxval=1)
            )

2. Then, we use the tf.nn.embedding_lookup function to look up the row in 
the embedding matrix associated with each element of tf_x:
embed_x = tf.nn.embedding_lookup(embedding, tf_x)

As you may have observed in these steps, to create an embedding layer, 
the tf.nn.embedding_lookup function requires two arguments: the 
embedding tensor and the lookup IDs.
The tf.nn.embedding_lookup function has a few optional arguments 
that allow you to tweak the behavior of the embedding layer, such as 
applying L2 normalization. Feel free to read more about this function 
IURP�LWV�RIÀFLDO�GRFXPHQWDWLRQ�DW�https://www.tensorflow.org/
api_docs/python/tf/nn/embedding_lookup.

Building an RNN model
Now we're ready to build an RNN model. We'll implement a SentimentRNN class 
that has the following methods:

�� A constructor to set all the model parameters and then create a computation 
graph and call the self.build method to build the multilayer RNN model.

�� A build method that declares three placeholders for input data, input 
labels, and the keep-probability for the dropout configuration of the hidden 
layer. After declaring these, it creates an embedding layer, and builds the 
multilayer RNN using the embedded representation as input.

�� A train method that creates a TensorFlow session for launching the 
computation graph, iterates through the mini-batches of data, and runs for a 
fixed number of epochs, to minimize the cost function defined in the graph. 
This method also saves the model after 10 epochs for checkpointing.
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Building an RNN Model
•SentimentRNN class

– A constructor to set all the model parameters, create a 
computation graph and call the self.build to build the 
multilayer RNN

– build: Declare 3 placeholders (input data, input labels, and 
the keep-probability for the dropout configuration of the 
hidden layer), create an embedded layer and build the RNN 
using the embedded representation as input.

– train: Create a TensorFlow session and save the model after 
10 epochs for checkpointing

– predict: Create a new session, restore the last checkpoint and 
carry out the predictions for the test data
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SentimentRNN: the constructor
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SentimentRNN: build() (1/4)
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SentimentRNN: build() (2/4)
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1. create RNN cells
2. Apply the dropout to the RNN cells

3. Make a list of such cells

#Create RNN using the RNN cells and their states
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SentimentRNN: build() (3/4)
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SentimentRNN: build() (4/4)
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SentimentRNN: train()
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SentimentRNN: predict()
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Instantiate the SentimentRNN Class
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Training the SentimentRNN Model
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Test and Optimizing the Model
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Character-Level Language Modeling
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Character-Level Language Modeling

44



Hsi-Pin Ma

Preparing the Data
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Reshape the Data into 
Batches of Sequences (1/3)
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Reshape the Data into 
Batches of Sequences (2/3)
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Reshape the Data into 
Batches of Sequences (3/3)
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•Test
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Split x and y into Mini-Batches (1/2)
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Split x and y into Mini-Batches (2/2)
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Building a Character-Level RNN Model
•CharRNN to predict the next character

– A constructor: To set the parameters, create the computation 
graph, call build method  to build RNN

– build: Define the placeholders for feeding the data, construct 
RNN using LSTM cells, define the output of the network, 
cost function, optimizer

– train: To iterate through mini-batches and train the network 
for the specified number of epochs

– sample: To start from a given string, calculate the 
probabilities for the next character, and choose the character 
accordingly. This process will be repeated, and the sampled 
characters will be concatenated together to form a string. 
Once the size of this string reaches specified length, it will 
return the string 
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CharRNN: The constructor
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CharRNN: build() (1/4)
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Modeling Sequential Data Using Recurrent Neural Networks

[�����]

In addition to the sampling argument, we've introduced a new argument called 
grad_clip, which is used for clipping the gradients to avoid the exploding gradient 
problem that we mentioned earlier.

Then, similar to the previous implementation, the constructor creates a computation 
graph, sets the graph-level random seed for consistent output, and builds the graph 
by calling the build method.

The build method
The next method of the CharRNN class is build, which is very similar to the build 
method in the Project one – performing sentiment analysis of IMDb movie reviews using 
PXOWLOD\HU�511V section, except for some minor differences. The build�PHWKRG�ÀUVW�
GHÀQHV�WZR�ORFDO�YDULDEOHV��batch_size and num_steps, based on the mode, as 
follows:

1
:

1
.

:
.

batch_size
in sampling mode

num_steps
batch_size self batch_size

in training mode
num_steps self num_steps

=
 =

=
 =

Recall that in the sentiment analysis implementation, we used an embedding layer to 
create a salient representation for the unique words in the dataset. In contrast, here 
we are using the one-hot encoding scheme for both x and y with depth=num_classes, 
where num_classes is in fact the total number of characters in the text corpus.

Building a multilayer RNN component of the model is exactly the same as in 
our sentiment analysis implementation, using the tf.nn.dynamic_rnn function. 
However, outputs from the tf.nn.dynamic_rnn function is a three-dimensional 
tensor with this shape—batch_size, num_steps, lstm_size. Next, this tensor 
will be reshaped into a two-dimensional tensor with the batch_size*num_steps, 
lstm_size shape, which is passed to the tf.layers.dense function to make a fully 
connected layer and obtain logits (net inputs). Finally, the probabilities for the next 
EDWFK�RI�FKDUDFWHUV�DUH�REWDLQHG�DQG�WKH�FRVW�IXQFWLRQ�LV�GHÀQHG��,Q�DGGLWLRQ��KHUH��
we apply gradient clipping using the tf.clip_by_global_norm function to avoid 
the exploding gradient problem.
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CharRNN: build() (2/4)
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CharRNN: build() (3/4)
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CharRNN: build() (4/4)
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CharRNN: train() (1/3)
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CharRNN: train() (2/3)
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CharRNN: train() (3/3)
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CharRNN: sample() (1/2)
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CharRNN: sample() (2/2)
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get_top_char()
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Creating and Training the CharRNN Model
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CharRNN Model in Sampling Mode
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