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Outline
•Modeling complex functions with artificial 

neural networks
•Classifying handwritten digits
•Training an artificial neural network
•Convergence in neural networks
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Modeling Complex Functions with 
Artificial Neural Networks
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Single Layer Neural Network Recap
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Adaline 

•Perceptron
– For each training sample      

•compute the prediction value         with current vector
•Update the weights

•Adaline
– Weight update done after entire training set has been seen
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Chapter 2
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So that we can write the update of weight jw  as:
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Since we update all weights simultaneously, our Adaline learning rule becomes:

:= + ∆w w w

For those who are familiar with calculus, the partial derivative of the SSE 
cost function with respect to the jth weight can be obtained as follows:
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Although the Adaline learning rule looks identical to the perceptron rule, we should 
note that the ( )( )izφ  with ( ) ( )i iTz = w x  is a real number and not an integer class label. 
Furthermore, the weight update is calculated based on all samples in the training set 
(instead of updating the weights incrementally after each sample), which is why this 
approach is also referred to as batch gradient descent.

w := w +�w
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Multilayer Feedforward Neural Network
•Multilayer Perceptron (MLP) with 3 layers

•Deep artificial neural network
– A network has more than one hidden layer

6
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Notation

•ith activation unit in the lth layer as
•The activation units       and        are the bias 

units, respectively, which we set equal to 1 
•The activation of the units in the input layer

•The connection between kth unit in layer l to 
the jth unit in layer l+1 written as  
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$V�VKRZQ�LQ�WKH�SUHFHGLQJ�ÀJXUH��ZH�denote the ith activation unit in the lth layer 
as ( )l

ia . To make the math and code implementations a bit more intuitive, we will 
not use numerical indices to refer to layers, but we will use the in superscript for 
the input layer, the h superscript for the hidden layer, and the o superscript for the 
output layer. For instance, ( )in

ia  refers to the ith value in the input layer, ( )h
ia  refers to 

the ith unit in the hidden layer, and ( )out
ia  refers to the ith unit in the output layer. 

Here, the activation units ( )
0
ina  and ( )

0
ha  are the bias units, which we set equal to 1. The 

activation of the units in the input layer is just its input plus the bias unit:
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Later in this chapter, we will implement the multilayer perceptron using 
separate vectors for the bias unit, which makes the code implementation 
PRUH�HIÀFLHQW�DQG�HDVLHU�WR�UHDG��7KLV�FRQFHSW�LV�DOVR�XVHG�E\�7HQVRU)ORZ��
a deep learning library that we will introduce in Chapter 13, Parallelizing 
1HXUDO�1HWZRUN�7UDLQLQJ�ZLWK�7HQVRU)ORZ. However, the mathematical 
equations that will follow, would appear more complex or convoluted 
if we had to work with additional variables for the bias. However, note 
that the computation via appending 1s to the input vector (as shown 
previously) and using a weight variable as bias is exactly the same as 
operating with separate bias vectors; it is merely a different convention.

Each unit in layer l is connected to all units in layer 1l + �YLD�D�ZHLJKW�FRHIÀFLHQW��)RU�
example, the connection between the Nth unit in layer l to the jth unit in layer 1l +  
will be written as ( )l

jwκ, ��5HIHUULQJ�EDFN�WR�WKH�SUHYLRXV�ÀJXUH��ZH�GHQRWH�WKH�ZHLJKW�
matrix that connects the input to the hidden layer as ( )hW , and we write the matrix 
that connects the hidden layer to the output layer as ( )outW .
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Notation Summary
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4

4+1

A 3-4-3 MLP

,PSOHPHQWLQJ�D�0XOWLOD\HU�$UWLÀFLDO�1HXUDO�1HWZRUN�IURP�6FUDWFK

[�����]

:KLOH�RQH�XQLW�LQ�WKH�RXWSXW�OD\HU�ZRXOG�VXIÀFH�IRU�D�ELQDU\�FODVVLÀFDWLRQ�WDVN��ZH�
VDZ�D�PRUH�JHQHUDO�IRUP�RI�D�QHXUDO�QHWZRUN�LQ�WKH�SUHFHGLQJ�ÀJXUH��ZKLFK�DOORZV�
XV�WR�SHUIRUP�PXOWLFODVV�FODVVLÀFDWLRQ�YLD�D�JHQHUDOL]DWLRQ�RI�WKH�One-versus-All 
(OvA) technique. To better understand how this works, remember the one-hot 
representation of categorical variables that we introduced in Chapter 4, Building Good 
Training Sets – Data Preprocessing. For example, we can encode the three class labels 
in the familiar Iris dataset (� 6HWRVD, � 9HUVLFRORU, � 9LUJLQLFD) as follows:

1 0 0
0 0 , 1 1 , 2 0

0 0 1

     
     = = =     
          

7KLV�RQH�KRW�YHFWRU�UHSUHVHQWDWLRQ�DOORZV�XV�WR�WDFNOH�FODVVLÀFDWLRQ�WDVNV�ZLWK�DQ�
arbitrary number of unique class labels present in the training set.

If you are new to neural network representations, the indexing notation (subscripts 
DQG�VXSHUVFULSWV��PD\�ORRN�D�OLWWOH�ELW�FRQIXVLQJ�DW�ÀUVW��:KDW�PD\�VHHP�RYHUO\�
FRPSOLFDWHG�DW�ÀUVW�ZLOO�PDNH�PXFK�PRUH�VHQVH�LQ�ODWHU�VHFWLRQV�ZKHQ�ZH�YHFWRUL]H�
the neural network representation. As introduced earlier, we summarize the weights 
that connect the input and hidden layers by a matrix ( )h m d×∈!W , where d is the 
number of hidden units and m is the number of input units including the bias unit. 
Since it is important to internalize this notation to follow the concepts later in this 
chapter, let's summarize what we have just learned in a descriptive illustration of a 
VLPSOLÀHG�������PXOWLOD\HU�SHUFHSWURQ�
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MLP Learning Procedure
•Three steps 

– Starting at the input layer, forward propagate the 
training data x(i) to generate an output

– Calculate the error we want to minimize with a cost 
function

– Backpropagate the error, find its derivative with 
respective to each weight, and update the model

•After repeating the steps, use forward 
propagation to calculate the network output 
and apply a threshold function to obtain the 
predict the class label in 1-hot representation

9
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Forward Propagation

•Calculate the net input for unit 1 in the hidden 
layer

•Calculate the activation for unit 1 in the hidden 
layer 

– To be able to solve complex problems such as image 
classification, we need non-linear activation functions

– sigmoid (logistic) activation function

10
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Activating a neural network via forward 
propagation
In this section, we will describe the process of forward propagation to calculate the 
output of an MLP model. To understand how it�ÀWV�LQWR�WKH�FRQWH[W�RI�OHDUQLQJ�DQ�
MLP model, let's summarize the MLP learning procedure in three simple steps:

1. Starting at the input layer, we forward propagate the patterns of the training 
data through the network to generate an output.

2. Based on the network's output, we calculate the error that we want to 
minimize using a cost function that we will describe later.

3. :H�EDFNSURSDJDWH�WKH�HUURU��ÀQG�LWV�GHULYDWLYH�ZLWK�UHVSHFW�WR�HDFK�ZHLJKW�LQ�
the network, and update the model.

Finally, after we repeat these three steps for multiple epochs and learn the weights of 
the MLP, we use forward propagation to calculate the network output and apply a 
threshold function to obtain the predicted class labels in the one-hot representation, 
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate an 
output from the patterns in the training data. Since each unit in the hidden layer is 
FRQQHFWHG�WR�DOO�XQLWV�LQ�WKH�LQSXW�OD\HUV��ZH�ÀUVW�FDOFXODWH�WKH�DFWLYDWLRQ�XQLW�RI�WKH�
hidden layer 

( )
1
ha  as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0 0,1 1 1.1 ,1
h in h in h in h

m mz a w a w a w= + + +!

( ) ( )( )1 1
h ha zφ=

Here, ( )
1
hz  is the net input and ( )φ ⋅  is the activation function, which has to be 

differentiable to learn the weights that connect the neurons using a gradient-based 
DSSURDFK��7R�EH�DEOH�WR�VROYH�FRPSOH[�SUREOHPV�VXFK�DV�LPDJH�FODVVLÀFDWLRQ��ZH�
need non-linear activation functions in our MLP model, for example, the sigmoid 
(logistic) activation function that we remember from the section about logistic 
regression in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ:

( ) 1
1 zz
e

φ −=
+
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Sigmoid Function
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Forward Propagation

•MLP is a typical feedforward ANN
– Feedforward: each layer serves as the input to the next 

layer without loops, in contrast to recurrent neural 
networks

•Neurons are typically sigmoid units, not 
perceptrons
– Intuitively consider neurons in MLP as logistic 

regression units

12
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Vectorized Notation (1/2)

•Write activation in a matrix form
•Readability + more efficient code
•Net inputs for the hidden layer

•Dimensions (ignore bias unit for simplicity)
– [h x 1] = [h x m] [m x 1]

•Activations for the hidden layer

13
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As we can remember, the sigmoid function is an S-shaped curve that maps the net 
input z onto a logistic distribution in the range 0 to 1, which cuts the y-axis at ]� ��, as 
shown in the following graph:

MLP is a typical example of a feedforward DUWLÀFLDO�QHXUDO�QHWZRUN��7KH�WHUP�
feedforward refers to the fact that each layer serves as the input to the next layer 
without loops, in contrast to recurrent neural networks—an architecture that we 
will discuss later in this chapter and discuss in more detail in Chapter 16, Modeling 
6HTXHQWLDO�'DWD�8VLQJ�5HFXUUHQW�1HXUDO�1HWZRUNV. The term multilayer perceptron may 
VRXQG�D�OLWWOH�ELW�FRQIXVLQJ�VLQFH�WKH�DUWLÀFLDO�QHXURQV�LQ�WKLV�QHWZRUN�DUFKLWHFWXUH�
are typically sigmoid units, not perceptrons. Intuitively, we can think of the neurons 
in the MLP as logistic regression units that return values in the continuous range 
between 0 and 1.

)RU�SXUSRVHV�RI�FRGH�HIÀFLHQF\�DQG�UHDGDELOLW\��ZH�ZLOO�QRZ�ZULWH�WKH�DFWLYDWLRQ�LQ�D�
more compact form using the concepts of basic linear algebra, which will allow us to 
vectorize our code implementation via NumPy rather than writing multiple nested 
and computationally expensive Python for loops:

( ) ( ) ( )h in h=z a W

( ) ( )( )h hφ=a z
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Vectorized Notation (2/2)
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Here, ( )ina  is our 1 x m dimensional feature vector of a sample ( )inx  plus a bias unit. 
( )hW  is an m x d dimensional weight matrix where d is the number of units in the 

hidden layer. After matrix-vector multiplication, we obtain the 1 x d dimensional net 
input vector ( )hz  to calculate the activation ( )ha  (where ( ) 1h d×∈!a ). Furthermore, we 
can generalize this computation to all n samples in the training set:

( ) ( ) ( )h in h=Z A W

Here, ( )inA  is now an n x m matrix, and the matrix-matrix multiplication will result in 
an n x d dimensional net input matrix ( )hZ . Finally, we apply the activation function 
( )φ ⋅  to each value in the net input matrix to get the n x d activation matrix ( )hA  for 

the next layer (here, the output layer):

( ) ( )( )h hA Zφ=

Similarly, we can write the activation of the output layer in vectorized form for 
multiple samples:

( ) ( ) ( )out h out=Z A W

Here, we multiply the d x t matrix ( )outW  (t is the number of output units) by the n x d 
dimensional matrix ( )hA  to obtain the n x t dimensional matrix ( )outZ  (the columns in 
this matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued 
output of our network:

( ) ( )( ) ( ),out out out n tφ ×= ∈!A Z A

Classifying handwritten digits
In the previous section, we covered a lot of the theory around neural networks, 
which can be a little bit overwhelming if you are new to this topic. Before we 
continue with the discussion of the algorithm for learning the weights of the MLP 
model, backpropagation, let's take a short break from the theory and see a neural 
network in action.
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Cost Function

•The logistic cost function is the same we used 
for logistic regression

•      is the sigmoid activation of the ith sample in 
the dataset

•Regularization: use L2
•Final cost function

16
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Computing the logistic cost function
The logistic cost function that we implemented as the _compute_cost method is 
actually pretty simple to follow since it is the same cost function that we described in 
the logistic regression section in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�
VFLNLW�OHDUQ:

( ) [ ] [ ]( ) [ ]( ) [ ]( )
1

1 1
n

i i i i

i
J y log a y log a

=

= − + − −∑w

Here, [ ]ia  is the sigmoid activation of the ith sample in the dataset, which we 
compute in the forward propagation step:

[ ] [ ]( )i ia zφ=

Again, note that in this context, the superscript [i] is an index for training samples, 
not layers.

Now, let's add a regularization term, which allows us to reduce the degree of 
RYHUÀWWLQJ��$V�\RX�UHFDOO�IURP�HDUOLHU�FKDSWHUV��WKH�/��UHJXODUL]DWLRQ�WHUP�LV�GHÀQHG�
as follows (remember that we don't regularize the bias units):

2 2
2

1
2

m

j
j

L wλ λ
=

= = ∑w

By adding the L2 regularization term to our logistic cost function, we obtain the 
following equation:

( ) [ ] [ ]( ) [ ]( ) [ ]( ) 2
2

1
1 1

2

n
i i i i

i
J y log a y log a λ

=

 = − + − − +  
∑w w

6LQFH�ZH�LPSOHPHQWHG�DQ�0/3�IRU�PXOWLFODVV�FODVVLÀFDWLRQ�WKDW�UHWXUQV�DQ�RXWSXW�
vector of t elements that we need to compare to the t x 1 dimensional target vector 
in the one-hot encoding representation, for example, the activation of the third layer 
and the target class (here, class 2) for a particular sample may look like this:

( )

0.1 0
0.9 1

,

0.3 0

outa y

   
   
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   
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Cost Function for All Units in Output Layer

•The activation of the 3rd layer and the target 
class (class 2) for a particular sample may look 
like

•Need to generalize the logistic cost function to 
all t activation units (without regularization)
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The logistic cost function that we implemented as the _compute_cost method is 
actually pretty simple to follow since it is the same cost function that we described in 
the logistic regression section in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�
VFLNLW�OHDUQ:

( ) [ ] [ ]( ) [ ]( ) [ ]( )
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1 1
n

i i i i
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J y log a y log a
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= − + − −∑w

Here, [ ]ia  is the sigmoid activation of the ith sample in the dataset, which we 
compute in the forward propagation step:

[ ] [ ]( )i ia zφ=

Again, note that in this context, the superscript [i] is an index for training samples, 
not layers.

Now, let's add a regularization term, which allows us to reduce the degree of 
RYHUÀWWLQJ��$V�\RX�UHFDOO�IURP�HDUOLHU�FKDSWHUV��WKH�/��UHJXODUL]DWLRQ�WHUP�LV�GHÀQHG�
as follows (remember that we don't regularize the bias units):
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=
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By adding the L2 regularization term to our logistic cost function, we obtain the 
following equation:
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vector of t elements that we need to compare to the t x 1 dimensional target vector 
in the one-hot encoding representation, for example, the activation of the third layer 
and the target class (here, class 2) for a particular sample may look like this:

( )

0.1 0
0.9 1

,

0.3 0

outa y

   
   
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Thus, we need to generalize the logistic cost function to all t activation units in our 
network. Thus, the cost function (without the regularization term) becomes the 
following:

( ) [ ] [ ]( ) [ ]( ) [ ]( )
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i i i i
j j j j

i j
J y log a y log a

= =

= − + − −∑∑W

Here, again, the superscript (i) is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at 
ÀUVW��EXW�KHUH�ZH�DUH�MXVW�FDOFXODWLQJ�WKH�VXP�RI�DOO�ZHLJKWV�RI�DQ�l layer (without the 
ELDV�WHUP��WKDW�ZH�DGGHG�WR�WKH�ÀUVW�FROXPQ�
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1 1
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l lu un t L
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j j j j j i

i j l i j
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∑∑ ∑∑∑W

Here, ul refers to the number of units in a given layer l, and the following expression 
represents the penalty term:

( )( )11 2

,
1 1 12

l lu uL
l
j i

l i j
wλ +−

= = =
∑∑∑

Remember that our goal is to minimize the cost function ( )J W ; thus we need to 
calculate the partial derivative of the parameters W with respect to each weight for 
every layer in the network:

( ) ( )
,
l
j i

J
w
∂

∂
W

In the next section, we will talk about the backpropagation algorithm, which allows 
us to calculate those partial derivatives to minimize the cost function.
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Cost Function for the Entire Network

•Sum all the weights in the entire network in the 
regularization term

–       refers to the number of units in a given layer l

•To minimize the cost function
– Use back propagation algorithm 

18

Chapter 12

[ 409 ]

Thus, we need to generalize the logistic cost function to all t activation units in our 
network. Thus, the cost function (without the regularization term) becomes the 
following:

( ) [ ] [ ]( ) [ ]( ) [ ]( )
1 1

1 1
n t

i i i i
j j j j

i j
J y log a y log a

= =

= − + − −∑∑W

Here, again, the superscript (i) is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at 
ÀUVW��EXW�KHUH�ZH�DUH�MXVW�FDOFXODWLQJ�WKH�VXP�RI�DOO�ZHLJKWV�RI�DQ�l layer (without the 
ELDV�WHUP��WKDW�ZH�DGGHG�WR�WKH�ÀUVW�FROXPQ�

( ) [ ] [ ]( ) [ ]( ) [ ]( ) ( )( )11 2

,
1 1 1 1 1

1 1
2

l lu un t L
i i i i l
j j j j j i

i j l i j
J y log a y log a wλ +−

= = = = =

 
= − + − − + 

 
∑∑ ∑∑∑W

Here, ul refers to the number of units in a given layer l, and the following expression 
represents the penalty term:

( )( )11 2

,
1 1 12

l lu uL
l
j i

l i j
wλ +−

= = =
∑∑∑

Remember that our goal is to minimize the cost function ( )J W ; thus we need to 
calculate the partial derivative of the parameters W with respect to each weight for 
every layer in the network:

( ) ( )
,
l
j i

J
w
∂

∂
W

In the next section, we will talk about the backpropagation algorithm, which allows 
us to calculate those partial derivatives to minimize the cost function.

L2 penalty term
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Here, ( )ina  is our 1 x m dimensional feature vector of a sample ( )inx  plus a bias unit. 
( )hW  is an m x d dimensional weight matrix where d is the number of units in the 

hidden layer. After matrix-vector multiplication, we obtain the 1 x d dimensional net 
input vector ( )hz  to calculate the activation ( )ha  (where ( ) 1h d×∈!a ). Furthermore, we 
can generalize this computation to all n samples in the training set:

( ) ( ) ( )h in h=Z A W

Here, ( )inA  is now an n x m matrix, and the matrix-matrix multiplication will result in 
an n x d dimensional net input matrix ( )hZ . Finally, we apply the activation function 
( )φ ⋅  to each value in the net input matrix to get the n x d activation matrix ( )hA  for 

the next layer (here, the output layer):

( ) ( )( )h hA Zφ=

Similarly, we can write the activation of the output layer in vectorized form for 
multiple samples:

( ) ( ) ( )out h out=Z A W

Here, we multiply the d x t matrix ( )outW  (t is the number of output units) by the n x d 
dimensional matrix ( )hA  to obtain the n x t dimensional matrix ( )outZ  (the columns in 
this matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued 
output of our network:

( ) ( )( ) ( ),out out out n tφ ×= ∈!A Z A

Classifying handwritten digits
In the previous section, we covered a lot of the theory around neural networks, 
which can be a little bit overwhelming if you are new to this topic. Before we 
continue with the discussion of the algorithm for learning the weights of the MLP 
model, backpropagation, let's take a short break from the theory and see a neural 
network in action.
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•Consider the forward propagation of the inputs
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[https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/]

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Hsi-Pin Ma

Feedforward

21



Hsi-Pin Ma
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•To update w5
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node delta
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Textbook Version (1/2)

•Error vector of the output layer

•Error term of the hidden layer

•Derivation of the cost function
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In a previous section, we saw how to calculate the cost as the difference between 
the activation of the last layer and the target class label. Now, we will see how the 
backpropagation algorithm works to update the weights in our MLP model from 
a mathematical perspective, which we implemented in the # Backpropagation 
section inside the fit method. As we recall from the beginning of this chapter, 
ZH�ÀUVW�QHHG�WR�DSSO\�IRUZDUG�SURSDJDWLRQ�LQ�RUGHU�WR�REWDLQ�WKH�DFWLYDWLRQ�RI�WKH�
output layer, which we formulated as follows:

( ) ( ) ( ) ( )h in h net input of thehiddenlayer=Z A W

( ) ( )( ) ( )h h activationof thehiddenlayerφ=A Z

( ) ( ) ( ) ( )out h out net input of theoutput layer=Z A W

( ) ( )( ) ( )out out activationof theoutput layerφ=A Z

Concisely, we just forward-propagate the input features through the connection in 
the network, as shown in the following illustration:

In backpropagation, we propagate the error from right to left. We start by calculating 
the error vector of the output layer:

( ) ( )out out= −a yδ

Here, y is the vector of the true class labels (the corresponding variable in the 
NeuralNetMLP code is sigma_out).
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Next, we calculate the error term of the hidden layer:

( ) ( ) ( )( )
( )( )

( )

h
Th out out

h

z

z

φ∂
=

∂
!Wδ δ

Here, 
( )( )

( )

h

h

z

z

φ∂

∂
 is simply the derivative of the sigmoid activation function, which we 

computed as sigmoid_derivative_h = a_h * (1. - a_h) in the fit method of 
the NeuralNetMLP:

( ) ( ) ( )( )( )1h hz
a a

z
φ∂

= −
∂

!

Note that the !  symbol means element-wise multiplication in this context.

Although it is not important to follow the next equations, you may be 
curious how I obtained the derivative of the activation function; I have 
summarized the derivation step by step here:

( ) 1
1 zz

z e
φ −

∂  ′ =  ∂ + 

( )2
1

z

z

e
e

−

−
=

+

( )
2

2
1 1

11

z

zz

e
ee

−

−−

+  = − + +

( )
21 1

11 zz ee −−

 = − ++  

( ) ( )( )2z zφ φ= −

( ) ( )( )1z zφ φ= −

( )1a a= −
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Next, we compute the ( )hδ  layer error matrix (sigma_h) as follows:

( ) ( ) ( )( ) ( ) ( )( )( )1
Th out out h ha aδ δ= −! !W

To better understand how we computed this ( )hδ  term, let's walk through it  
in more detail. In the preceding equation, we used the transpose ( )( )ToutW  of the  
h x t-dimensional matrix ( )outW . Here, t is the number of output class labels and h is 
the number of hidden units. The matrix multiplication between the n x t-dimensional 

( )outδ  matrix and the t x h-dimensional matrix ( )( )ToutW , results in an n x t-dimensional 
matrix that we multiplied elementwise by the sigmoid derivative of the same 
dimension to obtain the n x t-dimensional matrix ( )hδ .

Eventually, after obtaining the δ  terms, we can now write the derivation of the cost 
function as follows:

( ) ( ) ( ) ( )

,

h out
j iout

i j

J a
w

δ∂ =
∂

W

( ) ( ) ( ) ( )

,

in h
j ih

i j

J a
w

δ∂ =
∂

W

Next, we need to accumulate the partial derivative of every node in each layer and 
the error of the node in the next layer. However, remember that we need to compute 

( )
,
l
i j∆  for every sample in the training set. Thus, it is easier to implement it as a 

vectorized version like in our NeuralNetMLP code implementation:

( ) ( ) ( )( ) ( )Th h in hδ∆ = ∆ + A

( ) ( ) ( )( ) ( )Tout out h outδ∆ = ∆ + A

Chapter 12

[ 415 ]

Next, we compute the ( )hδ  layer error matrix (sigma_h) as follows:

( ) ( ) ( )( ) ( ) ( )( )( )1
Th out out h ha aδ δ= −! !W

To better understand how we computed this ( )hδ  term, let's walk through it  
in more detail. In the preceding equation, we used the transpose ( )( )ToutW  of the  
h x t-dimensional matrix ( )outW . Here, t is the number of output class labels and h is 
the number of hidden units. The matrix multiplication between the n x t-dimensional 

( )outδ  matrix and the t x h-dimensional matrix ( )( )ToutW , results in an n x t-dimensional 
matrix that we multiplied elementwise by the sigmoid derivative of the same 
dimension to obtain the n x t-dimensional matrix ( )hδ .

Eventually, after obtaining the δ  terms, we can now write the derivation of the cost 
function as follows:

( ) ( ) ( ) ( )

,

h out
j iout

i j

J a
w

δ∂ =
∂

W

( ) ( ) ( ) ( )

,

in h
j ih

i j

J a
w

δ∂ =
∂

W

Next, we need to accumulate the partial derivative of every node in each layer and 
the error of the node in the next layer. However, remember that we need to compute 

( )
,
l
i j∆  for every sample in the training set. Thus, it is easier to implement it as a 

vectorized version like in our NeuralNetMLP code implementation:

( ) ( ) ( )( ) ( )Th h in hδ∆ = ∆ + A

( ) ( ) ( )( ) ( )Tout out h outδ∆ = ∆ + A

Chapter 12

[ 415 ]

Next, we compute the ( )hδ  layer error matrix (sigma_h) as follows:

( ) ( ) ( )( ) ( ) ( )( )( )1
Th out out h ha aδ δ= −! !W

To better understand how we computed this ( )hδ  term, let's walk through it  
in more detail. In the preceding equation, we used the transpose ( )( )ToutW  of the  
h x t-dimensional matrix ( )outW . Here, t is the number of output class labels and h is 
the number of hidden units. The matrix multiplication between the n x t-dimensional 

( )outδ  matrix and the t x h-dimensional matrix ( )( )ToutW , results in an n x t-dimensional 
matrix that we multiplied elementwise by the sigmoid derivative of the same 
dimension to obtain the n x t-dimensional matrix ( )hδ .

Eventually, after obtaining the δ  terms, we can now write the derivation of the cost 
function as follows:

( ) ( ) ( ) ( )

,

h out
j iout

i j

J a
w

δ∂ =
∂

W

( ) ( ) ( ) ( )

,

in h
j ih

i j

J a
w

δ∂ =
∂

W

Next, we need to accumulate the partial derivative of every node in each layer and 
the error of the node in the next layer. However, remember that we need to compute 

( )
,
l
i j∆  for every sample in the training set. Thus, it is easier to implement it as a 

vectorized version like in our NeuralNetMLP code implementation:

( ) ( ) ( )( ) ( )Th h in hδ∆ = ∆ + A

( ) ( ) ( )( ) ( )Tout out h outδ∆ = ∆ + A



Hsi-Pin Ma

Textbook Version (2/2)

•Add the regularization term

•Final weight update
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And after we have accumulated the partial derivatives, we can add the 
regularization term:

( ) ( ) ( ) ( ):l l l except for thebias termλ∆ = ∆ +

The two previous mathematical equations correspond to the code variables 
delta_w_h, delta_b_h, delta_w_out, and delta_b_out in NeuralNetMLP.

Lastly, after we have computed the gradients, we can now update the weights by 
taking an opposite step towards the gradient for each layer l:

( ) ( ) ( ):l l lη= − ∆W W

This is implemented as follows:

self.w_h -= self.eta * delta_w_h
self.b_h -= self.eta * delta_b_h
self.w_out -= self.eta * delta_w_out
self.b_out -= self.eta * delta_b_out

To bring everything together, let's summarize backpropagation in the following 
ÀJXUH�
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To bring everything together, let's summarize backpropagation in the following 
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Summary
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Convergence in Neural Networks
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Min-batch Learning

•Speed and convergence
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Classifying Handwritten Digits
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MNIST Dataset
•Mixed National Institute of Standards and 

Technology (MNIST) dataset
– Constructed by Yan LeCun and others as a popular 

benchmark for ML
– http://yann.lecun.com/exdb/mnist/

•Training set images
•Training set labels
•Test set images
•Test set labels

– was constructed from two datasets of the US NIST
– handwritten digits from 250 different people, 50% high school 

students and 50% employees from the Census Bureau
30

http://yann.lecun.com/exdb/mnist/
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Load Dataset
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•load_mnist returns two arrays
– images: n x m array, n: # of samples, m: # of features 

(pixels)
•Each pixel is represented by a grey intensity value (0-255), 

and is normalized to [-1,1]
– labels: target variable of the class labels (0-9)
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Visualize the First Digit of Each Class
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Visualize 25 Different Versions of 7

33



Hsi-Pin Ma

Save Scaled Images to Avoid Overhead 
Again
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Implementing a Multilayer Perceptron
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# number of hidden units
# Lambda value for L2 regularization
# number of passes over the training set
# learning rate
# Shuffles training data every epoch if True to prevent circles

# number of training samples per mini batch

# Random seed
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Label Onehot Encoding and Sigmoid
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Forward Calculation
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Cost Calculation
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Prediction
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Fit (1/3)
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Fit (2/3)
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Fit (3/3)
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Evaluation
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Training and Validation
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Training Epochs Evaluation
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•eval_ attribute
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Model Training
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Generalization Performance
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Check the Misclassified Samples (1/2)
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Check the Misclassified Samples (2/2)
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