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Outline
•Building, Compiling, and Running Machine 

Learning Models with TensorFlow
•Training Neural Networks Efficiently with High-

Level TensorFlow APIs
•Choosing Activation Functions for Multilayer 

Networks
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Building, Compiling, and Running Machine 
Learning Models with TensorFlow
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Computation Efficiency
•By default, Python is limited to execution on 

one core due to Global Interpreter Lock (GIL)
•Parallel processing capability of GPUs

– CUDA or OpenCL is not convenient for common people

4

By Aug. 2017



Hsi-Pin Ma

TensorFlow (1/2)

•A scalable and multi-platform programming 
interface for implementing and running 
machine learning algorithms, including 
convenient wrappers for deep learning
– In hardware, TensorFlow supports both CPUs and 

CUDA-based GPUs (for OpenCL-enabled devices is 
experimental)

– In programming languages, TensorFlow has an official 
APIs for Python and C++ 
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TensorFlow (2/2)
• TensorFlow is built around a computation graph 

composed of a set of nodes
– Each node represents an operation that may have zero or more 

inputs or outputs
– The value that flows through the edges of the computation 

graph are called tensors

• Two level of TensorFlow APIs
– Low-level: Giving more flexibility as programmers to combine 

the basic operations and develop complex machine learning 
models

– High-level: Built on top of the low-level TensorFlow APIs, 
allowing building and prototyping models much faster

•TensorFlow Layers and Keras
6
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First Step with Low Level TensorFlow API

•Tensor can be understood as a generalization of 
scalars, vectors, matrices, and so on.
– A scalar can be defined as a rank-0 tensor, a vector as a 

rank-1 tensor, a matrix as a rank-2 tensor, and matrices 
stacked in a third dimension as rank-3 tensor

•In a computation graph, 
– A placeholder is to hold input data

•A placeholder with shape=(None) can take input data of 
any size along the corresponding axis

•In above, the input x is a scalar
– A variable is to hold a parameter tensor
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First Step with Low Level TensorFlow API
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Construction Phase

Execution Phase
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If you should experience problems with the installation procedure, 
I recommend you to read more about system- and SODWIRUP�VSHFLÀF�
recommendations that are provided at https://www.tensorflow.
org/install/. Note that all the code in this chapter can be run on your 
CPU; using a GPU is entirely optional but recommended if you want to 
IXOO\�HQMR\�WKH�EHQHÀWV�RI�7HQVRU)ORZ��,I�\RX�KDYH�D�JUDSKLFV�FDUG��UHIHU�
to the installation page to set it up appropriately. In addition, you may 
ÀQG�WKLV�7HQVRU)ORZ�*38�VHWXS�JXLGH�KHOSIXO��ZKLFK�H[SODLQV�KRZ�WR�
install the NVIDIA graphics card drivers, CUDA, and cuDNN on Ubuntu 
(not required but recommended requirements for running TensorFlow 
on a GPU): https://sebastianraschka.com/pdf/books/dlb/
appendix_h_cloud-computing.pdf.

TensorFlow is built around a computation graph composed of a set of nodes. Each 
node represents an operation that may have zero or more input or output. The 
YDOXHV�WKDW�ÁRZ�WKURXJK�WKH�HGJHV�RI�WKH�FRPSXWDWLRQ�JUDSK�DUH�called tensors.

Tensors can be understood as a generalization of scalars, vectors, matrices, and so 
RQ��0RUH�FRQFUHWHO\��D�VFDODU�FDQ�EH�GHÀQHG�DV�D�UDQN���WHQVRU��D�YHFWRU�DV�D�UDQN�
1 tensor, a matrix as a rank-2 tensor, and matrices stacked in a third dimension as 
rank-3 tensors.

Once a computation graph is built, the graph can be launched in a TensorFlow 
Session for executing different nodes of the graph. In Chapter 14, Going Deeper – The 
0HFKDQLFV�RI�7HQVRU)ORZ, we will cover the steps in building the computation graph 
and launching the graph in a session in more detail.

As a warm-up exercise, we will start with the use of simple scalars from TensorFlow 
to compute a net input z of a sample point x in a one-dimensional dataset with 
weight w and bias b:

z w x b= × +

The following code shows the implementation of this equation in the low-level 
TensorFlow API:

import tensorflow as tf

## create a graph
g = tf.Graph()
with g.as_default():
    x = tf.placeholder(dtype=tf.float32,
                       shape=(None), name='x')
    w = tf.Variable(2.0, name='weight')
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First Step with Low Level TensorFlow API

•In the previous example, the input is fed in an 
element-by-element form

•Below, we feed the input x as a minibatch of 
size 3
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Working with Array Structures

•Create a rank-3 tensor of size batchsize x 2 x 3, 
reshape it, and calculate the column sums and 
means using TensorFlow’s optimized sessions

•When reshaping a tensor, if use ‘-1’ for a specific 
axis, the size of the axis will be computed 
according to the total size of the tensor and the 
shape of the remaining axes
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Working with Array Structures
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Developing a Simple Model with Low-
Level TensorFlow APIs

•Implement the Ordinary Least Square regression 
in a class with low-level TensorFlow API
– Training X:10 instances with 1 dimensional feature vector
– Training label y:10 corresponding target labels
– Two placeholders are needed, one for X and the other y.
– MSE as cost function with gradient descent optimizer
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Linear Regression Model Definition
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Create an Instance of OLS Regression
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Implementing a Training Function
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Train the Model
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Make Prediction
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Training Neural Networks Efficiently 
with High-Level TensorFlow APIs
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TensorFlow High-Level API Examples

•The Layers API
– tensorflow.layers or tf.layers

•The Keras APS
– tensor flow.contrib.keras

20
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Building Multilayer Neural Networks 
Using TensorFlow’s Layers API

•Implement a MLP to classify the handwritten 
digits from the MNIST dataset

21
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Preprocessing of the Dataset
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Load the Dataset
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Build a Computation 
Graph for 3-layer MLP

• Add additional 
hidden layer

• Replace logistic units 
in hidden layer with 
hyperbolic tangent 
activation functions, 
output layer with 
softmax
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Define Cost Functions and Optimizer
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Generate Batches of Data to Train the Network
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Create a TensorFlow Session and Start Training
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Make Prediction on Test Dataset
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Developing MLP with Keras

•Keras has been integrated into TensorFlow since 
version TensorFlow 1.1.0

•Currently Keras is a part of the contrib module 
of TensorFlow

•In the future release, Keras may be moved to 
become a separate module in the TensorFlow 
main API

29
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Load the Dataset
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Initialization
•Use same graph-level random seed as in 

TensorFlow’s Layers API
•Keras provides a convenient tool to convert the 

integer class labels into the 1-hot format
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Use Keras to 
Build Model
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Training the Model
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Make Predictions
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Choosing Activation Functions for 
Multilayer Networks
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Logistic Function Recap

•The logistic function has a range (0,1) and gives 
the likelihood P(y=1|x) of the prediction to be 
positive given a data point x

•It is the inverse of the logit (log odds) function 

36
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Technically, we can use any function as an activation function in multilayer 
neural networks as long as it is differentiable. We can even use linear activation 
functions, such as in Adaline (Chapter 2, Training Simple Machine Learning Algorithms 
IRU�&ODVVLÀFDWLRQ). However, in practice, it would not be very useful to use linear 
activation functions for both hidden and output layers since we want to introduce 
QRQOLQHDULW\�LQ�D�W\SLFDO�DUWLÀFLDO�QHXUDO�QHWZRUN�WR�EH�DEOH�WR�WDFNOH�FRPSOH[�
problems. The sum of linear functions yields a linear function after all.

The logistic activation function that we used in Chapter 12, Implementing a Multilayer 
$UWLÀFLDO�1HXUDO�1HWZRUN�IURP�6FUDWFK, probably mimics the concept of a neuron in a 
EUDLQ�PRVW�FORVHO\³ZH�FDQ�WKLQN�RI�LW�DV�WKH�SUREDELOLW\�RI�ZKHWKHU�D�QHXURQ�ÀUHV� 
or not.

However, logistic activation functions can be problematic if we have highly negative 
input since the output of the sigmoid function would be close to zero in this case. If 
the sigmoid function returns output that are close to zero, the neural network would 
learn very slowly and it becomes more likely that it gets trapped in the local minima 
during training. This is why people often prefer a hyperbolic tangent as an activation 
function in hidden layers.

%HIRUH�ZH�GLVFXVV�ZKDW�D�K\SHUEROLF�WDQJHQW�ORRNV�OLNH��OHW
V�EULHÁ\�UHFDSLWXODWH�VRPH�
of the basics of the logistic function and look at a generalization that makes it more 
XVHIXO�IRU�PXOWLODEHO�FODVVLÀFDWLRQ�SUREOHPV�

Logistic function recap
As we mentioned in the introduction to this section, the logistic function, often just 
called the sigmoid function, is in fact a special case of a sigmoid function. Recall from 
the section on logistic regression in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�
8VLQJ�VFLNLW�OHDUQ, that we can use a logistic function to model the probability that 
sample x�EHORQJV�WR�WKH�SRVLWLYH�FODVV��FODVV����LQ�D�ELQDU\�FODVVLÀFDWLRQ�WDVN��7KH�
given net input z is shown in the following equation:

0 0 1 1 0
m T

m m i i iz w x w x w x w x w x== + + + = ∑ =!

The logistic function will compute the following:

( ) 1
1logistic zz
e

φ −=
+
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Logistic Function Recap
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Issues with Multiple Logistic Activation 
Units in Output Layer

38
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Softmax Function
•A soft form of argmax function

– Instead of giving a single class index, it provides the 
probability of each class

39
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>>> Z = np.dot(W, A[0])
>>> y_probas = logistic(Z)
>>> print('Net Input: \n', Z)
Net Input:
 [ 1.78  0.76  1.65]
>>> print('Output Units:\n', y_probas)
Output Units:
 [ 0.85569687  0.68135373  0.83889105]

As we can see in the output, the resulting values cannot be interpreted as 
probabilities for a three-class problem. The reason for this is that they do not sum up 
to 1. However, this is in fact not a big concern if we only use our model to predict 
the class labels, not the class membership probabilities. One way to predict the class 
label from the output units obtained earlier is to use the maximum value:

>>> y_class = np.argmax(Z, axis=0)
>>> print('Predicted class label: %d' % y_class)
Predicted class label: 0

In certain contexts, it can be useful to compute meaningful class probabilities for 
multiclass predictions. In the next section, we will take a look at a generalization of 
the logistic function, the softmax function, which can help us with this task.

Estimating class probabilities in multiclass 
FODVVL¿FDWLRQ�YLD�WKH�VRIWPD[�IXQFWLRQ
In the previous section, we saw how we could obtain a class label using the argmax 
function. The softmax function is in fact a soft form of the argmax function; instead 
of giving a single class index, it provides the probability of each class. Therefore, 
it allows us to compute meaningful class probabilities in multiclass settings 
(multinomial logistic regression).

In softmax, the probability of a particular sample with net input z belonging to the 
ith class can be computed with a normalization term in the denominator, that is, the 
sum of all M linear functions:

( ) ( )
1

i

j

z

zM
i

ep y i z z
e

φ
=

= = =
∑
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Hyperbolic Tangent Function

•Rescaled version of the logistic function

•The tanh has a broader output spectrum and 
ranges in the open interval (-1,1), which can 
improve the performance of the back 
propagation algorithm

40
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To see softmax in action, let's code it up in Python:

>>> def softmax(z):
...     return np.exp(z) / np.sum(np.exp(z))
...
>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [ 0.44668973  0.16107406  0.39223621]

>>> np.sum(y_probas)
1.0

As we can see, the predicted class probabilities now sum up to 1, as we would 
expect. It is also notable that the predicted class label is the same as when we applied 
the argmax function to the logistic output. Intuitively, it may help to think of the 
softmax function as a normalized output that is useful to obtain meaningful class-
membership predictions in multiclass settings.

Broadening the output spectrum using a 
hyperbolic tangent
$QRWKHU�VLJPRLG�IXQFWLRQ�WKDW�LV�RIWHQ�XVHG�LQ�WKH�KLGGHQ�OD\HUV�RI�DUWLÀFLDO�QHXUDO�
networks is the hyperbolic tangent (commonly known as tanh), which can be 
interpreted as a rescaled version of the logistic function:

( ) 1
1logistic ze

φ −=
+

z

( ) ( )2 2 1
z z

tanh logistic z z
e ez z
e e

φ φ
−

−

−= × − =
+

The advantage of the hyperbolic tangent over the logistic function is that it has a 
broader output spectrum and ranges in the open interval (-1, 1), which can improve 
the convergence of the back propagation algorithm (1HXUDO�1HWZRUNV�IRU�3DWWHUQ�
Recognition, C. M. Bishop, 2[IRUG�8QLYHUVLW\�3UHVV, pages: 500-501, 1995).
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Rectified Linear Unit (ReLU) Function

•ReLU solves the problem of vanishing gradients 
for logistic and tanh functions at large input 
values

•The derivative of ReLU, with respect to its 
inputs, is always 1 for positive input values and 
always 0 for negative inout values

•ReLU is commonly used in convolutional 
neural networks

42
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Note that we implemented the logistic and tanh functions verbosely for the 
purpose of illustration. In practice, we can use NumPy's tanh function to achieve the 
same results:

>>> tanh_act = np.tanh(z)

In addition, the logistic function is available in SciPy's special module:

>>> from scipy.special import expit
>>> log_act = expit(z)

5HFWL¿HG�OLQHDU�XQLW�DFWLYDWLRQ
5HFWLÀHG�/LQHDU�8QLW (ReLU) is another activation function that is often used in deep 
neural networks. Before we understand ReLU, we should step back and understand 
the vanishing gradient problem of tanh and logistic activations.

To understand this problem, let's assume that we initially have the net input 1 20z = ,  
which changes to 2 25z = . Computing the tanh activation, we get ( )1 1.0zφ ≈  and 
( )2 1.0zφ ≈ , which shows no change in the output.

This means the derivative of activations with respect to net input diminishes as 
z becomes large. As a result, learning weights during the training phase become 
very slow because the gradient terms may be very close to zero. ReLU activation 
DGGUHVVHV�WKLV�LVVXH��0DWKHPDWLFDOO\��5H/8�LV�GHÀQHG�DV�IROORZV�

( ) ( )max 0,z zφ =
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Activation Functions

43


