
Modeling Sequential Data Using
Recurrent Neural Networks

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline
•Introducing Sequential Data
•Recurrent Neural Networks for Modeling

Sequences
•Implementing a Multilayer RNN for Sequence

Modeling in TensorFlow

2

Hsi-Pin Ma

Introducing Sequential Data

3

Hsi-Pin Ma

Modeling Sequential Data
•Elements in a sequence appear in a certain

order, and are not independent of each other

•RNN can remember past information and
process new events accordingly

4

Chapter 16

[539]

Representing sequences
We've established that sequences are a nonindependent order in our input data; we
QH[W�QHHG�WR�ÀQG�ZD\V�WR�OHYHUDJH�WKLV�YDOXDEOH�LQIRUPDWLRQ�LQ�RXU�PDFKLQH�OHDUQLQJ�
model.

Throughout this chapter, we will represent sequences as () () ()()1 2, , , Tx x xK . The
superscript indices indicate the order of the instances, and the length of the sequence
is T. For a sensible example of sequences, consider time-series data, where each
sample point ()tx belongs to a particular time t.

7KH�IROORZLQJ�ÀJXUH�VKRZV�DQ�H[DPSOH�RI�WLPH�VHULHV�GDWD�ZKHUH�ERWK�x's and y's
naturally follow the order according to their time axis; therefore, both x's and y's
are sequences:

The standard neural network models that we have covered so far, such as MLPs and
CNNs, are not capable of handling the order of input samples. Intuitively, one can
say that such models do not have a memory of the past seen samples. For instance,
the samples are passed through the feedforward and backpropagation steps, and the
weights are updated independent of the order in which the sample is processed.

RNNs, by contrast, are designed for modeling sequences and are capable of
remembering past information and processing new events accordingly.

Hsi-Pin Ma

Different Categories of Sequence Modeling
•Application examples

– language translation, image captioning, text generation

•If either input or output is a sequence, three
different categories
– Many-to-one: input:sequence, output: a fixed size vector.

•Sentiment analysis: input:text-based, output: class label
– One-to-many: input: standard format, output: sequence

•Image captioning: input: image, output: an English phrase
– Many-to-many: both input/output are sequences

•Synchronized many-to-many: Video classification
•Delayed many-to-many: Language translation

5

Hsi-Pin Ma

Different Categories of Sequence Modeling

6

Hsi-Pin Ma

Recurrent Neural Networks for
Modeling Sequences

7

Hsi-Pin Ma

Comparison between
Standard Feedforward NN and RNN

8

recurrent edge

Hsi-Pin Ma

Unrolled RNNs

9

Hsi-Pin Ma

Computing Activations in RNNs

10

Hsi-Pin Ma

Computing Activations in RNNs

11

usually the activation function is tanh

Hsi-Pin Ma

Training RNNs Using BPTT

•Backpropagation through time
– Overall loss

– Derivation of the gradient

– is computed as a multiplication of adjacent time
steps

12

Modeling Sequential Data Using Recurrent Neural Networks

[�����]

Training RNNs using BPTT
The learning algorithm for RNNs was introduced in 1990s
%DFNSURSDJDWLRQ�7KURXJK�7LPH��:KDW�,W�'RHV�DQG�+RZ�WR�'R�,W (Paul Werbos,
Proceedings of IEEE, 78(10):1550-1560, 1990).
The derivation of the gradients might be a bit complicated, but the basic
idea is that the overall loss L is the sum of all the loss functions at times

1t = to t T= :

()

1

T
t

t
L L

=

=∑

Since the loss at time 1: t is dependent on the hidden units at all
previous time steps 1: t , the gradient will be computed as follows:

() ()

()

()

()

()

()

()

1

t t t t kt

t t k
khh hh

L L
=

 ∂ ∂ ∂ ∂ ∂= × × × ∂ ∂∂ ∂ ∂
∑y h h

W Wy h h

Here,
()

()

t

k
∂
∂

h
h

 is computed as a multiplication of adjacent time steps:

()

()

()

()1
1

t it

k i
i k

−
= +

∂ ∂=
∂ ∂∏h h
h h

The challenges of learning long-range
interactions
Backpropagation�WKURXJK�WLPH��RU�%377��ZKLFK�ZH�EULHÁ\�PHQWLRQHG�LQ�WKH�SUHYLRXV�
information box, introduces some new challenges.

Because of the multiplicative factor
()

()

t

k
∂
∂

h
h

 in the computing gradients of a loss

function, the so-called vanishing or exploding gradient problem arises. This
SUREOHP�LV�H[SODLQHG�WKURXJK�WKH�H[DPSOHV�LQ�WKH�IROORZLQJ�ÀJXUH��ZKLFK�VKRZV�DQ�
RNN with only one hidden unit for simplicity:

Modeling Sequential Data Using Recurrent Neural Networks

[�����]

Training RNNs using BPTT
The learning algorithm for RNNs was introduced in 1990s
%DFNSURSDJDWLRQ�7KURXJK�7LPH��:KDW�,W�'RHV�DQG�+RZ�WR�'R�,W (Paul Werbos,
Proceedings of IEEE, 78(10):1550-1560, 1990).
The derivation of the gradients might be a bit complicated, but the basic
idea is that the overall loss L is the sum of all the loss functions at times

1t = to t T= :

()

1

T
t

t
L L

=

=∑

Since the loss at time 1: t is dependent on the hidden units at all
previous time steps 1: t , the gradient will be computed as follows:

() ()

()

()

()

()

()

()

1

t t t t kt

t t k
khh hh

L L
=

 ∂ ∂ ∂ ∂ ∂= × × × ∂ ∂∂ ∂ ∂
∑y h h

W Wy h h

Here,
()

()

t

k
∂
∂

h
h

 is computed as a multiplication of adjacent time steps:

()

()

()

()1
1

t it

k i
i k

−
= +

∂ ∂=
∂ ∂∏h h
h h

The challenges of learning long-range
interactions
Backpropagation�WKURXJK�WLPH��RU�%377��ZKLFK�ZH�EULHÁ\�PHQWLRQHG�LQ�WKH�SUHYLRXV�
information box, introduces some new challenges.

Because of the multiplicative factor
()

()

t

k
∂
∂

h
h

 in the computing gradients of a loss

function, the so-called vanishing or exploding gradient problem arises. This
SUREOHP�LV�H[SODLQHG�WKURXJK�WKH�H[DPSOHV�LQ�WKH�IROORZLQJ�ÀJXUH��ZKLFK�VKRZV�DQ�
RNN with only one hidden unit for simplicity:

Modeling Sequential Data Using Recurrent Neural Networks

[�����]

Training RNNs using BPTT
The learning algorithm for RNNs was introduced in 1990s
%DFNSURSDJDWLRQ�7KURXJK�7LPH��:KDW�,W�'RHV�DQG�+RZ�WR�'R�,W (Paul Werbos,
Proceedings of IEEE, 78(10):1550-1560, 1990).
The derivation of the gradients might be a bit complicated, but the basic
idea is that the overall loss L is the sum of all the loss functions at times

1t = to t T= :

()

1

T
t

t
L L

=

=∑

Since the loss at time 1: t is dependent on the hidden units at all
previous time steps 1: t , the gradient will be computed as follows:

() ()

()

()

()

()

()

()

1

t t t t kt

t t k
khh hh

L L
=

 ∂ ∂ ∂ ∂ ∂= × × × ∂ ∂∂ ∂ ∂
∑y h h

W Wy h h

Here,
()

()

t

k
∂
∂

h
h

 is computed as a multiplication of adjacent time steps:

()

()

()

()1
1

t it

k i
i k

−
= +

∂ ∂=
∂ ∂∏h h
h h

The challenges of learning long-range
interactions
Backpropagation�WKURXJK�WLPH��RU�%377��ZKLFK�ZH�EULHÁ\�PHQWLRQHG�LQ�WKH�SUHYLRXV�
information box, introduces some new challenges.

Because of the multiplicative factor
()

()

t

k
∂
∂

h
h

 in the computing gradients of a loss

function, the so-called vanishing or exploding gradient problem arises. This
SUREOHP�LV�H[SODLQHG�WKURXJK�WKH�H[DPSOHV�LQ�WKH�IROORZLQJ�ÀJXUH��ZKLFK�VKRZV�DQ�
RNN with only one hidden unit for simplicity:

Modeling Sequential Data Using Recurrent Neural Networks

[�����]

Training RNNs using BPTT
The learning algorithm for RNNs was introduced in 1990s
%DFNSURSDJDWLRQ�7KURXJK�7LPH��:KDW�,W�'RHV�DQG�+RZ�WR�'R�,W (Paul Werbos,
Proceedings of IEEE, 78(10):1550-1560, 1990).
The derivation of the gradients might be a bit complicated, but the basic
idea is that the overall loss L is the sum of all the loss functions at times

1t = to t T= :

()

1

T
t

t
L L

=

=∑

Since the loss at time 1: t is dependent on the hidden units at all
previous time steps 1: t , the gradient will be computed as follows:

() ()

()

()

()

()

()

()

1

t t t t kt

t t k
khh hh

L L
=

 ∂ ∂ ∂ ∂ ∂= × × × ∂ ∂∂ ∂ ∂
∑y h h

W Wy h h

Here,
()

()

t

k
∂
∂

h
h

 is computed as a multiplication of adjacent time steps:

()

()

()

()1
1

t it

k i
i k

−
= +

∂ ∂=
∂ ∂∏h h
h h

The challenges of learning long-range
interactions
Backpropagation�WKURXJK�WLPH��RU�%377��ZKLFK�ZH�EULHÁ\�PHQWLRQHG�LQ�WKH�SUHYLRXV�
information box, introduces some new challenges.

Because of the multiplicative factor
()

()

t

k
∂
∂

h
h

 in the computing gradients of a loss

function, the so-called vanishing or exploding gradient problem arises. This
SUREOHP�LV�H[SODLQHG�WKURXJK�WKH�H[DPSOHV�LQ�WKH�IROORZLQJ�ÀJXUH��ZKLFK�VKRZV�DQ�
RNN with only one hidden unit for simplicity:

Hsi-Pin Ma

•Vanishing or exploding gradient when t-k is large

•Two practical solutions
– Truncated back propagation through time (TBPTT)
– Long short-term memory (LSTM)

Gradient Problems

13

Hsi-Pin Ma

Long Short-Term Memory (LSTM)

•Core concept
– cell state + three gates (forget, input, output)
– cell state: memory of the network
– The forget gate decides what is relevant to keep from

prior steps
– The input gate decides what information is relevant to

add from the current step
– The output gate determines what the next hidden state

should be

14

Hsi-Pin Ma

LSTM Units

15

forget gate input gate output gateinput node

memory cell

current cell state
forget some information
from cell state

information to add
to cell state

previous
cell state

Hsi-Pin Ma

Sigmoid

16

•Sigmoid activation can squash values between 0
and 1 to help to update or forget data
– Data multiplied by 0 is 0: to be forgotten
– Data multiplied by 1 is the same value: to be kept

•The network can learn which data is not
important so can be forgotten or which data is
important to keep

Hsi-Pin Ma

Forget Gate
•The gate decides what information should be

forgotten or kept

17

Chapter 16

[549]

Four boxes are indicated with an activation function, either the sigmoid function
(σ) or hyperbolic tangent (tanh), and a set of weights; these boxes apply linear
combination by performing matrix-vector multiplications on their input. These units
of computation with sigmoid activation functions, whose output units are passed
through ! , are called gates.

In an LSTM cell, there are three different types of gates, known as the forget gate, the
input gate, and the output gate:

�� The forget gate (tf) allows the memory cell to reset the cell state without
growing indefinitely. In fact, the forget gate decides which information
is allowed to go through and which information to suppress. Now, tf is
computed as follows:

() ()()1t t
t xf hf fσ −= + +f W x W h b

Note that the forget gate was not part of the original LSTM cell; it was added
a few years later to improve the original model (/HDUQLQJ�WR�)RUJHW��&RQWLQXDO�
Prediction with LSTM,)��*HUV, J. Schmidhuber, and)��&XPPLQV, 1HXUDO�
Computation 12, 2451-2471, 2000).

�� The input gate (ti) and input node (tg) are responsible for updating the cell
state. They are computed as follows:

() ()()1t t
t xi hi iσ −= + +i W x W h b

() ()()1tanh t t
t xg hg g

−= + +g W x W h b

The cell state at time t is computed as follows:

() ()() ()1t t
t t t

−= ⊕! !C C f i g

�� The output gate (to) decides how to update the values of hidden units:

() ()()1t t
t xo ho oσ −= + +o W x W h b

Hsi-Pin Ma

Input Gate
•The input gate updates the cell state

18

Chapter 16

[549]

Four boxes are indicated with an activation function, either the sigmoid function
(σ) or hyperbolic tangent (tanh), and a set of weights; these boxes apply linear
combination by performing matrix-vector multiplications on their input. These units
of computation with sigmoid activation functions, whose output units are passed
through ! , are called gates.

In an LSTM cell, there are three different types of gates, known as the forget gate, the
input gate, and the output gate:

�� The forget gate (tf) allows the memory cell to reset the cell state without
growing indefinitely. In fact, the forget gate decides which information
is allowed to go through and which information to suppress. Now, tf is
computed as follows:

() ()()1t t
t xf hf fσ −= + +f W x W h b

Note that the forget gate was not part of the original LSTM cell; it was added
a few years later to improve the original model (/HDUQLQJ�WR�)RUJHW��&RQWLQXDO�
Prediction with LSTM,)��*HUV, J. Schmidhuber, and)��&XPPLQV, 1HXUDO�
Computation 12, 2451-2471, 2000).

�� The input gate (ti) and input node (tg) are responsible for updating the cell
state. They are computed as follows:

() ()()1t t
t xi hi iσ −= + +i W x W h b

() ()()1tanh t t
t xg hg g

−= + +g W x W h b

The cell state at time t is computed as follows:

() ()() ()1t t
t t t

−= ⊕! !C C f i g

�� The output gate (to) decides how to update the values of hidden units:

() ()()1t t
t xo ho oσ −= + +o W x W h b

candidate values to be added to the state

decide which values to be update

Hsi-Pin Ma

Cell State

19

Chapter 16

[549]

Four boxes are indicated with an activation function, either the sigmoid function
(σ) or hyperbolic tangent (tanh), and a set of weights; these boxes apply linear
combination by performing matrix-vector multiplications on their input. These units
of computation with sigmoid activation functions, whose output units are passed
through ! , are called gates.

In an LSTM cell, there are three different types of gates, known as the forget gate, the
input gate, and the output gate:

�� The forget gate (tf) allows the memory cell to reset the cell state without
growing indefinitely. In fact, the forget gate decides which information
is allowed to go through and which information to suppress. Now, tf is
computed as follows:

() ()()1t t
t xf hf fσ −= + +f W x W h b

Note that the forget gate was not part of the original LSTM cell; it was added
a few years later to improve the original model (/HDUQLQJ�WR�)RUJHW��&RQWLQXDO�
Prediction with LSTM,)��*HUV, J. Schmidhuber, and)��&XPPLQV, 1HXUDO�
Computation 12, 2451-2471, 2000).

�� The input gate (ti) and input node (tg) are responsible for updating the cell
state. They are computed as follows:

() ()()1t t
t xi hi iσ −= + +i W x W h b

() ()()1tanh t t
t xg hg g

−= + +g W x W h b

The cell state at time t is computed as follows:

() ()() ()1t t
t t t

−= ⊕! !C C f i g

�� The output gate (to) decides how to update the values of hidden units:

() ()()1t t
t xo ho oσ −= + +o W x W h b

Hsi-Pin Ma

Output Gate
•The gate decides what the next hidden state

should be

20

Chapter 16

[549]

Four boxes are indicated with an activation function, either the sigmoid function
(σ) or hyperbolic tangent (tanh), and a set of weights; these boxes apply linear
combination by performing matrix-vector multiplications on their input. These units
of computation with sigmoid activation functions, whose output units are passed
through ! , are called gates.

In an LSTM cell, there are three different types of gates, known as the forget gate, the
input gate, and the output gate:

�� The forget gate (tf) allows the memory cell to reset the cell state without
growing indefinitely. In fact, the forget gate decides which information
is allowed to go through and which information to suppress. Now, tf is
computed as follows:

() ()()1t t
t xf hf fσ −= + +f W x W h b

Note that the forget gate was not part of the original LSTM cell; it was added
a few years later to improve the original model (/HDUQLQJ�WR�)RUJHW��&RQWLQXDO�
Prediction with LSTM,)��*HUV, J. Schmidhuber, and)��&XPPLQV, 1HXUDO�
Computation 12, 2451-2471, 2000).

�� The input gate (ti) and input node (tg) are responsible for updating the cell
state. They are computed as follows:

() ()()1t t
t xi hi iσ −= + +i W x W h b

() ()()1tanh t t
t xg hg g

−= + +g W x W h b

The cell state at time t is computed as follows:

() ()() ()1t t
t t t

−= ⊕! !C C f i g

�� The output gate (to) decides how to update the values of hidden units:

() ()()1t t
t xo ho oσ −= + +o W x W h b

Modeling Sequential Data Using Recurrent Neural Networks

[550]

Given this, the hidden units at the current time step are computed as follows:

() ()()tanht t
t= !h o C

The structure of an LSTM cell and its underlying computations might seem too
complex. However, the good news is that TensorFlow has already implemented
HYHU\WKLQJ�LQ�ZUDSSHU�IXQFWLRQV�WKDW�DOORZV�XV�WR�GHÀQH�RXU�/670�FHOOV�HDVLO\��
We'll see the real application of LSTMs in action when we use TensorFlow later in
this chapter.

We have introduced LSTMs in this section, which provide a basic
approach for modeling long-range dependencies in sequences.
<HW��LW�LV�LPSRUWDQW�WR�QRWH�WKDW�WKHUH�DUH�PDQ\�YDULDWLRQV�RI�/670V�
described in literature ($Q�(PSLULFDO�([SORUDWLRQ�RI�5HFXUUHQW�1HWZRUN�
Architectures, Rafal Jozefowicz, Wojciech Zaremba, and ,O\D�6XWVNHYHU,
Proceedings of ICML, 2342-2350, 2015).
Also, worth noting is a more recent approach, called Gated
Recurrent Unit (GRU), which was proposed in 2014. GRUs
have a simpler architecture than LSTMs; therefore, they are
FRPSXWDWLRQDOO\�PRUH�HIÀFLHQW�ZKLOH�WKHLU�SHUIRUPDQFH�LQ�VRPH�
tasks, such as polyphonic music modeling, is comparable to
LSTMs. If you are interested in learning more about these modern
RNN architectures, refer to the paper, Empirical Evaluation of Gated
5HFXUUHQW�1HXUDO�1HWZRUNV�RQ�6HTXHQFH�0RGHOLQJ by Junyoung Chung
and others 2014 (https://arxiv.org/pdf/1412.3555v1.pdf).

Implementing a multilayer RNN for
sequence modeling in TensorFlow
Now that we introduced the underlying theory behind RNNs, we are ready to move
on to the more practical part to implement RNNs in TensorFlow. During the rest of
this chapter, we will apply RNNs to two common problems tasks:

1. Sentiment analysis
2. Language modeling

Hsi-Pin Ma

Implementing a Multilayer RNN for
Sequence Modeling in TensorFlow

21

•Sentiment Analysis
•Language Modeling

Hsi-Pin Ma

Sentimental Analysis

22

Hsi-Pin Ma

Preparing the Data (IMDb)

•A multilayer RNN with many-to-one
architecture
– Encode the ‘review’ input data into numerical values

•Find unique words in the entire dataset (Counter)
•Create a dictionary to map each unique word into a

unique integer number
– To confirm all sequences have the same length, define a

hyperparameter sequence_length, and fill the index of
words in each sequence from the right-hand side of the
matrix (others fill with zeros)

23

Hsi-Pin Ma

Preparing the Data

24

Hsi-Pin Ma

Read in the IMDb Data

25

Hsi-Pin Ma

Count the Unique Word in the Dataset

26

Hsi-Pin Ma

Create the Word to Integer Mapping

27

Hsi-Pin Ma

Prepare Fixed-Length Sequences

28

Hsi-Pin Ma

Embedding (Input Feature Encoding)

•The word indices to be converted into input
features
– One-hot encoding (too many features may suffer from

curse of dimensionality, very sparse)
– Embedding: use finite-sized vectors to represent an

infinite number of real numbers
•A reduction in the dimensionality of the feature space to

decrease the effect of the curse of dimensionality
•The extraction of salient features since the embedding

layer in a neural network is trainable

29

Hsi-Pin Ma

Embedding

30

Hsi-Pin Ma

Create an Embedded Layer

•Create an embedded layer with input layer tf_x
– Create a matrix of size [n_words x n_embedding_size] as a

tensor variable (embedding) and initialize its elements
randomly with floats between [-1,1]

– Use tf.nn.embedding_lookup function to look up the row in
the embedded matrix associated with each element of tf_x

31

Modeling Sequential Data Using Recurrent Neural Networks

[558]

Now let's see how we can create an embedding layer in practice. If we have tf_x
as the input layer where the corresponding vocabulary indices are fed with type
tf.int32, then creating an embedding layer can be done in two steps, as follows:

1. We start by creating a matrix of size []_n words embedding_size× as a tensor
variable, which we call embedding, and we initialize its elements randomly
ZLWK�ÁRDWV�EHWZHHQ�>�����@�
embedding = tf.Variable(
 tf.random_uniform(
 shape=(n_words, embedding_size),
 minval=-1, maxval=1)
)

2. Then, we use the tf.nn.embedding_lookup function to look up the row in
the embedding matrix associated with each element of tf_x:
embed_x = tf.nn.embedding_lookup(embedding, tf_x)

As you may have observed in these steps, to create an embedding layer,
the tf.nn.embedding_lookup function requires two arguments: the
embedding tensor and the lookup IDs.
The tf.nn.embedding_lookup function has a few optional arguments
that allow you to tweak the behavior of the embedding layer, such as
applying L2 normalization. Feel free to read more about this function
IURP�LWV�RIÀFLDO�GRFXPHQWDWLRQ�DW�https://www.tensorflow.org/
api_docs/python/tf/nn/embedding_lookup.

Building an RNN model
Now we're ready to build an RNN model. We'll implement a SentimentRNN class
that has the following methods:

�� A constructor to set all the model parameters and then create a computation
graph and call the self.build method to build the multilayer RNN model.

�� A build method that declares three placeholders for input data, input
labels, and the keep-probability for the dropout configuration of the hidden
layer. After declaring these, it creates an embedding layer, and builds the
multilayer RNN using the embedded representation as input.

�� A train method that creates a TensorFlow session for launching the
computation graph, iterates through the mini-batches of data, and runs for a
fixed number of epochs, to minimize the cost function defined in the graph.
This method also saves the model after 10 epochs for checkpointing.

Modeling Sequential Data Using Recurrent Neural Networks

[558]

Now let's see how we can create an embedding layer in practice. If we have tf_x
as the input layer where the corresponding vocabulary indices are fed with type
tf.int32, then creating an embedding layer can be done in two steps, as follows:

1. We start by creating a matrix of size []_n words embedding_size× as a tensor
variable, which we call embedding, and we initialize its elements randomly
ZLWK�ÁRDWV�EHWZHHQ�>�����@�
embedding = tf.Variable(
 tf.random_uniform(
 shape=(n_words, embedding_size),
 minval=-1, maxval=1)
)

2. Then, we use the tf.nn.embedding_lookup function to look up the row in
the embedding matrix associated with each element of tf_x:
embed_x = tf.nn.embedding_lookup(embedding, tf_x)

As you may have observed in these steps, to create an embedding layer,
the tf.nn.embedding_lookup function requires two arguments: the
embedding tensor and the lookup IDs.
The tf.nn.embedding_lookup function has a few optional arguments
that allow you to tweak the behavior of the embedding layer, such as
applying L2 normalization. Feel free to read more about this function
IURP�LWV�RIÀFLDO�GRFXPHQWDWLRQ�DW�https://www.tensorflow.org/
api_docs/python/tf/nn/embedding_lookup.

Building an RNN model
Now we're ready to build an RNN model. We'll implement a SentimentRNN class
that has the following methods:

�� A constructor to set all the model parameters and then create a computation
graph and call the self.build method to build the multilayer RNN model.

�� A build method that declares three placeholders for input data, input
labels, and the keep-probability for the dropout configuration of the hidden
layer. After declaring these, it creates an embedding layer, and builds the
multilayer RNN using the embedded representation as input.

�� A train method that creates a TensorFlow session for launching the
computation graph, iterates through the mini-batches of data, and runs for a
fixed number of epochs, to minimize the cost function defined in the graph.
This method also saves the model after 10 epochs for checkpointing.

Hsi-Pin Ma

Building an RNN Model
•SentimentRNN class

– A constructor to set all the model parameters, create a
computation graph and call the self.build to build the
multilayer RNN

– build: Declare 3 placeholders (input data, input labels, and
the keep-probability for the dropout configuration of the
hidden layer), create an embedded layer and build the RNN
using the embedded representation as input.

– train: Create a TensorFlow session and save the model after
10 epochs for checkpointing

– predict: Create a new session, restore the last checkpoint and
carry out the predictions for the test data

32

Hsi-Pin Ma

SentimentRNN: the constructor

33

Hsi-Pin Ma

SentimentRNN: build() (1/4)

34

Hsi-Pin Ma

SentimentRNN: build() (2/4)

35

1. create RNN cells
2. Apply the dropout to the RNN cells

3. Make a list of such cells

#Create RNN using the RNN cells and their states

Hsi-Pin Ma

SentimentRNN: build() (3/4)

36

Hsi-Pin Ma

SentimentRNN: build() (4/4)

37

Hsi-Pin Ma

SentimentRNN: train()

38

Hsi-Pin Ma

SentimentRNN: predict()

39

Hsi-Pin Ma

Instantiate the SentimentRNN Class

40

Hsi-Pin Ma

Training the SentimentRNN Model

41

Hsi-Pin Ma

Test and Optimizing the Model

42

Hsi-Pin Ma

Character-Level Language Modeling

43

Hsi-Pin Ma

Character-Level Language Modeling

44

Hsi-Pin Ma

Preparing the Data

45

Hsi-Pin Ma

Reshape the Data into
Batches of Sequences (1/3)

46

Hsi-Pin Ma

Reshape the Data into
Batches of Sequences (2/3)

47

Hsi-Pin Ma

Reshape the Data into
Batches of Sequences (3/3)

48

•Test

Hsi-Pin Ma

Split x and y into Mini-Batches (1/2)

49

Hsi-Pin Ma

Split x and y into Mini-Batches (2/2)

50

Hsi-Pin Ma

Building a Character-Level RNN Model
•CharRNN to predict the next character

– A constructor: To set the parameters, create the computation
graph, call build method to build RNN

– build: Define the placeholders for feeding the data, construct
RNN using LSTM cells, define the output of the network,
cost function, optimizer

– train: To iterate through mini-batches and train the network
for the specified number of epochs

– sample: To start from a given string, calculate the
probabilities for the next character, and choose the character
accordingly. This process will be repeated, and the sampled
characters will be concatenated together to form a string.
Once the size of this string reaches specified length, it will
return the string

51

Hsi-Pin Ma

CharRNN: The constructor

52

Hsi-Pin Ma

CharRNN: build() (1/4)

53

Modeling Sequential Data Using Recurrent Neural Networks

[�����]

In addition to the sampling argument, we've introduced a new argument called
grad_clip, which is used for clipping the gradients to avoid the exploding gradient
problem that we mentioned earlier.

Then, similar to the previous implementation, the constructor creates a computation
graph, sets the graph-level random seed for consistent output, and builds the graph
by calling the build method.

The build method
The next method of the CharRNN class is build, which is very similar to the build
method in the Project one – performing sentiment analysis of IMDb movie reviews using
PXOWLOD\HU�511V section, except for some minor differences. The build�PHWKRG�ÀUVW�
GHÀQHV�WZR�ORFDO�YDULDEOHV��batch_size and num_steps, based on the mode, as
follows:

1
:

1
.

:
.

batch_size
in sampling mode

num_steps
batch_size self batch_size

in training mode
num_steps self num_steps

=
 =

=
 =

Recall that in the sentiment analysis implementation, we used an embedding layer to
create a salient representation for the unique words in the dataset. In contrast, here
we are using the one-hot encoding scheme for both x and y with depth=num_classes,
where num_classes is in fact the total number of characters in the text corpus.

Building a multilayer RNN component of the model is exactly the same as in
our sentiment analysis implementation, using the tf.nn.dynamic_rnn function.
However, outputs from the tf.nn.dynamic_rnn function is a three-dimensional
tensor with this shape—batch_size, num_steps, lstm_size. Next, this tensor
will be reshaped into a two-dimensional tensor with the batch_size*num_steps,
lstm_size shape, which is passed to the tf.layers.dense function to make a fully
connected layer and obtain logits (net inputs). Finally, the probabilities for the next
EDWFK�RI�FKDUDFWHUV�DUH�REWDLQHG�DQG�WKH�FRVW�IXQFWLRQ�LV�GHÀQHG��,Q�DGGLWLRQ��KHUH��
we apply gradient clipping using the tf.clip_by_global_norm function to avoid
the exploding gradient problem.

Hsi-Pin Ma

CharRNN: build() (2/4)

54

Hsi-Pin Ma

CharRNN: build() (3/4)

55

Hsi-Pin Ma

CharRNN: build() (4/4)

56

Hsi-Pin Ma

CharRNN: train() (1/3)

57

Hsi-Pin Ma

CharRNN: train() (2/3)

58

Hsi-Pin Ma

CharRNN: train() (3/3)

59

Hsi-Pin Ma

CharRNN: sample() (1/2)

60

Hsi-Pin Ma

CharRNN: sample() (2/2)

61

Hsi-Pin Ma

get_top_char()

62

Hsi-Pin Ma

Creating and Training the CharRNN Model

63

Hsi-Pin Ma

CharRNN Model in Sampling Mode

64

