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Outline
•Grouping Objects by Similarity Using k-Means
•Organizing Clusters as a Hierarchical Tree
•Locating Regions of High Density via DBSCAN
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Clustering/Cluster Analysis
•A category of unsupervised learning techniques

– Discover hidden structures in data

•Goal is to find a natural grouping in data so 
items in the same cluster are more similar to 
each other than to those from different clusters

•In this chapter
– Finding centers of similarity using the popular k-means
– Taking a bottom-up approach to build hierarchical 

clustering trees
– Identifying arbitrary shapes of objects using a density-

based clustering approach
3
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Grouping Objects by Similarity 
Using k-Means
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Clustering
•Categories of clustering algorithm

– Prototype-based clustering (k-means belongs to this)
– Hierarchical clustering
– Density-based clustering

•Prototype-based clustering
– Each cluster is represented by a prototype
– A prototype can either be the centroid (average) of similar 

points with continuous features or the medoid (the most 
representative or most frequently occurring point) in the 
case of categorical features

– Usually formulated as a cost minimization clustering 
problem
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k-means Algorithm

•Randomly pick k centroids from the sample 
points as initial cluster centers

•Assign each instance to the nearest centroid

•Move each centroid to the center of the sample 
points that were assigned to it

•Repeat 2 and 3 until the cluster assignments do 
not change or a user-defined tolerance or 
maximum of iterations is reached
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...             X[:,1],

...             c='white',

...             marker='o',

...             edgecolor='black',

...             s=50)
>>> plt.grid()
>>> plt.show()

The dataset that we just created consists of 150 randomly generated points that are 
roughly grouped into three regions with higher density, which is visualized via a 
two-dimensional scatterplot:

In real-world applications of clustering, we do not have any ground truth category 
information (information provided as empirical evidence as opposed to inference) 
about those samples; otherwise, it would fall into the category of supervised 
learning. Thus, our goal is to group the samples based on their feature similarities, 
which can be achieved using the k-means algorithm that can be summarized by the 
following four steps:

1. Randomly pick N centroids from the sample points as initial cluster centers.

2. Assign each sample to the nearest centroid ( )jµ , { }1, ,j k∈ … .
3. Move the centroids to the center of the samples that were assigned to it.
4. Repeat steps 2 and 3 until the cluster assignments do not change or a  

XVHU�GHÀQHG�WROHUDQFH�RU�PD[LPXP�QXPEHU�RI�LWHUDWLRQV�LV�UHDFKHG�
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Generating Clusters for Visualization
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Empirical k-means Cost Function

•Similarity measurement between objects
– Squared Euclidean distance between two points x and y 

in m-dimensional space
– i: sample index, j: cluster index

•For continuous feature values, the empirical k-
means cost function is usually taken as the 
within cluster sum of squared errors (SSE), 
sometimes called cluster inertia
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Now, the next question is how do we measure similarity between objects"�:H�FDQ�GHÀQH�
similarity as the opposite of distance, and a commonly used distance for clustering 
samples with continuous features is the squared Euclidean distance between two 
points x and y in m-dimensional space:
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Note that, in the preceding equation, the index j refers to the jth dimension (feature 
column) of the sample points x and y. In the rest of this section, we will use the 
superscripts i and j to refer to the sample index and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means  
algorithm as a simple optimization problem, an iterative approach for minimizing 
the within-cluster Sum of Squared Errors (SSE), which is sometimes also called 
cluster inertia:
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Here ( )jµ  is the representative point (centroid) for cluster j, and ( ), 1i jw =  if the 
sample ( )ix  is in cluster j; ( ), 0i jw =  otherwise.

Now that we have learned how the simple k-means algorithm works, let's apply it to 
our sample dataset using the KMeans class from scikit-learn's cluster module:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3, 
...             init='random', 
...             n_init=10,
...             max_iter=300, 
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)
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centroid for cluster j

is 1 if x(i) is in cluster j, otherwise 0
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KMeans classs form cluster Module
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•Specifying k a priori is one of the limitations of 
k-means
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Clustering Visualization
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Comments
•It is possible that one or more clusters resulted 

from k-means algorithm can be empty
•In the current k-means implementation of scikit-

learn, if a cluster is empty, the algorithm will 
search for the instance that is farthest away 
from the centroid of the empty cluster and 
reassign the centroid to be this farthest point

•Using a random seed to place the initial 
centroid may result in bad clustering or slow 
convergence if the centroids are chosen poorly
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k-means++
•A smarter way to place the initial centroids

– Initialize an empty set M to store the k centroids being 
selected

– Randomly choose the first centroid       from the input 
samples and assign it to M

– For each sample x(i) that is not in M, find the minimum 
squared distance d(x(i),M)2 to any of the centroids in M

– To randomly select the next centroid     , use a weighted 
probability distribution equal to 

•Select the largest
– Repeat step 2 and 3 until k centroids are chosen
– Proceed with the classic k-means algorithm

12
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In the next subsection, we will introduce a popular variant of the classic k-means 
algorithm called k-means++. While it doesn't address those assumptions and 
drawbacks of k-means discussed in the previous paragraph, it can greatly improve 
the clustering results through more clever seeding of the initial cluster centers.

A smarter way of placing the initial cluster 
centroids using k-means++
So far, we have discussed the classic k-means algorithm that uses a random  
seed to place the initial centroids, which can sometimes result in bad clusterings  
or slow convergence if the initial centroids are chosen poorly. One way to address 
this issue is to run the k-means algorithm multiple times on a dataset and choose  
the best performing model in terms of the SSE. Another strategy is to place the  
initial centroids far away from each other via the k-means++ algorithm, which  
leads to better and more consistent results than the classic k-means (N�PHDQV���� 
The Advantages of Careful Seeding, D. Arthur and 6��9DVVLOYLWVNLL in proceedings  
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,  
pages 1027-1035. Society for Industrial and Applied Mathematics, 2007).  
The initialization in k-means++ can be summarized as follows:

1. Initialize an empty set M to store the N centroids being selected.

2. 5DQGRPO\�FKRRVH�WKH�ÀUVW�FHQWURLG� ( )jµ  from the input samples and assign it 
to M.

3. For each sample ( )ix  that is not in M��ÀQG�WKH�PLQLPXP�VTXDUHG�GLVWDQFH�
( )( )2

,id Mx  to any of the centroids in M.

4. To randomly select the next centroid ( )pµ , use a weighted probability 

distribution equal to 
( )( )

( )( )

2p

2

,
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x
.

5. Repeat steps 2 and 3 until N centroids are chosen.
6. Proceed with the classic k-means algorithm.
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k-means++

•To use k-means++ with scikit-learn’s KMeans 
object, we just need to set the init parameter to 
‘k-means++’

•In fact, ‘k-means++’ is the default argument to 
the init parameter
– classic k-means via init=‘random’
– k-means++ via init=‘k-means++’

13
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Fuzzy C-Means (FCM) Algorithm

•Hard clustering
– Each sample in a dataset is assigned to exactly one 

cluster

•Soft clustering (fuzzy clustering)
– Assign a sample to one or more clusters
– A popular example: fuzzy C-means/soft k-means/fuzzy 

k-means
– Replace hard cluster assignment with probability for 

each point belonging to each cluster

14
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To use k-means++ with scikit-learn's KMeans object, we just need to set the init 
parameter to 'k-means++'. In fact, 'k-means++' is the default argument to the 
init parameter, which is strongly recommended in practice. The only reason why 
we haven't used it in the previous example was to not introduce too many concepts 
all at once. The rest of this section on k-means will use k-means++, but readers are 
encouraged to experiment more with the two different approaches (classic k-means 
via init='random' versus k-means++ via init='k-means++') for placing the initial 
cluster centroids.

Hard versus soft clustering
Hard clustering describes a family of algorithms where each sample in a dataset 
is assigned to exactly one cluster, as in the k-means algorithm that we discussed in 
the previous subsection. In contrast, algorithms for soft clustering (sometimes also 
called fuzzy clustering) assign a sample to one or more clusters. A popular example 
of soft clustering is the fuzzy C-means (FCM) algorithm (also called soft k-means or 
fuzzy k-means). The original�LGHD�JRHV�EDFN�WR�WKH�����V��ZKHQ�-RVHSK�&��'XQQ�ÀUVW�
proposed an early version of fuzzy clustering to improve k-means ($�)X]]\�5HODWLYH�
RI�WKH�,62'$7$�3URFHVV�DQG�,WV�8VH�LQ�'HWHFWLQJ�&RPSDFW�:HOO�6HSDUDWHG�&OXVWHUV, J. 
C. Dunn, 1973). Almost a decade later, James C. Bedzek published his work on the 
improvement of the fuzzy clustering algorithm, which is now known as the FCM 
algorithm (3DWWHUQ�5HFRJQLWLRQ�ZLWK�)X]]\�2EMHFWLYH�)XQFWLRQ�$OJRULWKPV, -��&��%H]GHN, 
Springer Science+Business Media, 2013).

The FCM procedure is very similar to k-means. However, we replace the hard cluster 
assignment with probabilities for each point belonging to each cluster. In k-means, 
we could express the cluster membership of a sample x with a sparse vector of  
binary values:
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Here, the index position with value 1 indicates the cluster centroid ( )jµ  the sample is 
assigned to (assuming { }3, 1, 2, 3k j= ∈ ). In contrast, a membership vector in FCM 
could be represented as follows:
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Here, each value falls in the range [0, 1] and represents a probability of membership 
of the respective cluster centroid. The sum of the memberships for a given sample is 
equal to 1. Similar to the k-means algorithm, we can summarize the FCM algorithm 
in four key steps:

1. Specify the number of N centroids and randomly assign the cluster 
memberships for each point.

2. Compute the cluster centroids ( )jµ , { }1, ,j k∈ … .

3. Update the cluster memberships for each point.

4. 5HSHDW�VWHSV���DQG���XQWLO�WKH�PHPEHUVKLS�FRHIÀFLHQWV�GR�QRW�FKDQJH��RU�D�
XVHU�GHÀQHG�WROHUDQFH�RU�PD[LPXP�QXPEHU�RI�LWHUDWLRQV�LV�UHDFKHG�

The objective function of FCM—we abbreviate it as mJ —looks very similar to the 
within cluster sum-squared-error that we minimize in k-means:

( ) ( ) ( ) 2,
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FCM Algorithm

•Specify the number of k centroids and randomly 
assign the cluster memberships for each point

•Compute the cluster centroids
•Update the cluster memberships for each point
•Repeat steps 2 and 3 until the membership 

coefficients do not change, or a user-defined 
tolerance or maximum number of iterations is 
reached 
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Objective Function of FCM
•Similar to the within cluster sum-squared-error 

that we minimize in k-means

– But w is a real value denoting the cluster membership 
probability, not a binary value

– m: fuzzy coefficient or fuzzier that controls the degree of 
fuzziness. The larger the value of m, the smaller the 
cluster membership w becomes

•Cluster membership probability

16
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However, note that the membership indicator ( ),i jw  is not a binary value as in 
k-means ( ( ) { }, 0,1i jw ∈ ), but a real value that denotes the cluster membership 
probability ( ) [ ]( ), 0,1i jw ∈ ���<RX�DOVR�PD\�KDYH�QRWLFHG�WKDW�ZH�DGGHG�DQ�DGGLWLRQDO�
exponent to ( ),i jw ; the exponent m, any number greater than or equal to one (typically 
P �), is the so-called IX]]LQHVV�FRHIÀFLHQW (or simply IX]]LÀHU) that controls the 
degree of fuzziness. The larger the value of m the smaller the cluster membership 

( ),i jw  becomes, which leads to fuzzier clusters. The cluster membership probability 
itself is calculated as follows:
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For example, if we chose three cluster centers as in the previous k-means example, 
we could calculate the membership of the ( )ix  sample belonging to the ( )jµ  cluster  
as follows:
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The center ( )jµ  of a cluster itself is calculated as the mean of all samples weighted by 
the degree to which each sample belongs to that cluster ( ( ),m i jw ):
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Quality of Clustering
• One of the main challenges in unsupervised learning 

is that we do not know the definitive answer
• To quantify the quality of an unsupervised learning 

task such as clustering, we have to use intrinsic 
metrics such as the within-class SSE (a distortion 
metric) we discussed previously

• In scikit-learn, the within-class SSE can be accessed 
via inertia_ attribute after fitting the Means model
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Using the Elbow Method to Find the 
Optimal Number of Clusters

•Intuitively, if k increases, the distortion will 
decrease
– Samples will be closer to the centroids they are assigned 

to 

•The idea of elbow method is to identify the 
value of k where the distortion begins to 
increase most rapidly

18
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An Elbow Method Example

19

k=3 is a good choice for this dataset
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Quantifying the Quality of Clustering via 
Silhouette Plots

• Silhouette analysis can be used as a graphic tool to 
plot a measure of how tightly grouped the samples 
in the clusters are

• Steps to calculate the silhouette coefficient
– Calculate the cluster cohesion a(i) as the average distance 

between a sample x(i) and all other points in the same cluster
– Calculate the cluster separation b(i) from the next closet cluster as 

the average distance between the sample x(i) and all samples in 
the nearest cluster

– Calculate the silhouette s(i) as the difference between cluster 
cohesion and separation divided by the greater of the two, as
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3. Calculate the silhouette ( )is  as the difference between cluster cohesion and 
separation divided by the greater of the two, as shown here:

( )
( ) ( )

( ) ( ){ }max ,

i i
i

i i

b as
b a
−=

7KH�VLOKRXHWWH�FRHIÀFLHQW�LV�ERXQGHG�LQ�WKH�UDQJH����WR����%DVHG�RQ�WKH�SUHFHGLQJ�
HTXDWLRQ��ZH�FDQ�VHH�WKDW�WKH�VLOKRXHWWH�FRHIÀFLHQW�LV���LI�WKH�FOXVWHU�VHSDUDWLRQ�
and cohesion are equal ( ( ) ( )i ib a= . Furthermore, we get close to an ideal silhouette 
FRHIÀFLHQW�RI���LI� ( ) ( )i ib a>> , since ( )ib �TXDQWLÀHV�KRZ�GLVVLPLODU�D�VDPSOH�LV�WR�RWKHU�
clusters, and ( )ia  tells us how similar it is to the other samples in its own cluster.

7KH�VLOKRXHWWH�FRHIÀFLHQW�LV�DYDLODEOH�DV�silhouette_samples from scikit-learn's 
metric module, and optionally, the silhouette_scores function can be imported 
for convenience. The silhouette_scores function calculates the average silhouette 
FRHIÀFLHQW�DFURVV�DOO�VDPSOHV��ZKLFK�LV�HTXLYDOHQW�WR�numpy.mean(silhouette_
samples(…)). By executing the following code, we will now create a plot of the 
VLOKRXHWWH�FRHIÀFLHQWV�IRU�D�N�PHDQV�FOXVWHULQJ�ZLWK� 3k = :

>>> km = KMeans(n_clusters=3,
...             init='k-means++',
...             n_init=10,
...             max_iter=300,
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

>>> import numpy as np
>>> from matplotlib import cm
>>> from sklearn.metrics import silhouette_samples
>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X, 
...                                      y_km, 
...                                      metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
...     c_silhouette_vals = silhouette_vals[y_km == c]
...     c_silhouette_vals.sort()
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Quantifying the Quality of Clustering via 
Silhouette Plots

•The silhouette coefficient is available as 
silhouette_samples from scikit-learn’s 
metric module

•The silhouette_scores function calculates the 
average silhouette coefficient across all samples, 
which is equivalent to 
numpy.mean(silhouette_samples(…))
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A Silhouette Plot Example (1/3)
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A Silhouette Plot Example (2/3)

23



Hsi-Pin Ma

A Silhouette Plot Example (3/3)
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Silhouette Plot for “Bad” Clustering (1/3)
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Silhouette Plot for “Bad” Clustering (2/3)
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Silhouette Plot for “Bad” Clustering (3/3)
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Hierarchical Clustering
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Hierarchical Clustering
• Advantages

– Plot dendrograms (visualization of a binary hierarchical clustering) 
for interpretation of the results by creating meaningful taxonomies 

– Do not need to specify the number of clusters beforehand

• Two approaches
– Divisive hierarchical clustering

•A top-down approach which starts with one cluster that encompasses 
all points in the dataset, and iteratively split the cluster into smaller 
clusters until each cluster only contains one instance

– Agglomerative hierarchical clustering
•A bottom-up approach which starts with each instance forming 

an individual cluster and merges the closest pairs of clusters 
until only one cluster remains
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Linkage-Based Clustering
• Agglomerative iteration

– Merge two clusters to form a new cluster if the distance is the smallest 
among all pairs of clusters until a stopping criteria in reached

•Single linkage (Min linkage)
– Compute the distances between most similar members for each pair of 

clusters
– Merge the two cluster for each other which the distance between the most 

similar members is the smallest

•Complete linkage (Max linkage)
– Similar to single linkage but compare distance between the most dissimilar 

members to perform the merge

– Stopping criteria
•A fixed number k of clusters is reached
•An upper bound r of cluster distance                                                             

is broken 
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Complete Linkage Clustering

•Compute the distance matrix of all samples
•Represent each data point as a singleton cluster
•Merge the two closest clusters based on the 

distance between the most dissimilar (distant) 
members

•Update the similarity matrix
•Repeat steps 2-4 until only one single cluster 

remains
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Sample Data Generation for Demo
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Performing Hierarchical Clustering on a 
Distance Matrix
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Approaches for Hierarchical Clustering (1/3)
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Approaches for Hierarchical Clustering (2/3)
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Approaches for Hierarchical Clustering (3/3)
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Dendrogram for Visualization
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Attaching Dendrograms to a Heat Map
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Applying Agglomerative Clustering via 
Scikit-learn

•Use AgglomerativeClustering and set 
n_clusters 
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Locating Regions of High Density via 
DBSCAN

40



Hsi-Pin Ma

DBSCAN

•Density-based Spatial Clustering of 
Applications with Noise
– DBSCAN does not make assumptions about spherical 

clusters like k-means, nor it partition the dataset into a 
hierarchical tree that requires a manual cut-off points

– Assign cluster labels based on dense region of points
– Density is defined as the number of points within a 

specific radius 
– Given a set of points in some space, it groups together 

points that are closely packed together, marking as 
outliers points that lie alone in low-density regions
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Locating regions of high density via 
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN), which does not make 
assumptions about spherical clusters like k-means, nor does it partition the dataset 
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN, 
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample 
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,  
but lies within the ε  radius of a core point

�� All other points that are neither core nor border points are considered  
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be 
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points 
(core points are connected if they are no farther away than ε ).

2. Assign each border point to the cluster of its corresponding core point.
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DBSCAN Algorithm (1/3)

•Step 1: A special label is assigned to each data 
point using the following criteria
– A core point: a point which has at least a specific number 

(MinPts) of neighboring points falling within the 
specified radius

– A border point: a point which has fewer neighbors than 
MinPts within the specified radius     but lies within the 
radius of a core point

– A noise point: a point which is neither a core nor a 
border point
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Locating regions of high density via 
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN), which does not make 
assumptions about spherical clusters like k-means, nor does it partition the dataset 
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN, 
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample 
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,  
but lies within the ε  radius of a core point

�� All other points that are neither core nor border points are considered  
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be 
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points 
(core points are connected if they are no farther away than ε ).

2. Assign each border point to the cluster of its corresponding core point.
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Locating regions of high density via 
DBSCAN
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Spatial Clustering of Applications with Noise (DBSCAN), which does not make 
assumptions about spherical clusters like k-means, nor does it partition the dataset 
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN, 
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�� A point is considered a core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε
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DBSCAN Algorithm (2/3)
•Step 2: Form a separate cluster for each 

disconnected core point or for a connected 
group of core points
– Two core points are connected (by an edge) if they are no 

farther away than   . This establish a graph of core points
– A connected group of core points is a (path-)connected 

component of the graph of core points
– A disconnected core point is a core point which forms a 

(path-)connected component by itself in the graph of 
core points

•Step 3: Assign each border point to the cluster 
of its corresponding core points
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Locating regions of high density via 
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN), which does not make 
assumptions about spherical clusters like k-means, nor does it partition the dataset 
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN, 
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample 
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,  
but lies within the ε  radius of a core point

�� All other points that are neither core nor border points are considered  
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be 
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points 
(core points are connected if they are no farther away than ε ).

2. Assign each border point to the cluster of its corresponding core point.
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DBSCAN Algorithm (3/3)
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Half-moon-shaped Dataset
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Use k-means and Hierarchical Clustering
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k-means and Hierarchical Clustering
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DBSCAN
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Clustering data of any shapes
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Issues of DBSCAN

•Two hyperparameters, i.e., MinPts and      to be 
optimized

•Finding a good combination of MinPts and      
can be problematic if the density differences in 
the dataset are relatively large

•curse of dimensionality increases as increasing 
number of features and fixed number of 
training samples, especially when using 
Euclidean distance metric
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Locating regions of high density via 
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN), which does not make 
assumptions about spherical clusters like k-means, nor does it partition the dataset 
into hierarchies that require a manual cut-off point. As its name implies, density-
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(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,  
but lies within the ε  radius of a core point

�� All other points that are neither core nor border points are considered  
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be 
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points 
(core points are connected if they are no farther away than ε ).

2. Assign each border point to the cluster of its corresponding core point.

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via 
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN), which does not make 
assumptions about spherical clusters like k-means, nor does it partition the dataset 
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN, 
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample 
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,  
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1. Form a separate cluster for each core point or connected group of core points 
(core points are connected if they are no farther away than ε ).

2. Assign each border point to the cluster of its corresponding core point.
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Common Practices for Clustering Algorithms
•To reduce the curse of dimensionality, apply 

unsupervised dimensionality reduction 
techniques prior to performing clustering, such 
as PCA or RBF-kernel PCA

•To visualize the clusters, compress datasets 
down to 2D subspace. This is particularly helpful 
for evaluating results

•A successful clustering not only depends on the 
algorithm and its hyperparameters, but also on 
the choice of an appropriate distance metric and 
the use of domain knowledge
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