
Classifying Images with Deep
Convolutional Neural Networks

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline
•Building Blocks of Convolutional Neural

Networks
•Implementing Deep Convolutional Neural

Networks in TensorFlow

2

Hsi-Pin Ma

Features in ML Algorithms
•Salient (relevant) features is key to performance

of ML algorithms
– Traditional ML rely on features from domain experts or

computational feature extraction techniques
– Neural networks (NNs) can learn the features automatically

from raw data that most useful for a particular task
•Consider NN as a feature extraction engine, the early layers

extract low-level features

•Feature Hierarchy
– Multilayer NN construct a so-called feature hierarchy by

combining the low-level features in a layer-wise fashion to
form high-level features

3

Hsi-Pin Ma

Convolutional Neural Networks

•CNN computes feature maps from an input image
•CNNs perform very well for image-related tasks

– Sparse-connectivity: A single element in the feature map is
connected to only a small patch of pixels

– Parameter-sharing: The same weights are used for different
patches of the input image

•Components
– Convolutional layers (conv)
– Pooling layers (P)
– Full connected layers (FC)

4

Hsi-Pin Ma

Building Blocks of
Convolutional Neural Networks

5

Hsi-Pin Ma 6

Performing Discrete Convolutions
•A discrete convolution in one dimension

– x, w: one-dimensional vector, x: input/signal, w: filter/kernel

•Padding (zero-padding): p
•Example

– x, w: n, m elements
– s: stride, shift

Classifying Images with Deep Convolutional Neural Networks

[�����]

Please note that subsampling layers, commonly known as pooling layers, do not
have any learnable parameters; for instance, there are no weights or bias units in
pooling layers. However, both convolution and fully connected layers have such
weights and biases.

In the following sections, we'll study convolutional and pooling layers in more
detail and see how they work. To understand how convolution operations work,
let's start with a convolution in one dimension before working through the typical
two-dimensional cases as applications for two-dimensional images later.

Performing discrete convolutions
A discrete convolution (or simply convolution) is a fundamental operation in a
CNN. Therefore, it's important to understand how this operation works. In this
VHFWLRQ��ZH
OO�OHDUQ�WKH�PDWKHPDWLFDO�GHÀQLWLRQ�DQG�GLVFXVV�VRPH�RI�WKH�naive
algorithms to compute convolutions of two one-dimensional vectors or two two-
dimensional matrices.

Please note that this description is solely for understanding how a convolution
ZRUNV��,QGHHG��PXFK�PRUH�HIÀFLHQW�LPSOHPHQWDWLRQV�RI�FRQYROXWLRQDO�RSHUDWLRQV�
already exist in packages such as TensorFlow, as we will see later in this chapter.

Mathematical notation
In this chapter, we will use subscripts to denote the size of a

multidimensional array; for example,
1 2n n×A is a two-dimensional

array of size 1 2n n× . We use brackets []. to denote the indexing of a
multidimensional array. For example, [],i jA means the element at index
,i j of matrix A . Furthermore, note that we use a special symbol ∗ to

denote the convolution operation between two vectors or matrices, which
is not to be confused with the multiplication operator * in Python.

Performing a discrete convolution in one dimension
Let's start with�VRPH�EDVLF�GHÀQLWLRQV�DQG�notations we are going to use. A discrete
convolution for two one-dimensional vectors x and w is denoted by = ∗y x w , in
which vector x is our input (sometimes called signal) and w is called the ÀOWHU or
kernel��$�GLVFUHWH�FRQYROXWLRQ�LV�PDWKHPDWLFDOO\�GHÀQHG�DV�IROORZV�

[] [] []
k

i i k k
+∞

=−∞

= ∗ → = −∑y x w y x w

s=2

Hsi-Pin Ma

Effect of Zero-Padding in a Convolution

•Three commonly modes
– Full padding: p=m-1. Increase the dimension of the

output. Most used in signal processing applications to
minimize the boundary effect

– Same padding: Same size of input and output vectors.
Mostly used in CNNs to make a network architecture
design more convenient.

– Valid padding

•In practice, preserve the spatial size using same
padding for the convolutional layers and
decrease the spatial size via pooling layers

7

Hsi-Pin Ma

Effect of Zero-Padding in a Convolution

8

Hsi-Pin Ma

Determining the Size of the
Convolutional Output

9

Chapter 15

[501]

'HWHUPLQLQJ�WKH�VL]H�RI�WKH�FRQYROXWLRQ�RXWSXW
The output size of a convolution is determined by the total number of times that we
VKLIW�WKH�ÀOWHU�w along the input vector. Let's assume that the input vector has size
n�DQG�WKH�ÀOWHU�LV�RI�VL]H�m. Then, the size of the output resulting from ∗x w with
padding p and stride s is determined as follows:

2 1n p mo
s

+ − = +  

Here, .   �GHQRWHV�WKH�ÁRRU�RSHUDWLRQ�

7KH�ÁRRU�RSHUDWLRQ�UHWXUQV�WKH�ODUJHVW�LQWHJHU�WKDW�LV�HTXDO�RU�
smaller to the input, for example:

()1.77 1.77 1floor = =  

Consider the following two cases:

�� Compute the output size for an input vector of size 10 with a convolution
kernel of size 5, padding 2, and stride 1:

10 2 2 510, 5, 2, 1 1 10
1

n m p s o + × − − = = = → = + =  

(Note that in this case, the output size turns out to be the same as the input;
therefore, we conclude this as mode='same')

�� How can the output size change for the same input vector, but have a kernel
RI�VL]H����DQG�VWULGH��"

10 2 2 310, 3, 2, 2 1 6
2

n m p s o + × − = = = = → = + =  

If you are interested to learn more about the size of the convolution output,
we recommend the manuscript A guide to convolution arithmetic for deep learning,
9LQFHQW�'XPRXOLQ�DQG�)UDQFHVFR�9LVLQ, 2016, which is freely available at
https://arxiv.org/abs/1603.07285.

Hsi-Pin Ma

Performing a Discrete Convolution in 2D

10

Chapter 15

[503]

[] [] []
1 2

1 2 1 2, , ,
k k

i j i k j k k k
+∞ +∞

=−∞ =−∞

= ∗ → = − −∑ ∑Y X W Y X W

Notice that if you omit one of the dimensions, the remaining formula is exactly the
same as the one we used previously to compute the convolution in 1D. In fact, all the
SUHYLRXVO\�PHQWLRQHG�WHFKQLTXHV��VXFK�DV�]HUR�SDGGLQJ��URWDWLQJ�WKH�ÀOWHU�PDWUL[��
and the use of strides, are also applicable to 2D convolutions, provided that they are
extended to both the dimensions independently. The following example illustrates
the computation of a 2D convolution between an input matrix 3 3×X , a kernel matrix

3 3×W , padding ()1, 1p = , and stride ()2, 2s = ��$FFRUGLQJ�WR�WKH�VSHFLÀHG�SDGGLQJ��
one layer of zeros are padded on each side of the input matrix, which results in the
padded matrix 5 5

padded
×X , as follows:

:LWK�WKH�SUHFHGLQJ�ÀOWHU��WKH�URWDWHG�ÀOWHU�ZLOO�EH�

0.5 1 0.5
0.1 0.4 0.3
0.4 0.7 0.5

r
 
 =  
  

W

Chapter 15

[503]

[] [] []
1 2

1 2 1 2, , ,
k k

i j i k j k k k
+∞ +∞

=−∞ =−∞

= ∗ → = − −∑ ∑Y X W Y X W

Notice that if you omit one of the dimensions, the remaining formula is exactly the
same as the one we used previously to compute the convolution in 1D. In fact, all the
SUHYLRXVO\�PHQWLRQHG�WHFKQLTXHV��VXFK�DV�]HUR�SDGGLQJ��URWDWLQJ�WKH�ÀOWHU�PDWUL[��
and the use of strides, are also applicable to 2D convolutions, provided that they are
extended to both the dimensions independently. The following example illustrates
the computation of a 2D convolution between an input matrix 3 3×X , a kernel matrix

3 3×W , padding ()1, 1p = , and stride ()2, 2s = ��$FFRUGLQJ�WR�WKH�VSHFLÀHG�SDGGLQJ��
one layer of zeros are padded on each side of the input matrix, which results in the
padded matrix 5 5

padded
×X , as follows:

:LWK�WKH�SUHFHGLQJ�ÀOWHU��WKH�URWDWHG�ÀOWHU�ZLOO�EH�

0.5 1 0.5
0.1 0.4 0.3
0.4 0.7 0.5

r
 
 =  
  

W

Hsi-Pin Ma

2D Convolution

11

Hsi-Pin Ma

Subsampling

•Two forms of subsampling
– max-pooling
– mean-pooling (average-pooling)

•Advantages of pooling
– Introducing some sort of local invariance to generate

features that are more robust to noise in the input data
– Decrease the size of features and result in high

computation efficiency and also can reduce the degree of
overfitting

12

Hsi-Pin Ma

A Simple Walk Through

•To classify X’s and O’s from images

13
[Brandon, https://brohrer.github.io/how_convolutional_neural_networks_work.html]

Hsi-Pin Ma

Features

•CNN compare images piece by piece (features)

14

Hsi-Pin Ma

Convolution
•Define white 1, black -1

– For the convolution results
•close to 1: strong matches
•close to -1: strong matches

to the photographic
negative of the feature

•near 0: no match

15

A map of where in the image the feature is found

Hsi-Pin Ma

Pooling

•Take large images to shrink them down while
preserving the most important information in
them

16

Hsi-Pin Ma

Rectified Linear Units (ReLU)
•Whenever a negative

number occurs, swap
it out for a 0.

17

Hsi-Pin Ma

Deep Learning

18

Hsi-Pin Ma

Fully Connected Layers

19

Hsi-Pin Ma

Working with Multiple Input or
Color Channels

•Using multiple channels as input to a
convolutional layer requires to use a rank-3
tensor or a 3D array

20

Classifying Images with Deep Convolutional Neural Networks

[508]

Putting everything together to build a
CNN
So far, we've learned about the basic building blocks of convolutional neural
QHWZRUNV��7KH�FRQFHSWV�LOOXVWUDWHG�LQ�WKLV�FKDSWHU�DUH�QRW�UHDOO\�PRUH�GLIÀFXOW�
than traditional multilayer neural networks. Intuitively, we can say that the
most important operation in a traditional neural network is the matrix-vector
multiplication.

For instance, we use matrix-vector multiplications to pre-activations (or net input)
as in = +a Wx b . Here, x is a column vector representing pixels, and W is the weight
matrix connecting the pixel inputs to each hidden unit. In a convolutional neural
network, this operation is replaced by a convolution operation, as in b= ∗ +A W X ,
where X is a matrix representing the pixels in a height x width arrangement. In both
cases, the pre-activations are passed to an activation function to obtain the activation
of a hidden unit ()φ=H A , where φ is the activation function. Furthermore, recall that
subsampling is another building block of a convolutional neural network, which may
appear in the form of pooling, as we described in the previous section.

Working with multiple input or color channels
An input sample to a convolutional layer may contain one or more 2D arrays or
matrices with dimensions 1 2N N× (for example, the image height and width in
pixels). These 1 2N N× matrices are called channels. Therefore, using multiple
channels as input to a convolutional layer requires us to use a rank-3 tensor or a
three-dimensional array:

1 2 inN N C× ×X , where inC is the number of input channels.

For example, let's consider images as�LQSXW�WR�WKH�ÀUVW�OD\HU�RI�D�&11��,I�WKH�LPDJH�
is colored and uses the RGB color mode, then 3inC = (for the red, green, and blue
color channels in RGB). However, if the image is in grayscale, then we have 1inC =
because there is only one channel with the grayscale pixel intensity values.

Classifying Images with Deep Convolutional Neural Networks

[510]

The answer is very simple: we perform the convolution operation for each channel
separately and then add the results together using the matrix summation. The
convolution associated with each channel (c) has its own kernel matrix as []: ,: ,cW .
The total pre-activation result is computed in the following formula:

[] []

()

1 2 in

1 2 in

n n
1

Convm m

Given a sample : ,: , : ,: ,
a kernel matrix

pre - activation : b
and bias value Feature map :

inC
Conv

c
c

c

c c

b φ

′× ×
=

′× ×


= ∗

⇒  = +
 =

∑X

W
A Y

Y W X

H A

7KH�ÀQDO�UHVXOW��h, is called a feature map. Usually, a convolutional layer of a CNN
has more than one feature map. If we use multiple feature maps, the kernel tensor
becomes four-dimensional: in outwidth height C C× × × . Here, width x height is the kernel
size, inC is the number of input channels, and outC is the number of output feature
maps. So, now let's include the number of output feature maps in the preceding
formula and update it as follows:

[] [] []

[] [] []
[] []()

1 2

1 2

1
:,:, : ,: , , : ,: ,Given a sample

kernel matrix :,:, : ,: ,
: ,: , : ,: ,and bias vector

in

in

in out

out

C
Conv

n n C c
Conv

m m C C

C

k c k c

k k k
k kφ

× × =

× × ×


= ∗

⇒ = +
 =


∑Y W XX
W A Y b

H Ab

To conclude our discussion of computing convolutions in the context of neural
QHWZRUNV��OHW
V�ORRN�DW�WKH�H[DPSOH�LQ�WKH�IROORZLQJ�ÀJXUH�WKDW�VKRZV�D�FRQYROXWLRQDO�
layer, followed by a pooling layer.

In this example, there are three input channels. The kernel tensor is four-dimensional.
Each kernel matrix is denoted as 1 2m m× , and there are three of them, one for each
LQSXW�FKDQQHO��)XUWKHUPRUH��WKHUH�DUH�ÀYH�VXFK�NHUQHOV��DFFRXQWLQJ�IRU�ÀYH�RXWSXW�
feature maps. Finally, there is a pooling layer for subsampling the feature maps, as
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�

Classifying Images with Deep Convolutional Neural Networks

[510]

The answer is very simple: we perform the convolution operation for each channel
separately and then add the results together using the matrix summation. The
convolution associated with each channel (c) has its own kernel matrix as []: ,: ,cW .
The total pre-activation result is computed in the following formula:

[] []

()

1 2 in

1 2 in

n n
1

Convm m

Given a sample : ,: , : ,: ,
a kernel matrix

pre - activation : b
and bias value Feature map :

inC
Conv

c
c

c

c c

b φ

′× ×
=

′× ×


= ∗

⇒  = +
 =

∑X

W
A Y

Y W X

H A

7KH�ÀQDO�UHVXOW��h, is called a feature map. Usually, a convolutional layer of a CNN
has more than one feature map. If we use multiple feature maps, the kernel tensor
becomes four-dimensional: in outwidth height C C× × × . Here, width x height is the kernel
size, inC is the number of input channels, and outC is the number of output feature
maps. So, now let's include the number of output feature maps in the preceding
formula and update it as follows:

[] [] []

[] [] []
[] []()

1 2

1 2

1
:,:, : ,: , , : ,: ,Given a sample

kernel matrix :,:, : ,: ,
: ,: , : ,: ,and bias vector

in

in

in out

out

C
Conv

n n C c
Conv

m m C C

C

k c k c

k k k
k kφ

× × =

× × ×


= ∗

⇒ = +
 =


∑Y W XX
W A Y b

H Ab

To conclude our discussion of computing convolutions in the context of neural
QHWZRUNV��OHW
V�ORRN�DW�WKH�H[DPSOH�LQ�WKH�IROORZLQJ�ÀJXUH�WKDW�VKRZV�D�FRQYROXWLRQDO�
layer, followed by a pooling layer.

In this example, there are three input channels. The kernel tensor is four-dimensional.
Each kernel matrix is denoted as 1 2m m× , and there are three of them, one for each
LQSXW�FKDQQHO��)XUWKHUPRUH��WKHUH�DUH�ÀYH�VXFK�NHUQHOV��DFFRXQWLQJ�IRU�ÀYH�RXWSXW�
feature maps. Finally, there is a pooling layer for subsampling the feature maps, as
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�

Consider the number of output feature maps

Hsi-Pin Ma

An Example

21

3 input channels

4D kernel tensor

5 output feature maps

Hsi-Pin Ma

Regularizing a Neural Network with
Dropout

•Choosing the size of a network has always been
a challenging problem
– The capacity of a network refers to the level of

complexity of the function that it can learn. underfit vs.
overfit issue

•Ways to address the problem
– Build a network with relatively large capacity with L2

regularization
– Dropout

•Can be considered as the consensus (averaging) of an
ensemble of models

22

Hsi-Pin Ma

Dropout
•Dropout is usually applied to the hidden units

of higher layers with probability Pdrop
•Random dropout at training and evaluate with

all units

23

Hsi-Pin Ma

Implementing Deep Convolutional
Neural Networks in TensorFlow

24

Hsi-Pin Ma

Use a CNN to Classify Handwritten Digits
•Input tensor: 28x28x1 (28x28 greyscale images)
•kernel size: 5x5
•1st convolutional output 32 feature maps and

2nd output 64 feature maps
•Each convolution layer is followed by a

subsampling layer in the form of a max-pooling

25

Hsi-Pin Ma

Load and Preprocess the Data (1/3)

26

Hsi-Pin Ma

Load and Preprocess the Data (2/3)

27

Hsi-Pin Ma

Load and Preprocess the Data (3/3)

28

Hsi-Pin Ma

Generate the Mini-batches

29

Hsi-Pin Ma

Implementing a CNN in the TensorFlow
Low-Level API

30

Hsi-Pin Ma

Convolutional Layer (1/2)

31

Hsi-Pin Ma

Convolutional Layer (2/2)

32

Hsi-Pin Ma

Fully Connected Layer (1/2)

33

Hsi-Pin Ma

Fully Connected Layer (1/2)

34

Hsi-Pin Ma

Build CNN (1/6)

35

Hsi-Pin Ma

Build CNN (2/6)

36

Hsi-Pin Ma

Build CNN (3/6)

37

Hsi-Pin Ma

Build CNN (4/6)

38

Hsi-Pin Ma

Build CNN (5/6)

39

Hsi-Pin Ma

Build CNN (6/6)

40

Hsi-Pin Ma

Build TensorFlow Graph Object (1/2)

41

Hsi-Pin Ma

Build TensorFlow Graph Object (2/2)

42

Hsi-Pin Ma

Training the CNN Model

43

Hsi-Pin Ma

Prediction Accuracy (1/2)

44

Hsi-Pin Ma

Prediction Accuracy (2/2)

45

Hsi-Pin Ma

Visualize the Graph with TensorBoard

46

Hsi-Pin Ma

Implementing a CNN in the TensorFlow
Layers API

47

Hsi-Pin Ma

Class Definition

48

Hsi-Pin Ma

Build the Model (1/3)

49

Hsi-Pin Ma

Build the Model (2/3)

50

Hsi-Pin Ma

Build the Model (3/3)

51

Hsi-Pin Ma

Load and Save the Model

52

Hsi-Pin Ma

Model Training (1/2)

53

Hsi-Pin Ma

Model Training (2/2)

54

Hsi-Pin Ma

Prediction

55

Hsi-Pin Ma

Build and Train the Model

56

Hsi-Pin Ma

Test the Model

57

