
Parallelizing Neural Network Training
with TensorFlow

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline
•Building, Compiling, and Running Machine

Learning Models with TensorFlow
•Training Neural Networks Efficiently with High-

Level TensorFlow APIs
•Choosing Activation Functions for Multilayer

Networks

2

Hsi-Pin Ma

Building, Compiling, and Running Machine
Learning Models with TensorFlow

3

Hsi-Pin Ma

Computation Efficiency
•By default, Python is limited to execution on

one core due to Global Interpreter Lock (GIL)
•Parallel processing capability of GPUs

– CUDA or OpenCL is not convenient for common people

4

By Aug. 2017

Hsi-Pin Ma

TensorFlow (1/2)

•A scalable and multi-platform programming
interface for implementing and running
machine learning algorithms, including
convenient wrappers for deep learning
– In hardware, TensorFlow supports both CPUs and

CUDA-based GPUs (for OpenCL-enabled devices is
experimental)

– In programming languages, TensorFlow has an official
APIs for Python and C++

5

Hsi-Pin Ma

TensorFlow (2/2)
• TensorFlow is built around a computation graph

composed of a set of nodes
– Each node represents an operation that may have zero or more

inputs or outputs
– The value that flows through the edges of the computation

graph are called tensors

• Two level of TensorFlow APIs
– Low-level: Giving more flexibility as programmers to combine

the basic operations and develop complex machine learning
models

– High-level: Built on top of the low-level TensorFlow APIs,
allowing building and prototyping models much faster

•TensorFlow Layers and Keras
6

Hsi-Pin Ma

First Step with Low Level TensorFlow API

•Tensor can be understood as a generalization of
scalars, vectors, matrices, and so on.
– A scalar can be defined as a rank-0 tensor, a vector as a

rank-1 tensor, a matrix as a rank-2 tensor, and matrices
stacked in a third dimension as rank-3 tensor

•In a computation graph,
– A placeholder is to hold input data

•A placeholder with shape=(None) can take input data of
any size along the corresponding axis

•In above, the input x is a scalar
– A variable is to hold a parameter tensor

7

Hsi-Pin Ma

First Step with Low Level TensorFlow API

8

Construction Phase

Execution Phase

Chapter 13

[425]

If you should experience problems with the installation procedure,
I recommend you to read more about system- and SODWIRUP�VSHFLÀF�
recommendations that are provided at https://www.tensorflow.
org/install/. Note that all the code in this chapter can be run on your
CPU; using a GPU is entirely optional but recommended if you want to
IXOO\�HQMR\�WKH�EHQHÀWV�RI�7HQVRU)ORZ��,I�\RX�KDYH�D�JUDSKLFV�FDUG��UHIHU�
to the installation page to set it up appropriately. In addition, you may
ÀQG�WKLV�7HQVRU)ORZ�*38�VHWXS�JXLGH�KHOSIXO��ZKLFK�H[SODLQV�KRZ�WR�
install the NVIDIA graphics card drivers, CUDA, and cuDNN on Ubuntu
(not required but recommended requirements for running TensorFlow
on a GPU): https://sebastianraschka.com/pdf/books/dlb/
appendix_h_cloud-computing.pdf.

TensorFlow is built around a computation graph composed of a set of nodes. Each
node represents an operation that may have zero or more input or output. The
YDOXHV�WKDW�ÁRZ�WKURXJK�WKH�HGJHV�RI�WKH�FRPSXWDWLRQ�JUDSK�DUH�called tensors.

Tensors can be understood as a generalization of scalars, vectors, matrices, and so
RQ��0RUH�FRQFUHWHO\��D�VFDODU�FDQ�EH�GHÀQHG�DV�D�UDQN���WHQVRU��D�YHFWRU�DV�D�UDQN�
1 tensor, a matrix as a rank-2 tensor, and matrices stacked in a third dimension as
rank-3 tensors.

Once a computation graph is built, the graph can be launched in a TensorFlow
Session for executing different nodes of the graph. In Chapter 14, Going Deeper – The
0HFKDQLFV�RI�7HQVRU)ORZ, we will cover the steps in building the computation graph
and launching the graph in a session in more detail.

As a warm-up exercise, we will start with the use of simple scalars from TensorFlow
to compute a net input z of a sample point x in a one-dimensional dataset with
weight w and bias b:

z w x b= × +

The following code shows the implementation of this equation in the low-level
TensorFlow API:

import tensorflow as tf

create a graph
g = tf.Graph()
with g.as_default():
 x = tf.placeholder(dtype=tf.float32,
 shape=(None), name='x')
 w = tf.Variable(2.0, name='weight')

Hsi-Pin Ma

First Step with Low Level TensorFlow API

•In the previous example, the input is fed in an
element-by-element form

•Below, we feed the input x as a minibatch of
size 3

9

Hsi-Pin Ma

Working with Array Structures

•Create a rank-3 tensor of size batchsize x 2 x 3,
reshape it, and calculate the column sums and
means using TensorFlow’s optimized sessions

•When reshaping a tensor, if use ‘-1’ for a specific
axis, the size of the axis will be computed
according to the total size of the tensor and the
shape of the remaining axes

10

Hsi-Pin Ma

Working with Array Structures

11

Hsi-Pin Ma

Developing a Simple Model with Low-
Level TensorFlow APIs

•Implement the Ordinary Least Square regression
in a class with low-level TensorFlow API
– Training X:10 instances with 1 dimensional feature vector
– Training label y:10 corresponding target labels
– Two placeholders are needed, one for X and the other y.
– MSE as cost function with gradient descent optimizer

12

Hsi-Pin Ma

Linear Regression Model Definition

13

Hsi-Pin Ma 14

Hsi-Pin Ma

Create an Instance of OLS Regression

15

Hsi-Pin Ma

Implementing a Training Function

16

Hsi-Pin Ma

Train the Model

17

Hsi-Pin Ma

Make Prediction

18

Hsi-Pin Ma

Training Neural Networks Efficiently
with High-Level TensorFlow APIs

19

Hsi-Pin Ma

TensorFlow High-Level API Examples

•The Layers API
– tensorflow.layers or tf.layers

•The Keras APS
– tensor flow.contrib.keras

20

Hsi-Pin Ma

Building Multilayer Neural Networks
Using TensorFlow’s Layers API

•Implement a MLP to classify the handwritten
digits from the MNIST dataset

21

Hsi-Pin Ma

Preprocessing of the Dataset

22

Hsi-Pin Ma

Load the Dataset

23

Hsi-Pin Ma 24

Build a Computation
Graph for 3-layer MLP

• Add additional
hidden layer

• Replace logistic units
in hidden layer with
hyperbolic tangent
activation functions,
output layer with
softmax

Hsi-Pin Ma

Define Cost Functions and Optimizer

25

Hsi-Pin Ma

Generate Batches of Data to Train the Network

26

Hsi-Pin Ma

Create a TensorFlow Session and Start Training

27

Hsi-Pin Ma

Make Prediction on Test Dataset

28

Hsi-Pin Ma

Developing MLP with Keras

•Keras has been integrated into TensorFlow since
version TensorFlow 1.1.0

•Currently Keras is a part of the contrib module
of TensorFlow

•In the future release, Keras may be moved to
become a separate module in the TensorFlow
main API

29

Hsi-Pin Ma

Load the Dataset

30

Hsi-Pin Ma

Initialization
•Use same graph-level random seed as in

TensorFlow’s Layers API
•Keras provides a convenient tool to convert the

integer class labels into the 1-hot format

31

Hsi-Pin Ma 32

Use Keras to
Build Model

Hsi-Pin Ma

Training the Model

33

Hsi-Pin Ma

Make Predictions

34

Hsi-Pin Ma

Choosing Activation Functions for
Multilayer Networks

35

Hsi-Pin Ma

Logistic Function Recap

•The logistic function has a range (0,1) and gives
the likelihood P(y=1|x) of the prediction to be
positive given a data point x

•It is the inverse of the logit (log odds) function

36

Parallelizing Neural Network Training with TensorFlow

[444]

Technically, we can use any function as an activation function in multilayer
neural networks as long as it is differentiable. We can even use linear activation
functions, such as in Adaline (Chapter 2, Training Simple Machine Learning Algorithms
IRU�&ODVVLÀFDWLRQ). However, in practice, it would not be very useful to use linear
activation functions for both hidden and output layers since we want to introduce
QRQOLQHDULW\�LQ�D�W\SLFDO�DUWLÀFLDO�QHXUDO�QHWZRUN�WR�EH�DEOH�WR�WDFNOH�FRPSOH[�
problems. The sum of linear functions yields a linear function after all.

The logistic activation function that we used in Chapter 12, Implementing a Multilayer
$UWLÀFLDO�1HXUDO�1HWZRUN�IURP�6FUDWFK, probably mimics the concept of a neuron in a
EUDLQ�PRVW�FORVHO\³ZH�FDQ�WKLQN�RI�LW�DV�WKH�SUREDELOLW\�RI�ZKHWKHU�D�QHXURQ�ÀUHV�
or not.

However, logistic activation functions can be problematic if we have highly negative
input since the output of the sigmoid function would be close to zero in this case. If
the sigmoid function returns output that are close to zero, the neural network would
learn very slowly and it becomes more likely that it gets trapped in the local minima
during training. This is why people often prefer a hyperbolic tangent as an activation
function in hidden layers.

%HIRUH�ZH�GLVFXVV�ZKDW�D�K\SHUEROLF�WDQJHQW�ORRNV�OLNH��OHW
V�EULHÁ\�UHFDSLWXODWH�VRPH�
of the basics of the logistic function and look at a generalization that makes it more
XVHIXO�IRU�PXOWLODEHO�FODVVLÀFDWLRQ�SUREOHPV�

Logistic function recap
As we mentioned in the introduction to this section, the logistic function, often just
called the sigmoid function, is in fact a special case of a sigmoid function. Recall from
the section on logistic regression in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�
8VLQJ�VFLNLW�OHDUQ, that we can use a logistic function to model the probability that
sample x�EHORQJV�WR�WKH�SRVLWLYH�FODVV��FODVV����LQ�D�ELQDU\�FODVVLÀFDWLRQ�WDVN��7KH�
given net input z is shown in the following equation:

0 0 1 1 0
m T

m m i i iz w x w x w x w x w x== + + + = ∑ =!

The logistic function will compute the following:

() 1
1logistic zz
e

φ −=
+

Hsi-Pin Ma

Logistic Function Recap

37

Hsi-Pin Ma

Issues with Multiple Logistic Activation
Units in Output Layer

38

Hsi-Pin Ma

Softmax Function
•A soft form of argmax function

– Instead of giving a single class index, it provides the
probability of each class

39

Parallelizing Neural Network Training with TensorFlow

[�����]

>>> Z = np.dot(W, A[0])
>>> y_probas = logistic(Z)
>>> print('Net Input: \n', Z)
Net Input:
 [1.78 0.76 1.65]
>>> print('Output Units:\n', y_probas)
Output Units:
 [0.85569687 0.68135373 0.83889105]

As we can see in the output, the resulting values cannot be interpreted as
probabilities for a three-class problem. The reason for this is that they do not sum up
to 1. However, this is in fact not a big concern if we only use our model to predict
the class labels, not the class membership probabilities. One way to predict the class
label from the output units obtained earlier is to use the maximum value:

>>> y_class = np.argmax(Z, axis=0)
>>> print('Predicted class label: %d' % y_class)
Predicted class label: 0

In certain contexts, it can be useful to compute meaningful class probabilities for
multiclass predictions. In the next section, we will take a look at a generalization of
the logistic function, the softmax function, which can help us with this task.

Estimating class probabilities in multiclass
FODVVL¿FDWLRQ�YLD�WKH�VRIWPD[�IXQFWLRQ
In the previous section, we saw how we could obtain a class label using the argmax
function. The softmax function is in fact a soft form of the argmax function; instead
of giving a single class index, it provides the probability of each class. Therefore,
it allows us to compute meaningful class probabilities in multiclass settings
(multinomial logistic regression).

In softmax, the probability of a particular sample with net input z belonging to the
ith class can be computed with a normalization term in the denominator, that is, the
sum of all M linear functions:

() ()
1

i

j

z

zM
i

ep y i z z
e

φ
=

= = =
∑

Hsi-Pin Ma

Hyperbolic Tangent Function

•Rescaled version of the logistic function

•The tanh has a broader output spectrum and
ranges in the open interval (-1,1), which can
improve the performance of the back
propagation algorithm

40

Chapter 13

[�����]

To see softmax in action, let's code it up in Python:

>>> def softmax(z):
... return np.exp(z) / np.sum(np.exp(z))
...
>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [0.44668973 0.16107406 0.39223621]

>>> np.sum(y_probas)
1.0

As we can see, the predicted class probabilities now sum up to 1, as we would
expect. It is also notable that the predicted class label is the same as when we applied
the argmax function to the logistic output. Intuitively, it may help to think of the
softmax function as a normalized output that is useful to obtain meaningful class-
membership predictions in multiclass settings.

Broadening the output spectrum using a
hyperbolic tangent
$QRWKHU�VLJPRLG�IXQFWLRQ�WKDW�LV�RIWHQ�XVHG�LQ�WKH�KLGGHQ�OD\HUV�RI�DUWLÀFLDO�QHXUDO�
networks is the hyperbolic tangent (commonly known as tanh), which can be
interpreted as a rescaled version of the logistic function:

() 1
1logistic ze

φ −=
+

z

() ()2 2 1
z z

tanh logistic z z
e ez z
e e

φ φ
−

−

−= × − =
+

The advantage of the hyperbolic tangent over the logistic function is that it has a
broader output spectrum and ranges in the open interval (-1, 1), which can improve
the convergence of the back propagation algorithm (1HXUDO�1HWZRUNV�IRU�3DWWHUQ�
Recognition, C. M. Bishop, 2[IRUG�8QLYHUVLW\�3UHVV, pages: 500-501, 1995).

Chapter 13

[�����]

To see softmax in action, let's code it up in Python:

>>> def softmax(z):
... return np.exp(z) / np.sum(np.exp(z))
...
>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [0.44668973 0.16107406 0.39223621]

>>> np.sum(y_probas)
1.0

As we can see, the predicted class probabilities now sum up to 1, as we would
expect. It is also notable that the predicted class label is the same as when we applied
the argmax function to the logistic output. Intuitively, it may help to think of the
softmax function as a normalized output that is useful to obtain meaningful class-
membership predictions in multiclass settings.

Broadening the output spectrum using a
hyperbolic tangent
$QRWKHU�VLJPRLG�IXQFWLRQ�WKDW�LV�RIWHQ�XVHG�LQ�WKH�KLGGHQ�OD\HUV�RI�DUWLÀFLDO�QHXUDO�
networks is the hyperbolic tangent (commonly known as tanh), which can be
interpreted as a rescaled version of the logistic function:

() 1
1logistic ze

φ −=
+

z

() ()2 2 1
z z

tanh logistic z z
e ez z
e e

φ φ
−

−

−= × − =
+

The advantage of the hyperbolic tangent over the logistic function is that it has a
broader output spectrum and ranges in the open interval (-1, 1), which can improve
the convergence of the back propagation algorithm (1HXUDO�1HWZRUNV�IRU�3DWWHUQ�
Recognition, C. M. Bishop, 2[IRUG�8QLYHUVLW\�3UHVV, pages: 500-501, 1995).

Hsi-Pin Ma 41

Hsi-Pin Ma

Rectified Linear Unit (ReLU) Function

•ReLU solves the problem of vanishing gradients
for logistic and tanh functions at large input
values

•The derivative of ReLU, with respect to its
inputs, is always 1 for positive input values and
always 0 for negative inout values

•ReLU is commonly used in convolutional
neural networks

42

Chapter 13

[449]

Note that we implemented the logistic and tanh functions verbosely for the
purpose of illustration. In practice, we can use NumPy's tanh function to achieve the
same results:

>>> tanh_act = np.tanh(z)

In addition, the logistic function is available in SciPy's special module:

>>> from scipy.special import expit
>>> log_act = expit(z)

5HFWL¿HG�OLQHDU�XQLW�DFWLYDWLRQ
5HFWLÀHG�/LQHDU�8QLW (ReLU) is another activation function that is often used in deep
neural networks. Before we understand ReLU, we should step back and understand
the vanishing gradient problem of tanh and logistic activations.

To understand this problem, let's assume that we initially have the net input 1 20z = ,
which changes to 2 25z = . Computing the tanh activation, we get ()1 1.0zφ ≈ and
()2 1.0zφ ≈ , which shows no change in the output.

This means the derivative of activations with respect to net input diminishes as
z becomes large. As a result, learning weights during the training phase become
very slow because the gradient terms may be very close to zero. ReLU activation
DGGUHVVHV�WKLV�LVVXH��0DWKHPDWLFDOO\��5H/8�LV�GHÀQHG�DV�IROORZV�

() ()max 0,z zφ =

Hsi-Pin Ma

Activation Functions

43

