

EE3700 Introduction to Machine Learning

Parallelizing Neural Network Training with TensorFlow

Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

- Building, Compiling, and Running Machine Learning Models with TensorFlow
- Training Neural Networks Efficiently with High-Level TensorFlow APIs
- Choosing Activation Functions for Multilayer Networks

Building, Compiling, and Running Machine Learning Models with TensorFlow

Computation Efficiency

- By default, Python is limited to execution on one core due to Global Interpreter Lock (GIL)
- Parallel processing capability of GPUs

-CUDA or OpenCL is not convenient for common people

Specifications	Intel® Core™ i7-6900K Processor Extreme Ed.	
Base Clock Frequency	3.2 GHz	< I.5 GHz
Cores	8	3584
Memory Bandwidth	64 GB/s	484 GB/s
Floating-Point Calculations	409 GFLOPS	11300 GFLOPS
Cost	~\$1000.00	~ \$700.00

TensorFlow (1/2)

- A *scalable* and *multi-platform* <u>programming</u> <u>interface</u> for implementing and running machine learning algorithms, including convenient wrappers for deep learning
 - In hardware, TensorFlow supports both CPUs and CUDA-based GPUs (for OpenCL-enabled devices is experimental)
 - In programming languages, TensorFlow has an official APIs for Python and C++

TensorFlow (2/2)

• TensorFlow is built around a computation graph composed of a set of nodes

- Each node represents an operation that may have zero or more inputs or outputs
- The value that flows through the edges of the computation graph are called *tensors*

• Two level of TensorFlow APIs

- Low-level: Giving more flexibility as programmers to combine the basic operations and develop complex machine learning models
- High-level: Built on top of the low-level TensorFlow APIs, allowing building and prototyping models much faster

• TensorFlow Layers and Keras

First Step with Low Level TensorFlow API

- Tensor can be understood as a generalization of scalars, vectors, matrices, and so on.
 - A scalar can be defined as a rank-0 tensor, a vector as a rank-1 tensor, a matrix as a rank-2 tensor, and matrices stacked in a third dimension as rank-3 tensor

In a computation graph,

- A *placeholder* is to hold input data
 - A placeholder with *shape*=(*None*) can take input data of any size along the corresponding axis
 - •In above, the input *x* is a scalar
- A *variable* is to hold a parameter tensor

aboratory for


```
import tensorflow as tf
```

Laboratory for

 $z = w \times x + b$

```
Construction Phase
## create a graph
q = tf.Graph()
with g.as default():
    x = tf.placeholder(dtype=tf.float32,
                       shape=(None), name='x')
   w = tf.Variable(2.0, name='weight')
    b = tf.Variable(0.7, name='bias')
    z = w^*x + b
    init = tf.global variables initializer()
## create a session and pass in graph g Execution Phase
with tf.Session(graph=g) as sess:
    ## initialize w and b:
    sess.run(init)
    ## evaluate z:
    for t in [1.0, 0.6, -1.8]:
        print('x=\$4.1f --> z=\$4.1f'\)
              t, sess.run(z, feed_dict={x:t})))
```

x= 1.0 --> z= 2.7 x= 0.6 --> z= 1.9 x=-1.8 --> z=-2.9

- In the previous example, the input is fed in an element-by-element form
- Below, we feed the input *x* as a minibatch of size 3

```
with tf.Session(graph=g) as sess:
    sess.run(init)
    print(sess.run(z, feed_dict={x:[1., 2., 3.]}))
```

[2.7000005 4.69999981 6.69999981]

Laboratory for

Working with Array Structures

- Create a rank-3 tensor of size *batchsize* x 2 x 3, reshape it, and calculate the column sums and means using TensorFlow's optimized sessions
- When reshaping a tensor, if use '-1' for a specific axis, the size of the axis will be computed according to the total size of the tensor and the shape of the remaining axes

Working with Array Structures

import tensorflow as tf
import numpy as np

Laboratory for

Computing

```
g = tf.Graph()
with g.as_default():
```

```
## calculate the sum of each column
xsum = tf.reduce_sum(x2, axis=0, name='col_sum')
```

calculate the mean of each column

```
xmean = tf.reduce_mean(x2, axis=0, name='col_mean')
```

```
with tf.Session(graph=g) as sess:
```

```
x_array = np.arange(18).reshape(3, 2, 3)
print('input shape: ', x array.shape)
```

```
print('Reshaped:\n',
```

```
sess.run(x2, feed_dict={x:x_array}))
```

```
print('Column Sums:\n',
```

```
sess.run(xsum, feed_dict={x:x_array}))
```

```
print('Column Means:\n',
```

```
sess.run(xmean, feed_dict={x:x_array}))
```

input shape: (3, 2, 3)						
Reshaped:						
[[0	. 1.	2.	3.	4.	5.]	
[6.	7.	8.	9.	10.	11.]	
[12.	13.	14.	15.	16.	17.]]	
Column	Sums:					
[18.	21.	24.	27.	30.	33.]	
Column Means:						
[6.	7.	8.	9.	10.	11.]	

^{Laboratory for} ^{Compute} Developing a Simple Model with Low-Level TensorFlow APIs

- Implement the Ordinary Least Square regression in a class with low-level TensorFlow API
 - Training X:10 instances with 1 dimensional feature vector
 - Training label *y*:10 corresponding target labels
 - Two placeholders are needed, one for X and the other y.
 - MSE as cost function with gradient descent optimizer

Linear Regression Model Definition

```
class TfLinreg(object):
    def init (self, x dim, learning rate=0.01,
                 random_seed=None):
        self.x dim = x dim
        self.learning_rate = learning_rate
        self.g = tf.Graph()
        ## build the model
        with self.g.as_default():
            ## set graph-level random-seed
            tf.set random seed(random seed)
            self.build()
            ## create initializer
            self.init op = tf.global variables initializer()
```

```
def build(self):
    ## define placeholders for inputs
    self.X = tf.placeholder(dtype=tf.float32,
                            shape=(None, self.x dim),
                            name='x input')
    self.y = tf.placeholder(dtype=tf.float32,
                            shape=(None),
                            name='y input')
    print(self.X)
    print(self.y)
    ## define weight matrix and bias vector
   w = tf.Variable(tf.zeros(shape=(1)),
                    name='weight')
    b = tf.Variable(tf.zeros(shape=(1)),
                    name="bias")
    print(w)
    print(b)
    self.z net = tf.squeeze(w*self.X + b,
                            name='z net')
    print(self.z net)
   sqr errors = tf.square(self.y - self.z net,
                           name='sqr errors')
   print(sqr_errors)
    self.mean cost = tf.reduce mean(sqr errors,
                                    name='mean cost')
   optimizer = tf.train.GradientDescentOptimizer(
                learning rate=self.learning rate,
                name='GradientDescent')
    self.optimizer = optimizer.minimize(self.mean cost)
```

Hsi-Pin Ma

Labon

Reliab

Compu

Create an Instance of OLS Regression

lrmodel = TfLinreg(x_dim=X_train.shape[1], learning_rate=0.01)

```
Tensor("x_input:0", shape=(?, 1), dtype=float32)
Tensor("y_input:0", dtype=float32)
<tf.Variable 'weight:0' shape=(1,) dtype=float32_ref>
<tf.Variable 'bias:0' shape=(1,) dtype=float32_ref>
Tensor("z_net:0", dtype=float32)
Tensor("sqr_errors:0", dtype=float32)
```


Implementing a Training Function

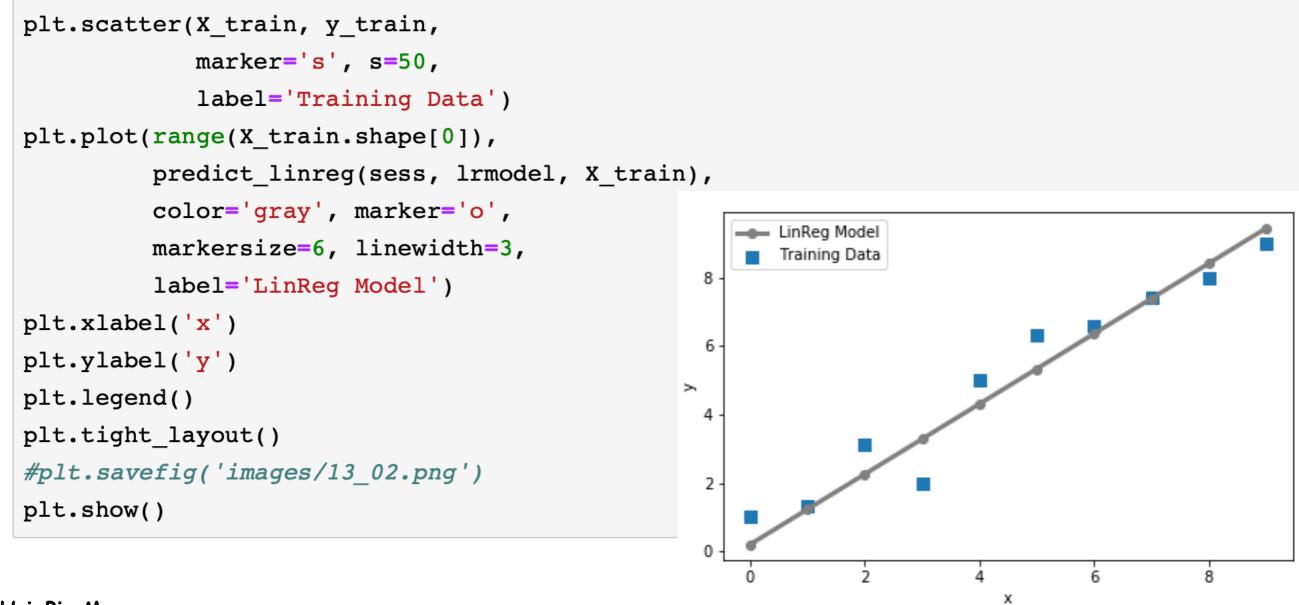
Train the Model

```
sess = tf.Session(graph=lrmodel.g)
training_costs = train_linreg(sess, lrmodel, X_train, y_train)
```

```
import matplotlib.pyplot as plt
plt.plot(range(1,len(training_costs) + 1), training_costs)
plt.tight_layout()
plt.xlabel('Epoch')
plt.ylabel('Training Cost')
                                                 30
#plt.savefig('images/13_01.png', dpi=300)
plt.show()
                                                 25
                                               וומווווט כטא
                                                 20
                                                15
                                                 10
                                                  5
                                                  0
                                                          2
                                                                     4
                                                                               6
                                                                                         8
                                                                                                   10
```

Fnoch

Make Prediction



Training Neural Networks Efficiently with High-Level TensorFlow APIs

TensorFlow High-Level API Examples

• The Layers API

-tensorflow.layers or tf.layers

• The Keras APS

-tensor flow.contrib.keras

Laboratory for Reliable ^{Computing} Building Multilayer Neural Networks Using TensorFlow's Layers API Implement a MLP to classify the handwritten digits from the MNIST dataset # unzips mnist import sys import gzip import shutil import os if (sys.version info > (3, 0)): writemode = 'wb' else: writemode = 'w'zipped mnist = [f for f in os.listdir('./') if f.endswith('ubyte.gz')] for z in zipped mnist: with gzip.GzipFile(z, mode='rb') as decompressed, open(z[:-3], writemode) as outfile: outfile.write(decompressed.read())

Preprocessing of the Dataset

import struct

```
def load mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels path = os.path.join(path,
                               '%s-labels-idx1-ubyte' % kind)
    images path = os.path.join(path,
                               '%s-images-idx3-ubyte' % kind)
   with open(labels path, 'rb') as lbpath:
       magic, n = struct.unpack('>II',
                                 lbpath.read(8))
        labels = np.fromfile(lbpath,
                             dtype=np.uint8)
   with open(images path, 'rb') as imgpath:
       magic, num, rows, cols = struct.unpack(">IIII",
                                                imgpath.read(16))
        images = np.fromfile(imgpath,
                             dtype=np.uint8).reshape(len(labels), 784)
        images = ((images / 255.) - .5) * 2
```


Load the Dataset

```
## loading the data
X_train, y_train = load_mnist('.', kind='train')
print('Rows: %d, Columns: %d' %(X train.shape[0],
                                 X train.shape[1]))
X_test, y_test = load mnist('.', kind='t10k')
print('Rows: %d, Columns: %d' %(X test.shape[0],
                                     X test.shape[1]))
## mean centering and normalization:
mean vals = np.mean(X train, axis=0)
std_val = np.std(X_train)
X train centered = (X train - mean vals)/std val
X_test_centered = (X_test - mean_vals)/std_val
del X train, X test
print(X train centered.shape, y train.shape)
print(X_test_centered.shape, y_test.shape)
```

Rows: 60000, Columns: 784

Rows: 10000, Columns: 784

(60000, 784) (60000,)

(10000, 784) (10000,)

Build a Computation Graph for 3-layer MLP

- Add additional hidden layer
- Replace logistic units in hidden layer with hyperbolic tangent activation functions, output layer with softmax

```
name='tf_x')
```

Hsi-Pin Ma

```
}
```


Define Cost Functions and Optimizer

```
## define cost function and optimizer:
with g.as_default():
    cost = tf.losses.softmax_cross_entropy(
        onehot_labels=y_onehot, logits=logits)
    optimizer = tf.train.GradientDescentOptimizer(
            learning_rate=0.001)
    train_op = optimizer.minimize(loss=cost)
    init_op = tf.global_variables_initializer()
```



```
def create_batch_generator(X, y, batch_size=128, shuffle=False):
    X_copy = np.array(X)
    y_copy = np.array(y)
    if shuffle:
        data = np.column_stack((X_copy, y_copy))
        np.random.shuffle(data)
        X_copy = data[:, :-1]
        y_copy = data[:, :-1].astype(int)
    for i in range(0, X.shape[0], batch_size):
        yield (X[i:i+batch_size, :], y[i:i+batch_size])
```


Create a TensorFlow Session and Start Training

```
## create a session to launch the graph
sess = tf.Session(graph=g)
## run the variable initialization operator
sess.run(init op)
## 50 epochs of training:
training costs = []
for epoch in range(50):
   training loss = []
   batch_generator = create_batch_generator(
            X train centered, y train,
            batch size=64, shuffle=True)
    for batch X, batch_y in batch_generator:
        ## prepare a dict to feed data to our network:
        feed = {tf_x:batch_X, tf_y:batch_y}
        _, batch_cost = sess.run([train_op, cost],
                                 feed dict=feed)
        training costs.append(batch cost)
   print(' -- Epoch %2d
          'Avg. Training Loss: %.4f' % (
              epoch+1, np.mean(training costs)
```

 Epoch	1	Avg.	Training	Loss:	1.5573
 Epoch	2	Avg.	Training	Loss:	1.2532
 Epoch	3	Avg.	Training	Loss:	1.0854
 Epoch	4	Avg.	Training	Loss:	0.9738
 Epoch	5	Avg.	Training	Loss:	0.8924
 Epoch	6	Avg.	Training	Loss:	0.8296
 Epoch	7	Avg.	Training	Loss:	0.7794
 Epoch	8	Avg.	Training	Loss:	0.7381
 Epoch	9	Avg.	Training	Loss:	0.7032
 Epoch	10	Avg.	Training	Loss:	0.6734
 Epoch	11	Avg.	Training	Loss:	0.6475
 Epoch	12	Avg.	Training	Loss:	0.6247
 Epoch	13	Avg.	Training	Loss:	0.6045
 Epoch	14	Avg.	Training	Loss:	0.5864
 Epoch	15	Avg.	Training	Loss:	0.5700
 Epoch	16	Avg.	Training	Loss:	0.5551
 Epoch	17	Avg.	Training	Loss:	0.5415
 Epoch	18	Avg.	Training	Loss:	0.5290
 Epoch	19	Avg.	Training	Loss:	0.5175
 Epoch	20	Avg.	Training	Loss:	0.5068
 Epoch	21	Avg.	Training	Loss:	0.4968
 Epoch	22	Avg.	Training	Loss:	0.4875
 Epoch	23	Avg.	Training	Loss:	0.4788

))

Make Prediction on Test Dataset

Test Accuracy: 93.89%

Developing MLP with Keras

- Keras has been integrated into TensorFlow since version TensorFlow 1.1.0
- Currently Keras is a part of the contrib module of TensorFlow
- In the future release, Keras may be moved to become a separate module in the TensorFlow main API

Load the Dataset

```
X train, y train = load mnist('./', kind='train')
print('Rows: %d, Columns: %d' %(X train.shape[0],
                                 X train.shape[1]))
X test, y test = load mnist('./', kind='t10k')
print('Rows: %d, Columns: %d' %(X test.shape[0],
                                 X test.shape[1]))
## mean centering and normalization:
mean vals = np.mean(X_train, axis=0)
std val = np.std(X train)
X train centered = (X train - mean vals)/std val
X_test_centered = (X_test - mean_vals)/std_val
del X train, X test
print(X train centered.shape, y train.shape)
print(X_test_centered.shape, y_test.shape)
```

Rows: 60000,	Columns:	784
Rows: 10000,	Columns:	784
(60000, 784)	(60000,)	
(10000, 784)	(10000,)	

Initialization

- Use same graph-level random seed as in TensorFlow's Layers API
- Keras provides a convenient tool to convert the integer class labels into the 1-hot format

```
import tensorflow as tf
import tensorflow.contrib.keras as keras
```

```
np.random.seed(123)
tf.set random seed(123)
```

```
y_train_onehot = keras.utils.to_categorical(y_train)
```

```
print('First 3 labels: ', y_train[:3])
print('\nFirst 3 labels (one-hot):\n', y_train_onehot[:3])
```

```
First 3 labels: [5 0 4]
```

```
First 3 labels (one-hot):

[[ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Hsi [ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]
```


Use Keras to Build Model

model = keras.models.Sequential()

```
model.add(
    keras.layers.Dense(
        units=50,
        input_dim=X_train_centered.shape[1],
        kernel_initializer='glorot_uniform',
        bias_initializer='zeros',
        activation='tanh'))
```

```
model.add(
    keras.layers.Dense(
        units=50,
        input_dim=50,
        kernel_initializer='glorot_uniform',
        bias_initializer='zeros',
        activation='tanh'))
model.add(
    keras.layers.Dense(
```

```
units=y_train_onehot.shape[1],
input_dim=50,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
activation='softmax'))
```


Training the Model

```
Train on 54000 samples, validate on 6000 samples
Epoch 1/50
54000/54000 [=========================] - 2s - loss: 0.7247 - val_loss: 0.3616
Epoch 2/50
54000/54000 [=======================] - 2s - loss: 0.3718 - val_loss: 0.2815
Epoch 3/50
54000/54000 [=========================] - 2s - loss: 0.3087 - val_loss: 0.2447
Epoch 4/50
54000/54000 [=================================] - 2s - loss: 0.2728 - val loss: 0.2216
Epoch 5/50
54000/54000 [=========================] - 2s - loss: 0.2475 - val_loss: 0.2042
Epoch 6/50
54000/54000 [========================] - 2s - loss: 0.2277 - val_loss: 0.1918
Epoch 7/50
54000/54000 [========================] - 2s - loss: 0.2115 - val loss: 0.1810
```


Make Predictions

```
y_train_pred = model.predict_classes(X_train_centered, verbose=0)
print('First 3 predictions: ', y_train_pred[:3])
```

First 3 predictions: [5 0 4]

```
correct_preds = np.sum(y_train == y_train_pred, axis=0)
train acc = correct preds / y train.shape[0]
```

```
print('First 3 predictions: ', y_train_pred[:3])
print('Training accuracy: %.2f%%' % (train acc * 100))
```

```
First 3 predictions: [5 0 4]
Training accuracy: 98.88%
```

```
Test accuracy: 96.04% Hsi-Pin ....
```


Choosing Activation Functions for Multilayer Networks

Logistic Function Recap

$$\phi_{logistic}\left(z\right) = \frac{1}{1 + e^{-z}}$$

- The logistic function has a range (0,1) and gives the likelihood P(*y*=1 | *x*) of the prediction to be positive given a data point *x*
- It is the inverse of the logit (log odds) function

Logistic Function Recap

```
import numpy as np
X = np.array([1, 1.4, 2.5]) ## first value must be 1
w = np.array([0.4, 0.3, 0.5])
def net_input(X, w):
    return np.dot(X, w)
def logistic(z):
    return 1.0 / (1.0 + np.exp(-z))
def logistic_activation(X, w):
    z = net input(X, w)
    return logistic(z)
print('P(y=1 | x) = %.3f' % logistic_activation(X, w))
  P(y=1|x) = 0.888
```

Reflation ComputerSsues with Multiple Logistic Activation Units in Output Layer

```
# W : array with shape = (n_output_units, n_hidden_units+1)
      note that the first column are the bias units
#
W = np.array([[1.1, 1.2, 0.8, 0.4]),
              [0.2, 0.4, 1.0, 0.2],
              [0.6, 1.5, 1.2, 0.7]])
# A : data array with shape = (n hidden units + 1, n samples)
     note that the first column of this array must be 1
#
A = np.array([[1, 0.1, 0.4, 0.6]])
Z = np.dot(W, A[0])
y probas = logistic(Z)
print('Net Input: \n', Z)
print('Output Units:\n', y probas)
 Net Input:
  [ 1.78 0.76 1.65]
 Output Units:
  [ 0.85569687 0.68135373 0.83889105]
```


Softmax Function

A soft form of argmax function

Instead of giving a single class index, it provides the probability of each class

$$p(y=i|z) = \phi(z) = \frac{e^{z_i}}{\sum_{i=1}^{M} e^{z_i}}$$

```
def softmax(z):
    return np.exp(z) / np.sum(np.exp(z))

y_probas = softmax(Z)
print('Probabilities:\n', y_probas)
```

Probabilities:

```
[ 0.44668973 0.16107406 0.39223621]
```

np.sum(y_probas)

1.0

Hsi-Pin Ma

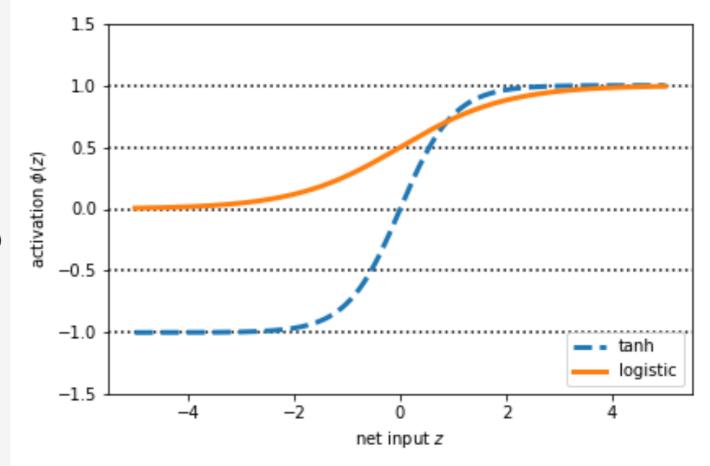
Hyperbolic Tangent Function

• Rescaled version of the logistic function

$$\phi_{logistic}(z) = \frac{1}{1 + e^{-z}} \qquad \qquad \phi_{tanh}(z) = 2 \times \phi_{logistic}(2z) - 1 = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

• The tanh has a broader output spectrum and ranges in the open interval (-1,1), which can improve the performance of the back propagation algorithm

```
def tanh(z):
        e_p = np.exp(z)
        e m = np.exp(-z)
        return (ep - em) / (ep + em)
    z = np.arange(-5, 5, 0.005)
    log act = logistic(z)
    tanh act = tanh(z)
    plt.ylim([-1.5, 1.5])
    plt.xlabel('net input $z$')
    plt.ylabel('activation $\phi(z)$')
    plt.axhline(1, color='black', linestyle=':')
    plt.axhline(0.5, color='black', linestyle=':')
    plt.axhline(0, color='black', linestyle=':')
    plt.axhline(-0.5, color='black', linestyle=':')
    plt.axhline(-1, color='black', linestyle=':')
    plt.plot(z, tanh act,
             linewidth=3, linestyle='--',
             label='tanh')
    plt.plot(z, log act,
             linewidth=3,
             label='logistic')
    plt.legend(loc='lower right')
    plt.tight layout()
    #plt.savefig('images/13_03.png')
    plt.show()
Hsi-
```



Rectified Linear Unit (ReLU) Function

- ReLU solves the problem of vanishing gradients for logistic and tanh functions at large input values
- The derivative of ReLU, with respect to its inputs, is always 1 for positive input values and always 0 for negative inout values
- ReLU is commonly used in convolutional neural networks

$$\phi(z) = \max(0, z)$$

Activation Functions

Activation Fu	Inction	Equation		Example	1D Graph
Linear		φ(z) = z		Adaline, linear regression	
Unit Step (Heaviside Function)	φ(z) =	{0 0.5 1	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	φ(z)=	{-1 0 1	z < 0 z = 0 z > 0	Perceptron variant	
Piece-wise Linear	$\phi(z) = \begin{cases} \\ \\ \\ \\ \end{cases}$	0 z + ½ 1	z≤-½ -½≤z≤½ z≥½	Support vector machine	
Logistic (sigmoid)	φ(z	:)=	1 e⁻ ^z	Logistic regression, Multilayer NN	
Hyperbolic Tangent (tanh)	$\phi(z$:)= <u>e^z -</u> e ^z -	- e ^{-z}	Multilayer NN, RNNs	
ReLU	$\phi(z$	$z = \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	