
Working with Unlabeled Data -
Clustering Analysis

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline
•Grouping Objects by Similarity Using k-Means
•Organizing Clusters as a Hierarchical Tree
•Locating Regions of High Density via DBSCAN

2

Hsi-Pin Ma

Clustering/Cluster Analysis
•A category of unsupervised learning techniques

– Discover hidden structures in data

•Goal is to find a natural grouping in data so
items in the same cluster are more similar to
each other than to those from different clusters

•In this chapter
– Finding centers of similarity using the popular k-means
– Taking a bottom-up approach to build hierarchical

clustering trees
– Identifying arbitrary shapes of objects using a density-

based clustering approach
3

Hsi-Pin Ma

Grouping Objects by Similarity
Using k-Means

4

Hsi-Pin Ma

Clustering
•Categories of clustering algorithm

– Prototype-based clustering (k-means belongs to this)
– Hierarchical clustering
– Density-based clustering

•Prototype-based clustering
– Each cluster is represented by a prototype
– A prototype can either be the centroid (average) of similar

points with continuous features or the medoid (the most
representative or most frequently occurring point) in the
case of categorical features

– Usually formulated as a cost minimization clustering
problem

5

Hsi-Pin Ma

k-means Algorithm

•Randomly pick k centroids from the sample
points as initial cluster centers

•Assign each instance to the nearest centroid

•Move each centroid to the center of the sample
points that were assigned to it

•Repeat 2 and 3 until the cluster assignments do
not change or a user-defined tolerance or
maximum of iterations is reached

6

Chapter 11

[349]

... X[:,1],

... c='white',

... marker='o',

... edgecolor='black',

... s=50)
>>> plt.grid()
>>> plt.show()

The dataset that we just created consists of 150 randomly generated points that are
roughly grouped into three regions with higher density, which is visualized via a
two-dimensional scatterplot:

In real-world applications of clustering, we do not have any ground truth category
information (information provided as empirical evidence as opposed to inference)
about those samples; otherwise, it would fall into the category of supervised
learning. Thus, our goal is to group the samples based on their feature similarities,
which can be achieved using the k-means algorithm that can be summarized by the
following four steps:

1. Randomly pick N centroids from the sample points as initial cluster centers.

2. Assign each sample to the nearest centroid ()jµ , { }1, ,j k∈ … .
3. Move the centroids to the center of the samples that were assigned to it.
4. Repeat steps 2 and 3 until the cluster assignments do not change or a

XVHU�GHÀQHG�WROHUDQFH�RU�PD[LPXP�QXPEHU�RI�LWHUDWLRQV�LV�UHDFKHG�

Hsi-Pin Ma

Generating Clusters for Visualization

7

Hsi-Pin Ma

Empirical k-means Cost Function

•Similarity measurement between objects
– Squared Euclidean distance between two points x and y

in m-dimensional space
– i: sample index, j: cluster index

•For continuous feature values, the empirical k-
means cost function is usually taken as the
within cluster sum of squared errors (SSE),
sometimes called cluster inertia

8

Working with Unlabeled Data – Clustering Analysis

[350]

Now, the next question is how do we measure similarity between objects"�:H�FDQ�GHÀQH�
similarity as the opposite of distance, and a commonly used distance for clustering
samples with continuous features is the squared Euclidean distance between two
points x and y in m-dimensional space:

() ()2 22
2

1
,

m

j j
j

d x y
=

= − = −∑x y x y

Note that, in the preceding equation, the index j refers to the jth dimension (feature
column) of the sample points x and y. In the rest of this section, we will use the
superscripts i and j to refer to the sample index and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means
algorithm as a simple optimization problem, an iterative approach for minimizing
the within-cluster Sum of Squared Errors (SSE), which is sometimes also called
cluster inertia:

() () () 2,

21 1

n k
i j i j

i j
SSE w

= =

= −∑∑ x µ

Here ()jµ is the representative point (centroid) for cluster j, and (), 1i jw = if the
sample ()ix is in cluster j; (), 0i jw = otherwise.

Now that we have learned how the simple k-means algorithm works, let's apply it to
our sample dataset using the KMeans class from scikit-learn's cluster module:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3,
... init='random',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)

Working with Unlabeled Data – Clustering Analysis

[350]

Now, the next question is how do we measure similarity between objects"�:H�FDQ�GHÀQH�
similarity as the opposite of distance, and a commonly used distance for clustering
samples with continuous features is the squared Euclidean distance between two
points x and y in m-dimensional space:

() ()2 22
2

1
,

m

j j
j

d x y
=

= − = −∑x y x y

Note that, in the preceding equation, the index j refers to the jth dimension (feature
column) of the sample points x and y. In the rest of this section, we will use the
superscripts i and j to refer to the sample index and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means
algorithm as a simple optimization problem, an iterative approach for minimizing
the within-cluster Sum of Squared Errors (SSE), which is sometimes also called
cluster inertia:

() () () 2,

21 1

n k
i j i j

i j
SSE w

= =

= −∑∑ x µ

Here ()jµ is the representative point (centroid) for cluster j, and (), 1i jw = if the
sample ()ix is in cluster j; (), 0i jw = otherwise.

Now that we have learned how the simple k-means algorithm works, let's apply it to
our sample dataset using the KMeans class from scikit-learn's cluster module:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3,
... init='random',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)

centroid for cluster j

is 1 if x(i) is in cluster j, otherwise 0

Hsi-Pin Ma

KMeans classs form cluster Module

9

•Specifying k a priori is one of the limitations of
k-means

Hsi-Pin Ma

Clustering Visualization

10

Hsi-Pin Ma

Comments
•It is possible that one or more clusters resulted

from k-means algorithm can be empty
•In the current k-means implementation of scikit-

learn, if a cluster is empty, the algorithm will
search for the instance that is farthest away
from the centroid of the empty cluster and
reassign the centroid to be this farthest point

•Using a random seed to place the initial
centroid may result in bad clustering or slow
convergence if the centroids are chosen poorly

11

Hsi-Pin Ma

k-means++
•A smarter way to place the initial centroids

– Initialize an empty set M to store the k centroids being
selected

– Randomly choose the first centroid from the input
samples and assign it to M

– For each sample x(i) that is not in M, find the minimum
squared distance d(x(i),M)2 to any of the centroids in M

– To randomly select the next centroid , use a weighted
probability distribution equal to

•Select the largest
– Repeat step 2 and 3 until k centroids are chosen
– Proceed with the classic k-means algorithm

12

μ(j)

μ(p)

Chapter 11

[353]

In the next subsection, we will introduce a popular variant of the classic k-means
algorithm called k-means++. While it doesn't address those assumptions and
drawbacks of k-means discussed in the previous paragraph, it can greatly improve
the clustering results through more clever seeding of the initial cluster centers.

A smarter way of placing the initial cluster
centroids using k-means++
So far, we have discussed the classic k-means algorithm that uses a random
seed to place the initial centroids, which can sometimes result in bad clusterings
or slow convergence if the initial centroids are chosen poorly. One way to address
this issue is to run the k-means algorithm multiple times on a dataset and choose
the best performing model in terms of the SSE. Another strategy is to place the
initial centroids far away from each other via the k-means++ algorithm, which
leads to better and more consistent results than the classic k-means (N�PHDQV����
The Advantages of Careful Seeding, D. Arthur and 6��9DVVLOYLWVNLL in proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027-1035. Society for Industrial and Applied Mathematics, 2007).
The initialization in k-means++ can be summarized as follows:

1. Initialize an empty set M to store the N centroids being selected.

2. 5DQGRPO\�FKRRVH�WKH�ÀUVW�FHQWURLG� ()jµ from the input samples and assign it
to M.

3. For each sample ()ix that is not in M��ÀQG�WKH�PLQLPXP�VTXDUHG�GLVWDQFH�
()()2

,id Mx to any of the centroids in M.

4. To randomly select the next centroid ()pµ , use a weighted probability

distribution equal to
()()

()()

2p

2

,

,i
i

d

d∑
M

M

µ

x
.

5. Repeat steps 2 and 3 until N centroids are chosen.
6. Proceed with the classic k-means algorithm.

Hsi-Pin Ma

k-means++

•To use k-means++ with scikit-learn’s KMeans
object, we just need to set the init parameter to
‘k-means++’

•In fact, ‘k-means++’ is the default argument to
the init parameter
– classic k-means via init=‘random’
– k-means++ via init=‘k-means++’

13

Hsi-Pin Ma

Fuzzy C-Means (FCM) Algorithm

•Hard clustering
– Each sample in a dataset is assigned to exactly one

cluster

•Soft clustering (fuzzy clustering)
– Assign a sample to one or more clusters
– A popular example: fuzzy C-means/soft k-means/fuzzy

k-means
– Replace hard cluster assignment with probability for

each point belonging to each cluster

14

Working with Unlabeled Data – Clustering Analysis

[354]

To use k-means++ with scikit-learn's KMeans object, we just need to set the init
parameter to 'k-means++'. In fact, 'k-means++' is the default argument to the
init parameter, which is strongly recommended in practice. The only reason why
we haven't used it in the previous example was to not introduce too many concepts
all at once. The rest of this section on k-means will use k-means++, but readers are
encouraged to experiment more with the two different approaches (classic k-means
via init='random' versus k-means++ via init='k-means++') for placing the initial
cluster centroids.

Hard versus soft clustering
Hard clustering describes a family of algorithms where each sample in a dataset
is assigned to exactly one cluster, as in the k-means algorithm that we discussed in
the previous subsection. In contrast, algorithms for soft clustering (sometimes also
called fuzzy clustering) assign a sample to one or more clusters. A popular example
of soft clustering is the fuzzy C-means (FCM) algorithm (also called soft k-means or
fuzzy k-means). The original�LGHD�JRHV�EDFN�WR�WKH�����V��ZKHQ�-RVHSK�&��'XQQ�ÀUVW�
proposed an early version of fuzzy clustering to improve k-means ($�)X]]\�5HODWLYH�
RI�WKH�,62'7�3URFHVV�DQG�,WV�8VH�LQ�'HWHFWLQJ�&RPSDFW�:HOO�6HSDUDWHG�&OXVWHUV, J.
C. Dunn, 1973). Almost a decade later, James C. Bedzek published his work on the
improvement of the fuzzy clustering algorithm, which is now known as the FCM
algorithm (3DWWHUQ�5HFRJQLWLRQ�ZLWK�)X]]\�2EMHFWLYH�)XQFWLRQ�$OJRULWKPV, -��&��%H]GHN,
Springer Science+Business Media, 2013).

The FCM procedure is very similar to k-means. However, we replace the hard cluster
assignment with probabilities for each point belonging to each cluster. In k-means,
we could express the cluster membership of a sample x with a sparse vector of
binary values:

()

()

()

1

2

3

0
1
0

 →
 

→ 
 

→  

µ

µ

µ

Chapter 11

[355]

Here, the index position with value 1 indicates the cluster centroid ()jµ the sample is
assigned to (assuming { }3, 1, 2, 3k j= ∈). In contrast, a membership vector in FCM
could be represented as follows:

()

()

()

1

2

3

0.10
0.85
0.05

 →
 

→ 
 

→  

µ

µ

µ

Here, each value falls in the range [0, 1] and represents a probability of membership
of the respective cluster centroid. The sum of the memberships for a given sample is
equal to 1. Similar to the k-means algorithm, we can summarize the FCM algorithm
in four key steps:

1. Specify the number of N centroids and randomly assign the cluster
memberships for each point.

2. Compute the cluster centroids ()jµ , { }1, ,j k∈ … .

3. Update the cluster memberships for each point.

4. 5HSHDW�VWHSV���DQG���XQWLO�WKH�PHPEHUVKLS�FRHIÀFLHQWV�GR�QRW�FKDQJH��RU�D�
XVHU�GHÀQHG�WROHUDQFH�RU�PD[LPXP�QXPEHU�RI�LWHUDWLRQV�LV�UHDFKHG�

The objective function of FCM—we abbreviate it as mJ —looks very similar to the
within cluster sum-squared-error that we minimize in k-means:

() () () 2,

21 1

n k
m i j i j

m
i j

J w
= =

= −∑∑ x µ

Hsi-Pin Ma

FCM Algorithm

•Specify the number of k centroids and randomly
assign the cluster memberships for each point

•Compute the cluster centroids
•Update the cluster memberships for each point
•Repeat steps 2 and 3 until the membership

coefficients do not change, or a user-defined
tolerance or maximum number of iterations is
reached

15

Chapter 11

[355]

Here, the index position with value 1 indicates the cluster centroid ()jµ the sample is
assigned to (assuming { }3, 1, 2, 3k j= ∈). In contrast, a membership vector in FCM
could be represented as follows:

()

()

()

1

2

3

0.10
0.85
0.05

 →
 

→ 
 

→  

µ

µ

µ

Here, each value falls in the range [0, 1] and represents a probability of membership
of the respective cluster centroid. The sum of the memberships for a given sample is
equal to 1. Similar to the k-means algorithm, we can summarize the FCM algorithm
in four key steps:

1. Specify the number of N centroids and randomly assign the cluster
memberships for each point.

2. Compute the cluster centroids ()jµ , { }1, ,j k∈ … .

3. Update the cluster memberships for each point.

4. 5HSHDW�VWHSV���DQG���XQWLO�WKH�PHPEHUVKLS�FRHIÀFLHQWV�GR�QRW�FKDQJH��RU�D�
XVHU�GHÀQHG�WROHUDQFH�RU�PD[LPXP�QXPEHU�RI�LWHUDWLRQV�LV�UHDFKHG�

The objective function of FCM—we abbreviate it as mJ —looks very similar to the
within cluster sum-squared-error that we minimize in k-means:

() () () 2,

21 1

n k
m i j i j

m
i j

J w
= =

= −∑∑ x µ

Hsi-Pin Ma

Objective Function of FCM
•Similar to the within cluster sum-squared-error

that we minimize in k-means

– But w is a real value denoting the cluster membership
probability, not a binary value

– m: fuzzy coefficient or fuzzier that controls the degree of
fuzziness. The larger the value of m, the smaller the
cluster membership w becomes

•Cluster membership probability

16

Chapter 11

[355]

Here, the index position with value 1 indicates the cluster centroid ()jµ the sample is
assigned to (assuming { }3, 1, 2, 3k j= ∈). In contrast, a membership vector in FCM
could be represented as follows:

()

()

()

1

2

3

0.10
0.85
0.05

 →
 

→ 
 

→  

µ

µ

µ

Here, each value falls in the range [0, 1] and represents a probability of membership
of the respective cluster centroid. The sum of the memberships for a given sample is
equal to 1. Similar to the k-means algorithm, we can summarize the FCM algorithm
in four key steps:

1. Specify the number of N centroids and randomly assign the cluster
memberships for each point.

2. Compute the cluster centroids ()jµ , { }1, ,j k∈ … .

3. Update the cluster memberships for each point.

4. 5HSHDW�VWHSV���DQG���XQWLO�WKH�PHPEHUVKLS�FRHIÀFLHQWV�GR�QRW�FKDQJH��RU�D�
XVHU�GHÀQHG�WROHUDQFH�RU�PD[LPXP�QXPEHU�RI�LWHUDWLRQV�LV�UHDFKHG�

The objective function of FCM—we abbreviate it as mJ —looks very similar to the
within cluster sum-squared-error that we minimize in k-means:

() () () 2,

21 1

n k
m i j i j

m
i j

J w
= =

= −∑∑ x µ

Working with Unlabeled Data – Clustering Analysis

[�����]

However, note that the membership indicator (),i jw is not a binary value as in
k-means (() { }, 0,1i jw ∈), but a real value that denotes the cluster membership
probability () [](), 0,1i jw ∈ ���<RX�DOVR�PD\�KDYH�QRWLFHG�WKDW�ZH�DGGHG�DQ�DGGLWLRQDO�
exponent to (),i jw ; the exponent m, any number greater than or equal to one (typically
P �), is the so-called IX]]LQHVV�FRHIÀFLHQW (or simply IX]]LÀHU) that controls the
degree of fuzziness. The larger the value of m the smaller the cluster membership

(),i jw becomes, which leads to fuzzier clusters. The cluster membership probability
itself is calculated as follows:

()
() ()

() ()

12
1

, 2

1
2

i j m
k

i j
i p

p
w

−

−

=

  −  =   −    

∑
x

x

µ

µ

For example, if we chose three cluster centers as in the previous k-means example,
we could calculate the membership of the ()ix sample belonging to the ()jµ cluster
as follows:

()
() ()

() ()

() ()

() ()

() ()

() ()

12 2 2
1 1 1

, 2 2 2
1 2 3

2 2 2

i j i j i jm m m
i j

i i i
w

−

− − −
      − − −      = + +      − − −        

x x x

x x x

µ µ µ

µ µ µ

The center ()jµ of a cluster itself is calculated as the mean of all samples weighted by
the degree to which each sample belongs to that cluster ((),m i jw):

()
() ()

()

,
1

,
1

n m i j i
j i

n m i j
i

w

w
=

=

=∑
∑

x
µ

Working with Unlabeled Data – Clustering Analysis

[�����]

However, note that the membership indicator (),i jw is not a binary value as in
k-means (() { }, 0,1i jw ∈), but a real value that denotes the cluster membership
probability () [](), 0,1i jw ∈ ���<RX�DOVR�PD\�KDYH�QRWLFHG�WKDW�ZH�DGGHG�DQ�DGGLWLRQDO�
exponent to (),i jw ; the exponent m, any number greater than or equal to one (typically
P �), is the so-called IX]]LQHVV�FRHIÀFLHQW (or simply IX]]LÀHU) that controls the
degree of fuzziness. The larger the value of m the smaller the cluster membership

(),i jw becomes, which leads to fuzzier clusters. The cluster membership probability
itself is calculated as follows:

()
() ()

() ()

12
1

, 2

1
2

i j m
k

i j
i p

p
w

−

−

=

  −  =   −    

∑
x

x

µ

µ

For example, if we chose three cluster centers as in the previous k-means example,
we could calculate the membership of the ()ix sample belonging to the ()jµ cluster
as follows:

()
() ()

() ()

() ()

() ()

() ()

() ()

12 2 2
1 1 1

, 2 2 2
1 2 3

2 2 2

i j i j i jm m m
i j

i i i
w

−

− − −
      − − −      = + +      − − −        

x x x

x x x

µ µ µ

µ µ µ

The center ()jµ of a cluster itself is calculated as the mean of all samples weighted by
the degree to which each sample belongs to that cluster ((),m i jw):

()
() ()

()

,
1

,
1

n m i j i
j i

n m i j
i

w

w
=

=

=∑
∑

x
µ

Working with Unlabeled Data – Clustering Analysis

[�����]

However, note that the membership indicator (),i jw is not a binary value as in
k-means (() { }, 0,1i jw ∈), but a real value that denotes the cluster membership
probability () [](), 0,1i jw ∈ ���<RX�DOVR�PD\�KDYH�QRWLFHG�WKDW�ZH�DGGHG�DQ�DGGLWLRQDO�
exponent to (),i jw ; the exponent m, any number greater than or equal to one (typically
P �), is the so-called IX]]LQHVV�FRHIÀFLHQW (or simply IX]]LÀHU) that controls the
degree of fuzziness. The larger the value of m the smaller the cluster membership

(),i jw becomes, which leads to fuzzier clusters. The cluster membership probability
itself is calculated as follows:

()
() ()

() ()

12
1

, 2

1
2

i j m
k

i j
i p

p
w

−

−

=

  −  =   −    

∑
x

x

µ

µ

For example, if we chose three cluster centers as in the previous k-means example,
we could calculate the membership of the ()ix sample belonging to the ()jµ cluster
as follows:

()
() ()

() ()

() ()

() ()

() ()

() ()

12 2 2
1 1 1

, 2 2 2
1 2 3

2 2 2

i j i j i jm m m
i j

i i i
w

−

− − −
      − − −      = + +      − − −        

x x x

x x x

µ µ µ

µ µ µ

The center ()jµ of a cluster itself is calculated as the mean of all samples weighted by
the degree to which each sample belongs to that cluster ((),m i jw):

()
() ()

()

,
1

,
1

n m i j i
j i

n m i j
i

w

w
=

=

=∑
∑

x
µ

Hsi-Pin Ma

Quality of Clustering
• One of the main challenges in unsupervised learning

is that we do not know the definitive answer
• To quantify the quality of an unsupervised learning

task such as clustering, we have to use intrinsic
metrics such as the within-class SSE (a distortion
metric) we discussed previously

• In scikit-learn, the within-class SSE can be accessed
via inertia_ attribute after fitting the Means model

17

Hsi-Pin Ma

Using the Elbow Method to Find the
Optimal Number of Clusters

•Intuitively, if k increases, the distortion will
decrease
– Samples will be closer to the centroids they are assigned

to

•The idea of elbow method is to identify the
value of k where the distortion begins to
increase most rapidly

18

Hsi-Pin Ma

An Elbow Method Example

19

k=3 is a good choice for this dataset

Hsi-Pin Ma

Quantifying the Quality of Clustering via
Silhouette Plots

• Silhouette analysis can be used as a graphic tool to
plot a measure of how tightly grouped the samples
in the clusters are

• Steps to calculate the silhouette coefficient
– Calculate the cluster cohesion a(i) as the average distance

between a sample x(i) and all other points in the same cluster
– Calculate the cluster separation b(i) from the next closet cluster as

the average distance between the sample x(i) and all samples in
the nearest cluster

– Calculate the silhouette s(i) as the difference between cluster
cohesion and separation divided by the greater of the two, as

20

Chapter 11

[359]

3. Calculate the silhouette ()is as the difference between cluster cohesion and
separation divided by the greater of the two, as shown here:

()
() ()

() (){ }max ,

i i
i

i i

b as
b a
−=

7KH�VLOKRXHWWH�FRHIÀFLHQW�LV�ERXQGHG�LQ�WKH�UDQJH����WR����%DVHG�RQ�WKH�SUHFHGLQJ�
HTXDWLRQ��ZH�FDQ�VHH�WKDW�WKH�VLOKRXHWWH�FRHIÀFLHQW�LV���LI�WKH�FOXVWHU�VHSDUDWLRQ�
and cohesion are equal (() ()i ib a= . Furthermore, we get close to an ideal silhouette
FRHIÀFLHQW�RI���LI� () ()i ib a>> , since ()ib �TXDQWLÀHV�KRZ�GLVVLPLODU�D�VDPSOH�LV�WR�RWKHU�
clusters, and ()ia tells us how similar it is to the other samples in its own cluster.

7KH�VLOKRXHWWH�FRHIÀFLHQW�LV�DYDLODEOH�DV�silhouette_samples from scikit-learn's
metric module, and optionally, the silhouette_scores function can be imported
for convenience. The silhouette_scores function calculates the average silhouette
FRHIÀFLHQW�DFURVV�DOO�VDPSOHV��ZKLFK�LV�HTXLYDOHQW�WR�numpy.mean(silhouette_
samples(…)). By executing the following code, we will now create a plot of the
VLOKRXHWWH�FRHIÀFLHQWV�IRU�D�N�PHDQV�FOXVWHULQJ�ZLWK� 3k = :

>>> km = KMeans(n_clusters=3,
... init='k-means++',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)

>>> import numpy as np
>>> from matplotlib import cm
>>> from sklearn.metrics import silhouette_samples
>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X,
... y_km,
... metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
... c_silhouette_vals = silhouette_vals[y_km == c]
... c_silhouette_vals.sort()

Hsi-Pin Ma

Quantifying the Quality of Clustering via
Silhouette Plots

•The silhouette coefficient is available as
silhouette_samples from scikit-learn’s
metric module

•The silhouette_scores function calculates the
average silhouette coefficient across all samples,
which is equivalent to
numpy.mean(silhouette_samples(…))

21

Hsi-Pin Ma

A Silhouette Plot Example (1/3)

22

Hsi-Pin Ma

A Silhouette Plot Example (2/3)

23

Hsi-Pin Ma

A Silhouette Plot Example (3/3)

24

Hsi-Pin Ma

Silhouette Plot for “Bad” Clustering (1/3)

25

Hsi-Pin Ma

Silhouette Plot for “Bad” Clustering (2/3)

26

Hsi-Pin Ma

Silhouette Plot for “Bad” Clustering (3/3)

27

Hsi-Pin Ma

Hierarchical Clustering

28

Hsi-Pin Ma

Hierarchical Clustering
• Advantages

– Plot dendrograms (visualization of a binary hierarchical clustering)
for interpretation of the results by creating meaningful taxonomies

– Do not need to specify the number of clusters beforehand

• Two approaches
– Divisive hierarchical clustering

•A top-down approach which starts with one cluster that encompasses
all points in the dataset, and iteratively split the cluster into smaller
clusters until each cluster only contains one instance

– Agglomerative hierarchical clustering
•A bottom-up approach which starts with each instance forming

an individual cluster and merges the closest pairs of clusters
until only one cluster remains

29

Hsi-Pin Ma

Linkage-Based Clustering
• Agglomerative iteration

– Merge two clusters to form a new cluster if the distance is the smallest
among all pairs of clusters until a stopping criteria in reached

•Single linkage (Min linkage)
– Compute the distances between most similar members for each pair of

clusters
– Merge the two cluster for each other which the distance between the most

similar members is the smallest

•Complete linkage (Max linkage)
– Similar to single linkage but compare distance between the most dissimilar

members to perform the merge

– Stopping criteria
•A fixed number k of clusters is reached
•An upper bound r of cluster distance

is broken

30

Hsi-Pin Ma

Complete Linkage Clustering

•Compute the distance matrix of all samples
•Represent each data point as a singleton cluster
•Merge the two closest clusters based on the

distance between the most dissimilar (distant)
members

•Update the similarity matrix
•Repeat steps 2-4 until only one single cluster

remains

31

Hsi-Pin Ma

Sample Data Generation for Demo

32

Hsi-Pin Ma

Performing Hierarchical Clustering on a
Distance Matrix

33

Hsi-Pin Ma

Approaches for Hierarchical Clustering (1/3)

34

Hsi-Pin Ma

Approaches for Hierarchical Clustering (2/3)

35

Hsi-Pin Ma

Approaches for Hierarchical Clustering (3/3)

36

Hsi-Pin Ma

Dendrogram for Visualization

37

di
ss

im
ila

rit
y

Hsi-Pin Ma

Attaching Dendrograms to a Heat Map

38

Hsi-Pin Ma

Applying Agglomerative Clustering via
Scikit-learn

•Use AgglomerativeClustering and set
n_clusters

39

Hsi-Pin Ma

Locating Regions of High Density via
DBSCAN

40

Hsi-Pin Ma

DBSCAN

•Density-based Spatial Clustering of
Applications with Noise
– DBSCAN does not make assumptions about spherical

clusters like k-means, nor it partition the dataset into a
hierarchical tree that requires a manual cut-off points

– Assign cluster labels based on dense region of points
– Density is defined as the number of points within a

specific radius
– Given a set of points in some space, it groups together

points that are closely packed together, marking as
outliers points that lie alone in low-density regions

41

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Hsi-Pin Ma

DBSCAN Algorithm (1/3)

•Step 1: A special label is assigned to each data
point using the following criteria
– A core point: a point which has at least a specific number

(MinPts) of neighboring points falling within the
specified radius

– A border point: a point which has fewer neighbors than
MinPts within the specified radius but lies within the
radius of a core point

– A noise point: a point which is neither a core nor a
border point

42

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Hsi-Pin Ma

DBSCAN Algorithm (2/3)
•Step 2: Form a separate cluster for each

disconnected core point or for a connected
group of core points
– Two core points are connected (by an edge) if they are no

farther away than . This establish a graph of core points
– A connected group of core points is a (path-)connected

component of the graph of core points
– A disconnected core point is a core point which forms a

(path-)connected component by itself in the graph of
core points

•Step 3: Assign each border point to the cluster
of its corresponding core points

43

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Hsi-Pin Ma

DBSCAN Algorithm (3/3)

44

Hsi-Pin Ma

Half-moon-shaped Dataset

45

Hsi-Pin Ma

Use k-means and Hierarchical Clustering

46

Hsi-Pin Ma

k-means and Hierarchical Clustering

47

Hsi-Pin Ma

DBSCAN

48

Clustering data of any shapes

Hsi-Pin Ma

Issues of DBSCAN

•Two hyperparameters, i.e., MinPts and to be
optimized

•Finding a good combination of MinPts and
can be problematic if the density differences in
the dataset are relatively large

•curse of dimensionality increases as increasing
number of features and fixed number of
training samples, especially when using
Euclidean distance metric

49

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Working with Unlabeled Data – Clustering Analysis

[�����]

Locating regions of high density via
DBSCAN
Although we can't cover the vast amount of different clustering algorithms in this
chapter, let's at least introduce one more approach to clustering: Density-based
Spatial Clustering of Applications with Noise (DBSCAN), which does not make
assumptions about spherical clusters like k-means, nor does it partition the dataset
into hierarchies that require a manual cut-off point. As its name implies, density-
based clustering assigns cluster labels based on dense regions of points. In DBSCAN,
WKH�QRWLRQ�RI�GHQVLW\�LV�GHÀQHG�DV�WKH�QXPEHU�RI�SRLQWV�ZLWKLQ�D�VSHFLÀHG�UDGLXV�ε .

According to the DBSCAN algorithm, a special label is assigned to each sample
(point) using the following criteria:

�� A point is considered a core point if at least a specified number (MinPts) of
neighboring points fall within the specified radius ε

�� A border point is a point that has fewer neighbors than MinPts within ε ,
but lies within the ε radius of a core point

�� All other points that are neither core nor border points are considered
noise points

After labeling the points as core, border, or noise, the DBSCAN algorithm can be
summarized in two simple steps:

1. Form a separate cluster for each core point or connected group of core points
(core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core point.

Hsi-Pin Ma

Common Practices for Clustering Algorithms
•To reduce the curse of dimensionality, apply

unsupervised dimensionality reduction
techniques prior to performing clustering, such
as PCA or RBF-kernel PCA

•To visualize the clusters, compress datasets
down to 2D subspace. This is particularly helpful
for evaluating results

•A successful clustering not only depends on the
algorithm and its hyperparameters, but also on
the choice of an appropriate distance metric and
the use of domain knowledge

50

