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Outline
•Building Blocks of Convolutional Neural 

Networks
•Implementing Deep Convolutional Neural 

Networks in TensorFlow
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Features in ML Algorithms
•Salient (relevant) features is key to performance 

of ML algorithms
– Traditional ML rely on features from domain experts or 

computational feature extraction techniques
– Neural networks (NNs) can learn the features automatically 

from raw data that most useful for a particular task
•Consider NN as a feature extraction engine, the early layers 

extract low-level features

•Feature Hierarchy
– Multilayer NN construct a so-called feature hierarchy by 

combining the low-level features in a layer-wise fashion to 
form high-level features
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Convolutional Neural Networks

•CNN computes feature maps from an input image
•CNNs perform very well for image-related tasks

– Sparse-connectivity: A single element in the feature map is 
connected to only a small patch of pixels

– Parameter-sharing: The same weights are used for different 
patches of the input image

•Components
– Convolutional layers (conv)
– Pooling layers (P)
– Full connected layers (FC) 
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Building Blocks of 
Convolutional Neural Networks
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Performing Discrete Convolutions
•A discrete convolution in one dimension

– x, w: one-dimensional vector, x: input/signal, w: filter/kernel

•Padding (zero-padding): p
•Example

– x, w: n, m elements
– s: stride, shift 
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Please note that subsampling layers, commonly known as pooling layers, do not 
have any learnable parameters; for instance, there are no weights or bias units in 
pooling layers. However, both convolution and fully connected layers have such 
weights and biases. 

In the following sections, we'll study convolutional and pooling layers in more  
detail and see how they work. To understand how convolution operations work,  
let's start with a convolution in one dimension before working through the typical  
two-dimensional cases as applications for two-dimensional images later.

Performing discrete convolutions
A discrete convolution (or simply convolution) is a fundamental operation in a 
CNN. Therefore, it's important to understand how this operation works. In this 
VHFWLRQ��ZH
OO�OHDUQ�WKH�PDWKHPDWLFDO�GHÀQLWLRQ�DQG�GLVFXVV�VRPH�RI�WKH�naive 
algorithms to compute convolutions of two one-dimensional vectors or two two-
dimensional matrices. 

Please note that this description is solely for understanding how a convolution 
ZRUNV��,QGHHG��PXFK�PRUH�HIÀFLHQW�LPSOHPHQWDWLRQV�RI�FRQYROXWLRQDO�RSHUDWLRQV�
already exist in packages such as TensorFlow, as we will see later in this chapter.

Mathematical notation
In this chapter, we will use subscripts to denote the size of a 

multidimensional array; for example, 
1 2n n×A  is a two-dimensional 

array of size 1 2n n× . We use brackets [ ].  to denote the indexing of a 
multidimensional array. For example, [ ],i jA  means the element at index 
,i j  of matrix A . Furthermore, note that we use a special symbol ∗  to 

denote the convolution operation between two vectors or matrices, which 
is not to be confused with the multiplication operator * in Python.

Performing a discrete convolution in one dimension
Let's start with�VRPH�EDVLF�GHÀQLWLRQV�DQG�notations we are going to use. A discrete 
convolution for two one-dimensional vectors x and w is denoted by = ∗y x w , in 
which vector x is our input (sometimes called signal) and w is called the ÀOWHU or 
kernel��$�GLVFUHWH�FRQYROXWLRQ�LV�PDWKHPDWLFDOO\�GHÀQHG�DV�IROORZV�

[ ] [ ] [ ]
k

i i k k
+∞

=−∞

= ∗ → = −∑y x w y x w

s=2
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Effect of Zero-Padding in a Convolution

•Three commonly modes
– Full padding: p=m-1. Increase the dimension of the 

output. Most used in signal processing applications to 
minimize the boundary effect

– Same padding: Same size of input and output vectors. 
Mostly used in CNNs to make a network architecture 
design  more convenient. 

– Valid padding

•In practice, preserve the spatial size using same 
padding for the convolutional layers and 
decrease the spatial size via pooling layers
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Effect of Zero-Padding in a Convolution

8



Hsi-Pin Ma

Determining the Size of the 
Convolutional Output

9
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'HWHUPLQLQJ�WKH�VL]H�RI�WKH�FRQYROXWLRQ�RXWSXW
The output size of a convolution is determined by the total number of times that we 
VKLIW�WKH�ÀOWHU�w along the input vector. Let's assume that the input vector has size 
n�DQG�WKH�ÀOWHU�LV�RI�VL]H�m. Then, the size of the output resulting from ∗x w  with 
padding p and stride s is determined as follows:

2 1n p mo
s

+ − = +  

Here, .   �GHQRWHV�WKH�ÁRRU�RSHUDWLRQ�

7KH�ÁRRU�RSHUDWLRQ�UHWXUQV�WKH�ODUJHVW�LQWHJHU�WKDW�LV�HTXDO�RU�
smaller to the input, for example:

( )1.77 1.77 1floor = =  

Consider the following two cases:

�� Compute the output size for an input vector of size 10 with a convolution 
kernel of size 5, padding 2, and stride 1:

10 2 2 510, 5, 2, 1 1 10
1

n m p s o + × − − = = = → = + =  

(Note that in this case, the output size turns out to be the same as the input; 
therefore, we conclude this as mode='same')

�� How can the output size change for the same input vector, but have a kernel 
RI�VL]H����DQG�VWULGH��"

10 2 2 310, 3, 2, 2 1 6
2

n m p s o + × − = = = = → = + =  

If you are interested to learn more about the size of the convolution output,  
we recommend the manuscript A guide to convolution arithmetic for deep learning, 
9LQFHQW�'XPRXOLQ�DQG�)UDQFHVFR�9LVLQ, 2016, which is freely available at  
https://arxiv.org/abs/1603.07285.
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Performing a Discrete Convolution in 2D
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Chapter 15
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[ ] [ ] [ ]
1 2

1 2 1 2, , ,
k k

i j i k j k k k
+∞ +∞

=−∞ =−∞

= ∗ → = − −∑ ∑Y X W Y X W

Notice that if you omit one of the dimensions, the remaining formula is exactly the 
same as the one we used previously to compute the convolution in 1D. In fact, all the 
SUHYLRXVO\�PHQWLRQHG�WHFKQLTXHV��VXFK�DV�]HUR�SDGGLQJ��URWDWLQJ�WKH�ÀOWHU�PDWUL[��
and the use of strides, are also applicable to 2D convolutions, provided that they are 
extended to both the dimensions independently. The following example illustrates 
the computation of a 2D convolution between an input matrix 3 3×X , a kernel matrix 

3 3×W , padding ( )1, 1p = , and stride ( )2, 2s = ��$FFRUGLQJ�WR�WKH�VSHFLÀHG�SDGGLQJ��
one layer of zeros are padded on each side of the input matrix, which results in the 
padded matrix 5 5

padded
×X , as follows:

:LWK�WKH�SUHFHGLQJ�ÀOWHU��WKH�URWDWHG�ÀOWHU�ZLOO�EH�

0.5 1 0.5
0.1 0.4 0.3
0.4 0.7 0.5

r
 
 =  
  

W
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2D Convolution
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Subsampling

•Two forms of subsampling
– max-pooling
– mean-pooling (average-pooling)

•Advantages of pooling
– Introducing some sort of local invariance to generate 

features that are more robust to noise in the input data
– Decrease the size of features and result in high 

computation efficiency and also can reduce the degree of 
overfitting

12



Hsi-Pin Ma

A Simple Walk Through

•To classify X’s and O’s from images

13
[Brandon, https://brohrer.github.io/how_convolutional_neural_networks_work.html]
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Features

•CNN compare images piece by piece (features)

14
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Convolution
•Define white 1, black -1

– For the convolution results
•close to 1: strong matches
•close to -1: strong matches 

to the photographic 
negative of the feature

•near 0: no match

15

A map of where in the image the feature is found
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Pooling

•Take large images to shrink them down while 
preserving the most important information in 
them

16
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Rectified Linear Units (ReLU)
•Whenever a negative 

number occurs, swap 
it out for a 0.

17
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Deep Learning
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Fully Connected Layers
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Working with Multiple Input or 
Color Channels

•Using multiple channels as input to a 
convolutional layer requires to use a rank-3 
tensor or a 3D array

20
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Putting everything together to build a 
CNN
So far, we've learned about the basic building blocks of convolutional neural 
QHWZRUNV��7KH�FRQFHSWV�LOOXVWUDWHG�LQ�WKLV�FKDSWHU�DUH�QRW�UHDOO\�PRUH�GLIÀFXOW�
than traditional multilayer neural networks. Intuitively, we can say that the 
most important operation in a traditional neural network is the matrix-vector 
multiplication. 

For instance, we use matrix-vector multiplications to pre-activations (or net input) 
as in = +a Wx b . Here, x is a column vector representing pixels, and W is the weight 
matrix connecting the pixel inputs to each hidden unit. In a convolutional neural 
network, this operation is replaced by a convolution operation, as in b= ∗ +A W X ,  
where X is a matrix representing the pixels in a height x width arrangement. In both 
cases, the pre-activations are passed to an activation function to obtain the activation 
of a hidden unit ( )φ=H A , where φ  is the activation function. Furthermore, recall that 
subsampling is another building block of a convolutional neural network, which may 
appear in the form of pooling, as we described in the previous section.

Working with multiple input or color channels
An input sample to a convolutional layer may contain one or more 2D arrays or 
matrices with dimensions 1 2N N×  (for example, the image height and width in 
pixels). These 1 2N N×  matrices are called channels. Therefore, using multiple 
channels as input to a convolutional layer requires us to use a rank-3 tensor or a 
three-dimensional array: 

1 2 inN N C× ×X , where inC  is the number of input channels.

For example, let's consider images as�LQSXW�WR�WKH�ÀUVW�OD\HU�RI�D�&11��,I�WKH�LPDJH�
is colored and uses the RGB color mode, then 3inC =  (for the red, green, and blue 
color channels in RGB). However, if the image is in grayscale, then we have 1inC =  
because there is only one channel with the grayscale pixel intensity values.

Classifying Images with Deep Convolutional Neural Networks
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The answer is very simple: we perform the convolution operation for each channel 
separately and then add the results together using the matrix summation. The 
convolution associated with each channel (c) has its own kernel matrix as [ ]: ,: ,cW . 
The total pre-activation result is computed in the following formula:

[ ] [ ]

( )

1 2 in

1 2 in

n n
1

Convm m

Given a sample : ,: , : ,: ,
a kernel matrix

pre - activation : b
and bias value Feature map :

inC
Conv

c
c

c

c c

b φ

′× ×
=

′× ×


= ∗

⇒  = +
 =

∑X

W
A Y

Y W X

H A

7KH�ÀQDO�UHVXOW��h, is called a feature map. Usually, a convolutional layer of a CNN 
has more than one feature map. If we use multiple feature maps, the kernel tensor 
becomes four-dimensional: in outwidth height C C× × × . Here, width x height is the kernel 
size, inC  is the number of input channels, and outC  is the number of output feature 
maps. So, now let's include the number of output feature maps in the preceding 
formula and update it as follows:

[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]( )

1 2

1 2

1
:,:, : ,: , , : ,: ,Given a sample

kernel matrix :,:, : ,: ,
: ,: , : ,: ,and bias vector

in

in

in out

out

C
Conv

n n C c
Conv

m m C C

C

k c k c

k k k
k kφ

× × =

× × ×


= ∗

⇒ = +
 =


∑Y W XX
W A Y b

H Ab

To conclude our discussion of computing convolutions in the context of neural 
QHWZRUNV��OHW
V�ORRN�DW�WKH�H[DPSOH�LQ�WKH�IROORZLQJ�ÀJXUH�WKDW�VKRZV�D�FRQYROXWLRQDO�
layer, followed by a pooling layer. 

In this example, there are three input channels. The kernel tensor is four-dimensional. 
Each kernel matrix is denoted as 1 2m m× , and there are three of them, one for each 
LQSXW�FKDQQHO��)XUWKHUPRUH��WKHUH�DUH�ÀYH�VXFK�NHUQHOV��DFFRXQWLQJ�IRU�ÀYH�RXWSXW�
feature maps. Finally, there is a pooling layer for subsampling the feature maps, as 
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�
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To conclude our discussion of computing convolutions in the context of neural 
QHWZRUNV��OHW
V�ORRN�DW�WKH�H[DPSOH�LQ�WKH�IROORZLQJ�ÀJXUH�WKDW�VKRZV�D�FRQYROXWLRQDO�
layer, followed by a pooling layer. 

In this example, there are three input channels. The kernel tensor is four-dimensional. 
Each kernel matrix is denoted as 1 2m m× , and there are three of them, one for each 
LQSXW�FKDQQHO��)XUWKHUPRUH��WKHUH�DUH�ÀYH�VXFK�NHUQHOV��DFFRXQWLQJ�IRU�ÀYH�RXWSXW�
feature maps. Finally, there is a pooling layer for subsampling the feature maps, as 
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�

Consider the number of output feature maps
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An Example

21

3 input channels

4D kernel tensor

5 output feature maps
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Regularizing a Neural Network with 
Dropout

•Choosing the size of a network has always been 
a challenging problem
– The capacity of a network refers to the level of 

complexity of the function that it can learn. underfit vs. 
overfit issue

•Ways to address the problem
– Build a network with relatively large capacity with L2 

regularization
– Dropout

•Can be considered as the consensus (averaging) of an 
ensemble of models
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Dropout
•Dropout is usually applied to the hidden units 

of higher layers with probability Pdrop
•Random dropout at training and evaluate with 

all units
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Implementing Deep Convolutional 
Neural Networks in TensorFlow
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Use a CNN to Classify Handwritten Digits
•Input tensor: 28x28x1 (28x28 greyscale images)
•kernel size: 5x5
•1st convolutional output 32 feature maps and 

2nd output 64 feature maps
•Each convolution layer is followed by a 

subsampling layer in the form of a max-pooling

25
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Load and Preprocess the Data (1/3)
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Load and Preprocess the Data (2/3)
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Load and Preprocess the Data (3/3)
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Generate the Mini-batches
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Implementing a CNN in the TensorFlow 
Low-Level API
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Convolutional Layer (1/2)
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Convolutional Layer (2/2)
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Fully Connected Layer (1/2)
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Fully Connected Layer (1/2)
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Build CNN (1/6)
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Build CNN (2/6)
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Build CNN (3/6)
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Build CNN (4/6)
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Build CNN (5/6)
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Build CNN (6/6)
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Build TensorFlow Graph Object (1/2)
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Build TensorFlow Graph Object (2/2)
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Training the CNN Model
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Prediction Accuracy (1/2)
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Prediction Accuracy (2/2)
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Visualize the Graph with TensorBoard
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Implementing a CNN in the TensorFlow 
Layers API
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Class Definition
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Build the Model (1/3)
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Build the Model (2/3)
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Build the Model (3/3)
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Load and Save the Model
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Model Training (1/2)
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Model Training (2/2)

54



Hsi-Pin Ma

Prediction
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Build and Train the Model
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Test the Model
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