

EE3700 Introduction to Machine Learning

Working with Unlabeled Data -Clustering Analysis

Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

- Grouping Objects by Similarity Using k-Means
- Organizing Clusters as a Hierarchical Tree
- Locating Regions of High Density via DBSCAN

Clustering/Cluster Analysis

A category of unsupervised learning techniques

- Discover hidden structures in data
- Goal is to find a natural grouping in data so items in the same cluster are more similar to each other than to those from different clusters

In this chapter

- Finding centers of similarity using the popular k-means
- Taking a bottom-up approach to build hierarchical clustering trees
- Identifying arbitrary shapes of objects using a densitybased clustering approach

Grouping Objects by Similarity Using *k*-Means

Clustering

Categories of clustering algorithm

- Prototype-based clustering (*k*-means belongs to this)
- -Hierarchical clustering
- -Density-based clustering

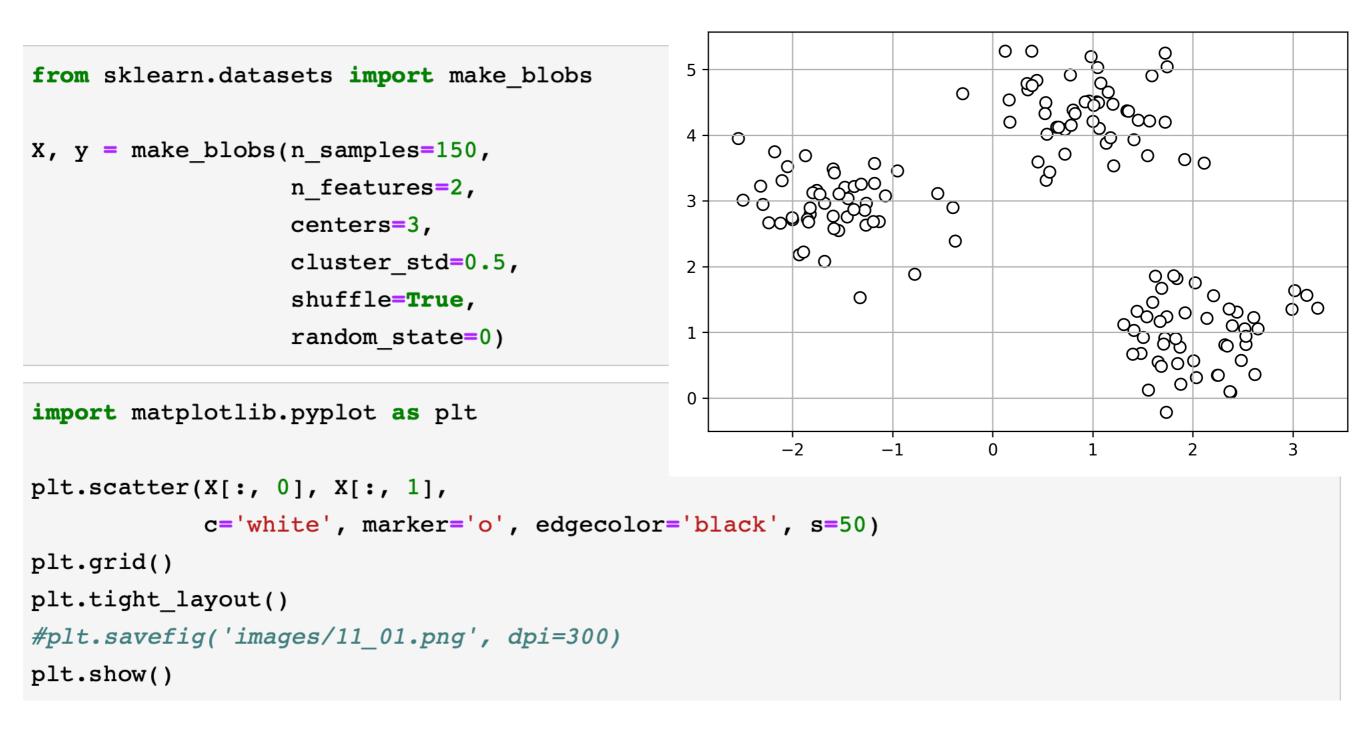
Prototype-based clustering

- -Each cluster is represented by a prototype
- A prototype can either be the centroid (*average*) of similar points with continuous features or the medoid (the most *representative* or most frequently occurring point) in the case of categorical features
- –Usually formulated as a cost minimization clustering problem

k-means Algorithm

- *Randomly* pick *k* centroids from the sample points as initial cluster centers
- Assign each instance to the nearest centroid $\mu^{(j)}$, $j \in \{1,...,k\}$
- Move each centroid to the center of the sample points that were assigned to it
- Repeat 2 and 3 until the cluster assignments do not change or a user-defined tolerance or maximum of iterations is reached

Generating Clusters for Visualization



Empirical k-means Cost Function

Similarity measurement between objects

- -Squared Euclidean distance between two points *x* and *y* in m-dimensional space $d(\mathbf{x}, \mathbf{y})^2 = \sum_{j=1}^{m} (x_j - y_j)^2 = \|\mathbf{x} - \mathbf{y}\|_2^2$ -*i*: sample index, *j*: cluster index
- For continuous feature values, the empirical kmeans cost function is usually taken as the within cluster **sum of squared errors** (SSE), sometimes called **cluster inertia**

$$SSE = \sum_{i=1}^{n} \sum_{j=1}^{k} w^{(i,j)} \| \mathbf{x}^{(i)} - \boldsymbol{\mu}^{(j)} \|_{2}^{2}$$
is 1 if x⁽ⁱ⁾ is in cluster j, otherwise 0

Hsi₇Pin Ma

μ

 $142^{(-)}-1$

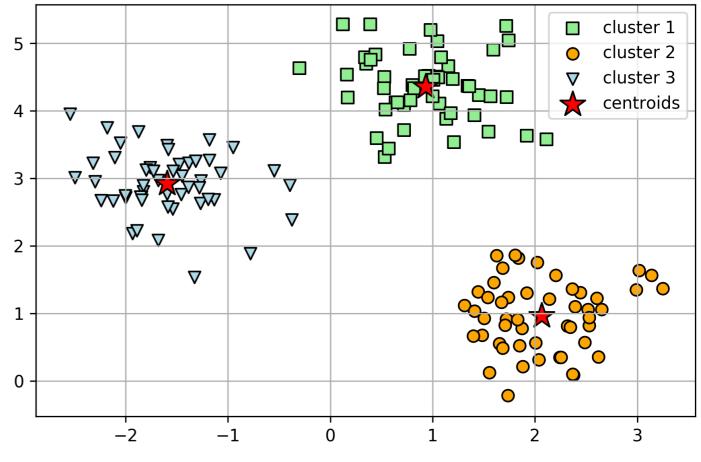
KMeans classs form **cluster** Module

• Specifying *k* a priori is one of the limitations of *k*-means

1 131 - 1 111 /414

Clustering Visualization

```
plt.scatter(X[y km == 0, 0],
            X[y \ km == 0, 1],
            s=50, c='lightgreen',
            marker='s', edgecolor='black',
            label='cluster 1')
plt.scatter(X[y km == 1, 0],
            X[y \ km == 1, 1],
            s=50, c='orange',
            marker='o', edgecolor='black',
            label='cluster 2')
plt.scatter(X[y km == 2, 0],
            X[y \ km == 2, 1],
            s=50, c='lightblue',
            marker='v', edgecolor='black',
            label='cluster 3')
plt.scatter(km.cluster centers [:, 0],
            km.cluster centers [:, 1],
            s=250, marker='*',
            c='red', edgecolor='black',
            label='centroids')
plt.legend(scatterpoints=1)
plt.grid()
plt.tight layout()
#plt.savefig('images/11_02.png', dpi=300)
plt.show()
```



Comments

- It is possible that one or more clusters resulted from *k*-means algorithm can be empty
- In the current *k*-means implementation of scikitlearn, if a cluster is empty, the algorithm will search for the instance that is farthest away from the centroid of the empty cluster and reassign the centroid to be this farthest point
- Using a random seed to place the initial centroid may result in *bad clustering* or *slow convergence* if the centroids are chosen poorly

k-means++

• A smarter way to place the initial centroids

- Initialize an empty set **M** to store the *k* centroids being selected
- Randomly choose the first centroid $\mu^{(j)}$ from the input samples and assign it to **M**
- For each sample $\mathbf{x}^{(i)}$ that is not in \mathbf{M} , find the minimum squared distance $d(\mathbf{x}^{(i)}, \mathbf{M})^2$ to any of the centroids in \mathbf{M}
- To randomly select the next centroid $\mu^{(p)}$, use a_{μ} weighted probability distribution equal to $d(\mu^{(p)}, \mathbf{M})^2$

• Select the largest

 $\frac{1}{\sum_{i} d(\mathbf{x}^{(i)}, \mathbf{M})^2}$

- Repeat step 2 and 3 until *k* centroids are chosen
- Proceed with the classic *k*-means algorithm

k-means++

- To use *k*-means++ with scikit-learn's **KMeans** object, we just need to set the **init** parameter to '*k*-means++'
- In fact, 'k-means++' is the default argument to the **init** parameter
 - classic k-means via init='random'
 - -k-means++ via init='k-means++'

Fuzzy C-Means (FCM) Algorithm

• Hard clustering

- Each sample in a dataset is assigned to exactly one cluster $\mu^{(1)} \to 0$ $\mu^{(2)} \to 1$ $\mu^{(3)} \to 0$
- Soft clustering (fuzzy clustering)
 - Assign a sample to one or more clusters
 - A popular example: fuzzy C-means/soft k-means/fuzzy k-means
 - Replace hard cluster assignment with probability for each point belonging to each cluster

$$\begin{bmatrix} \boldsymbol{\mu}^{(1)} \to 0.10 \\ \boldsymbol{\mu}^{(2)} \to 0.85 \\ \boldsymbol{\mu}^{(3)} \to 0.05 \end{bmatrix}$$

FCM Algorithm

- Specify the number of *k* centroids and randomly assign the cluster memberships for each point
- Compute the cluster centroids $\mu^{(j)}$, $j \in \{1, ..., k\}$
- Update the cluster memberships for each point
- Repeat steps 2 and 3 until the membership coefficients do not change, or a user-defined tolerance or maximum number of iterations is reached

Objective Function of FCM

• Similar to the within cluster sum-squared-error that we minimize in k-means

$$J_{m} = \sum_{i=1}^{n} \sum_{j=1}^{k} w^{m(i,j)} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{(j)} \right\|_{2}^{2} \qquad w^{(i,j)} \in [0,1]$$

-But *w* is a real value denoting the cluster membership probability, not a binary value μ μ μ μ μ $(\begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$

Cluster membership probability

$$w^{(i,j)} = \left| \sum_{p=1}^{k} \left(\frac{\left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{(j)} \right\|_{2}}{\left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}^{(p)} \right\|_{2}} \right)^{\frac{2}{m-1}} \right|^{\frac{2}{m-1}}$$

Laboratory for

Hsi-Pin Ma

 $w^{()}$

Quality of Clustering

- One of the main challenges in unsupervised learning is that we do not know the definitive answer
- To quantify the quality of an unsupervised learning task such as clustering, we have to use intrinsic metrics such as the within-class SSE (a distortion metric) we discussed previously
- In scikit-learn, the within-class SSE can be accessed via **inertia**_ attribute after fitting the Means model

print('Distortion: %.2f' % km.inertia_)

Distortion: 72.48

- Intuitively, if *k* increases, the distortion will decrease
 - Samples will be closer to the centroids they are assigned to
- The idea of elbow method is to identify the value of *k* where the distortion begins to increase most rapidly

An Elbow Method Example

^{Confutive for} ^{Confutive} uantifying the Quality of Clustering via Silhouette Plots

- Silhouette analysis can be used as a graphic tool to plot a measure of how tightly grouped the samples in the clusters are
- Steps to calculate the silhouette coefficient
 - Calculate the cluster cohesion $a^{(i)}$ as the average distance between a sample $x^{(i)}$ and all other points in the same cluster
 - Calculate the cluster separation $b^{(i)}$ from the next closet cluster as the average distance between the sample $x^{(i)}$ and all samples in the nearest cluster
 - Calculate the silhouette $s^{(i)}$ as the difference between cluster cohesion and separation divided by the greater of the two, as $s^{(i)} = \frac{b^{(i)} - a^{(i)}}{\max\left\{b^{(i)}, a^{(i)}\right\}}$

- The silhouette coefficient is available as silhouette_samples from scikit-learn's metric module
- The **silhouette_scores** function calculates the average silhouette coefficient across all samples, which is equivalent to numpy.mean(silhouette_samples(...))

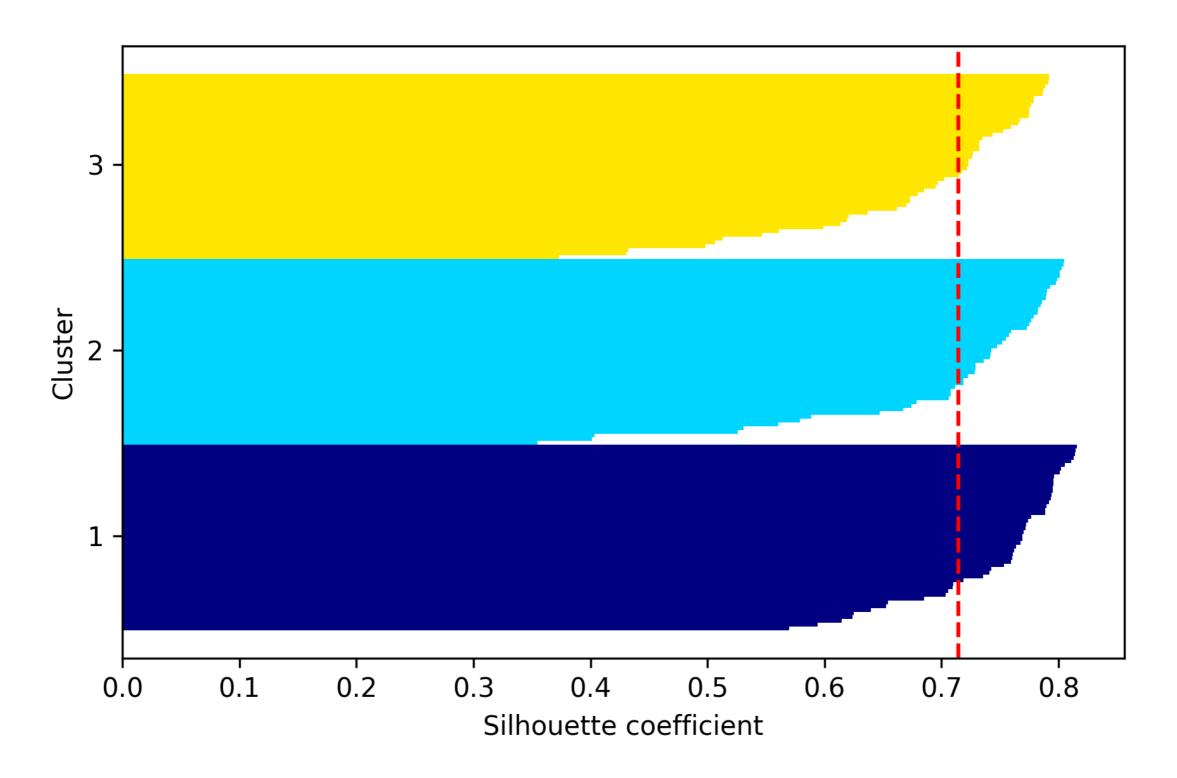
A Silhouette Plot Example (1/3)

```
import numpy as np
from matplotlib import cm
from sklearn.metrics import silhouette samples
km = KMeans(n clusters=3,
            init='k-means++',
            n init=10,
            max iter=300,
            tol=1e-04,
            random state=0)
y_km = km.fit_predict(X)
cluster_labels = np.unique(y_km)
n clusters = cluster labels.shape[0]
silhouette_vals = silhouette_samples(X, y_km, metric='euclidean')
y ax lower, y ax upper = 0, 0
yticks = []
```


A Silhouette Plot Example (2/3)

```
for i, c in enumerate(cluster labels):
    c silhouette vals = silhouette vals[y km == c]
    c silhouette vals.sort()
    y ax upper += len(c silhouette vals)
    color = cm.jet(float(i) / n clusters)
    plt.barh(range(y_ax_lower, y_ax_upper), c_silhouette_vals, height=1.0,
             edgecolor='none', color=color)
    yticks.append((y_ax_lower + y_ax_upper) / 2.)
    y ax lower += len(c silhouette vals)
silhouette avg = np.mean(silhouette vals)
plt.axvline(silhouette avg, color="red", linestyle="--")
plt.yticks(yticks, cluster labels + 1)
plt.ylabel('Cluster')
plt.xlabel('Silhouette coefficient')
plt.tight layout()
#plt.savefig('images/11 04.png', dpi=300)
plt.show()
```


A Silhouette Plot Example (3/3)



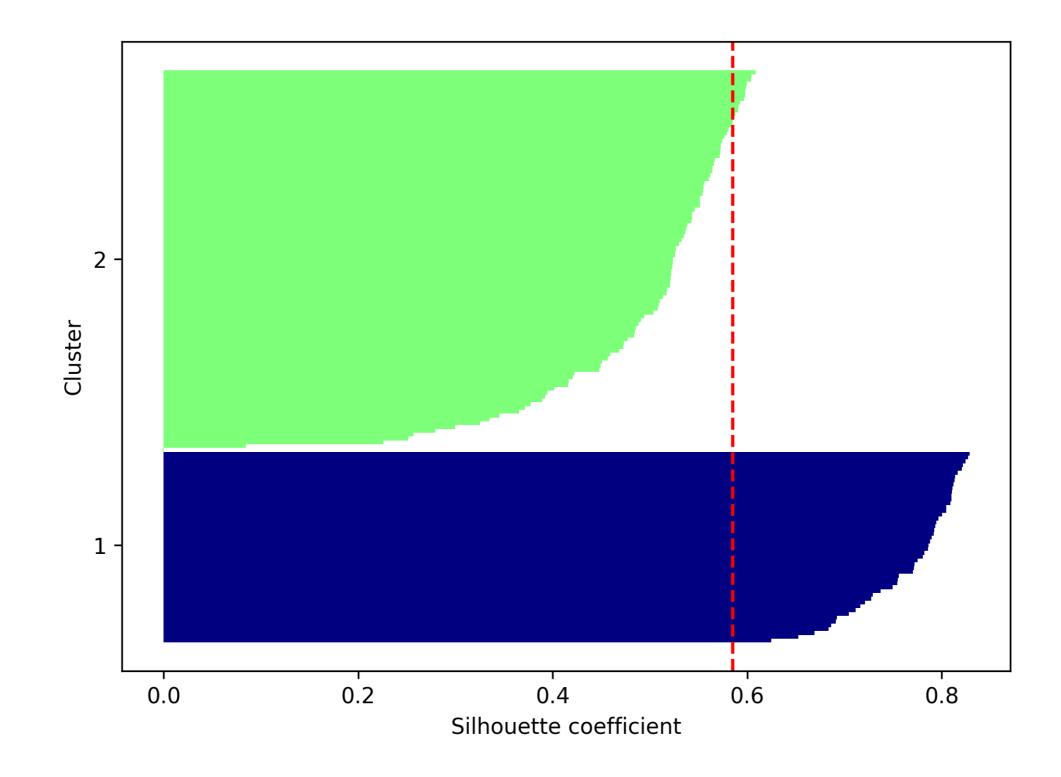
The state of the set o

```
km = KMeans(n clusters=2,
                   init='k-means++',
                                                                                                                 cluster 1
                                                                                       •
                                                                                                              n init=10,
                                                                                                       \bigcirc
                                                                                                     -0
                                                                                                                 cluster 2
                                                       5
                                                                                                              \bigcirc
                   max iter=300,
                                                                                                                 centroids
                                                                                  \bigcirc
                   tol=1e-04,
                   random state=0)
                                                       4
      y km = km.fit predict(X)
                                                                                                         \mathbf{O}
                                                                                  X
                                                                                \mathbf{O}
                                                       3
      plt.scatter(X[y km == 0, 0],
                                                                                 \mathbf{O}
                   X[y \ km == 0, 1],
                                                                                  \bigcirc
                   s=50,
                                                       2
                                                                             0
                   c='lightgreen',
                                                                                                                    0
                   edgecolor='black',
                                                                                                                   marker='s',
                                                       1
                   label='cluster 1')
      plt.scatter(X[y km == 1, 0],
                                                                                                     0
                   X[y \ km == 1, 1],
                                                                                                       s=50,
                                                                 -2
                                                                           -1
                                                                                      0
                                                                                               1
                                                                                                          2
                                                                                                                    3
                   c='orange',
                   edgecolor='black',
                   marker='o',
                   label='cluster 2')
      plt.scatter(km.cluster centers [:, 0], km.cluster centers [:, 1],
                   s=250, marker='*', c='red', label='centroids')
      plt.legend()
      plt.grid()
      plt.tight layout()
      #plt.savefig('images/11 05.png', dpi=300)
      plt.show()
Hsi-P....
```

Table Relight Som Som Som South on the Plot for "Bad" Clustering (2/3)

```
cluster labels = np.unique(y km)
n clusters = cluster labels.shape[0]
silhouette_vals = silhouette_samples(X, y_km, metric='euclidean')
y ax lower, y ax upper = 0, 0
yticks = []
for i, c in enumerate(cluster labels):
    c_silhouette_vals = silhouette_vals[y km == c]
    c silhouette vals.sort()
    y ax upper += len(c silhouette vals)
    color = cm.jet(float(i) / n clusters)
    plt.barh(range(y ax lower, y ax upper), c silhouette vals, height=1.0,
             edgecolor='none', color=color)
    yticks.append((y ax lower + y ax upper) / 2.)
    y ax lower += len(c silhouette vals)
silhouette avg = np.mean(silhouette vals)
plt.axvline(silhouette avg, color="red", linestyle="--")
plt.yticks(yticks, cluster labels + 1)
plt.ylabel('Cluster')
plt.xlabel('Silhouette coefficient')
plt.tight layout()
#plt.savefig('images/11 06.png', dpi=300)
plt.show()
```

```
Hsi-Pin
```

Hsi-Pin Ma

Hierarchical Clustering

Hierarchical Clustering

Advantages

- Plot dendrograms (visualization of a binary hierarchical clustering) for interpretation of the results by creating meaningful taxonomies
- Do not need to specify the number of clusters beforehand

Two approaches

- Divisive hierarchical clustering
 - A top-down approach which starts with one cluster that encompasses all points in the dataset, and iteratively split the cluster into smaller clusters until each cluster only contains one instance

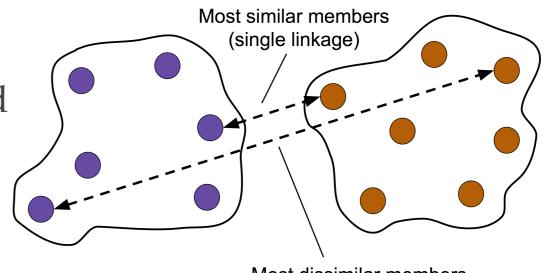
Agglomerative hierarchical clustering

• A bottom-up approach which starts with each instance forming an individual cluster and merges the closest pairs of clusters until only one cluster remains

Linkage-Based Clustering

• Agglomerative iteration

- Merge two clusters to form a new cluster if the distance is the smallest among all pairs of clusters until a stopping criteria in reached
 - Single linkage (Min linkage)
 - Compute the distances between most similar members for each pair of clusters
 - Merge the two cluster for each other which the distance between the most similar members is the smallest
 - Complete linkage (Max linkage)
 - Similar to single linkage but compare distance between the most dissimilar members to perform the merge
- Stopping criteria
 - A fixed number *k* of clusters is reached
 - An upper bound *r* of cluster distance is broken



Complete Linkage Clustering

- Compute the distance matrix of all samples
- Represent each data point as a singleton cluster
- Merge the two closest clusters based on the distance between the most dissimilar (distant) members
- Update the similarity matrix
- Repeat steps 2-4 until only one single cluster remains

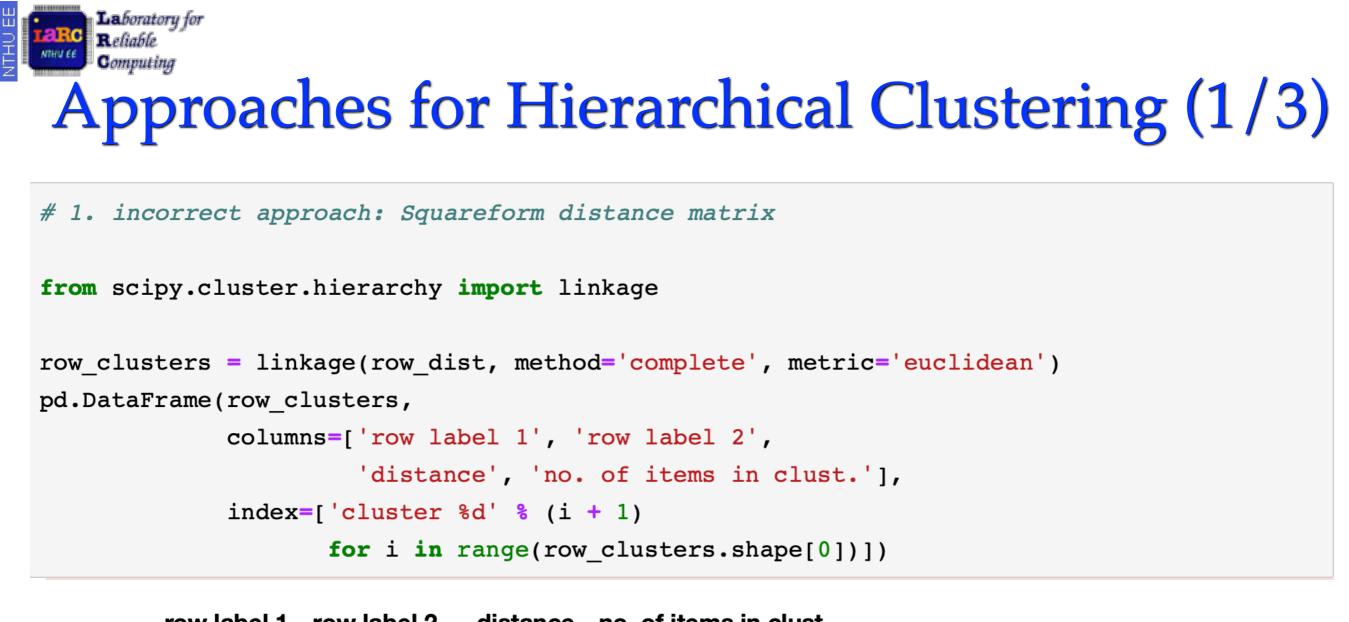
Sample Data Generation for Demo

```
import pandas as pd
import numpy as np
np.random.seed(123)
variables = ['X', 'Y', 'Z']
labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4']
X = np.random.random_sample([5, 3])*10
df = pd.DataFrame(X, columns=variables, index=labels)
df
```

	x	Y	z
ID_0	6.964692	2.861393	2.268515
ID_1	5.513148	7.194690	4.231065
ID_2	9.807642	6.848297	4.809319
ID_3	3.921175	3.431780	7.290497
ID_4	4.385722	0.596779	3.980443

Entropy for Compute Performing Hierarchical Clustering on a Distance Matrix

	ID_0	ID_1	ID_2	ID_3	ID_4
ID_0	0.000000	4.973534	5.516653	5.899885	3.835396
ID_1	4.973534	0.000000	4.347073	5.104311	6.698233
ID_2	5.516653	4.347073	0.000000	7.244262	8.316594
ID_3	5.899885	5.104311	7.244262	0.000000	4.382864
ID_4	3.835396	6.698233	8.316594	4.382864	0.000000



	row label 1	row label 2	distance	no. of items in clust.
cluster 1	0.0	4.0	6.521973	2.0
cluster 2	1.0	2.0	6.729603	2.0
cluster 3	3.0	5.0	8.539247	3.0
cluster 4	6.0	7.0	12.444824	5.0


```
# 2. correct approach: Condensed distance matrix
row_clusters = linkage(pdist(df, metric='euclidean'), method='complete')
pd.DataFrame(row clusters,
             columns=['row label 1', 'row label 2',
                      'distance', 'no. of items in clust.'],
             index=['cluster %d' % (i + 1)
                    for i in range(row clusters.shape[0])])
```

	row label 1	row label 2	distance	no. of items in clust.
cluster 1	0.0	4.0	3.835396	2.0
cluster 2	1.0	2.0	4.347073	2.0
cluster 3	3.0	5.0	5.899885	3.0
cluster 4	6.0	7.0	8.316594	5.0

row label 1 row label 2 distance no. of items in clus	row label	l row	label 2	distance	no.	of items	in	clust
---	-----------	-------	---------	----------	-----	----------	----	-------

Approaches for Hierarchical Clustering (3/3)

row label 1	row label 2	distance	no. of items in clust.
-------------	-------------	----------	------------------------

cluster 1	0.0	4.0 3.835396	2.0
cluster 2	1.0	2.0 4.347073	2.0
cluster 3	3.0	5.0 5.899885	3.0
cluster 4	6.0	7.0 8.316594	5.0

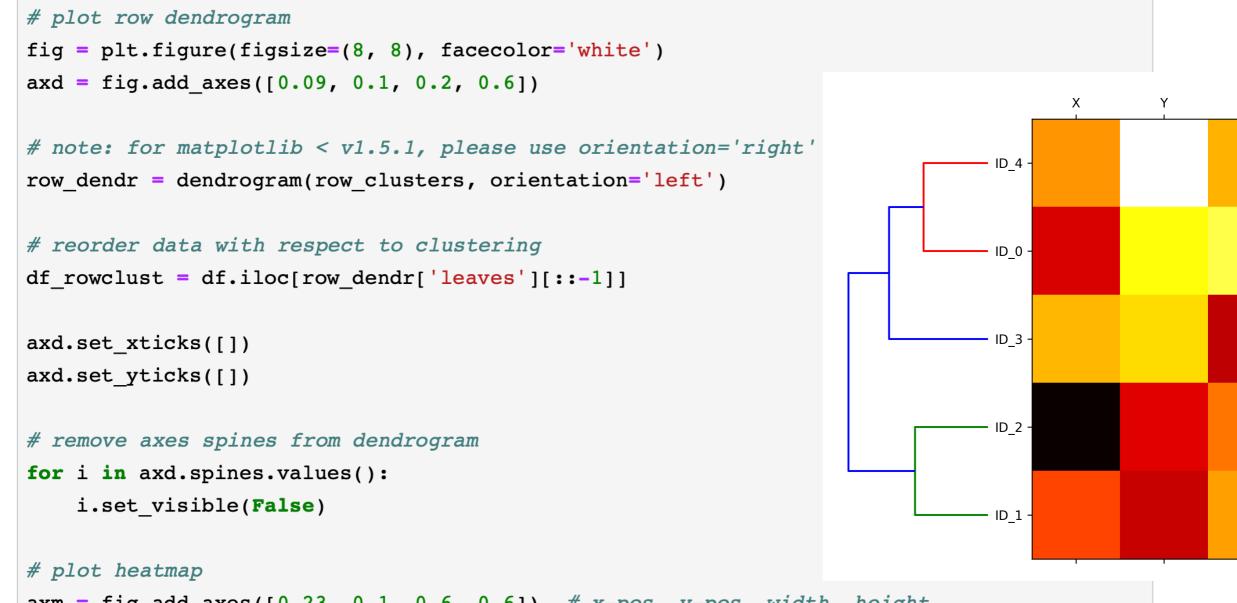
Laboratory for Reliable Computing

Dendrogram for Visualization

```
from scipy.cluster.hierarchy import dendrogram
 # make dendrogram black (part 1/2)
 # from scipy.cluster.hierarchy import set_link_color_palette
 # set link color palette(['black'])
 row dendr = dendrogram(row clusters,
                           labels=labels,
                           # make dendrogram black (part 2/2)
                           # color threshold=np.inf
 plt.tight layout()
 plt.ylabel('Euclidean distance')
                                                   8
 #plt.savefig('images/11_11.png', dpi=300,
                                                   7 -
 #
                bbox inches='tight')
 plt.show()
                                             dissimilarity
                                                Euclidean distance
                                                   2 ·
                                                   1 -
                                                   0
Hsi-Pin Ma
                                                        ID 1
                                                                  ID 2
                                                                            ID 3
                                                                                      ID 0
```

ID 4 37

Reliable Computing Attaching Dendrograms to a Heat Map



```
axm = fig.add_axes([0.23, 0.1, 0.6, 0.6]) # x-pos, y-pos, width, height
cax = axm.matshow(df_rowclust, interpolation='nearest', cmap='hot_r')
fig.colorbar(cax)
axm.set_xticklabels([''] + list(df_rowclust.columns))
axm.set_yticklabels([''] + list(df_rowclust.index))
```

```
#plt.savefig('images/11_12.png', dpi=300)
```

plt.show()

Hsi-Pin Ma

Ζ

- 8

6

• 4

· 2

Reliable Computing Point Agglomerative Clustering via Scikit-learn

Use AgglomerativeClustering and set n_clusters

```
from sklearn.cluster import AgglomerativeClustering
```

```
Cluster labels: [1 0 0 2 1]
```

Cluster labels: [0 1 1 0 0]

Locating Regions of High Density via DBSCAN

DBSCAN

Density-based Spatial Clustering of Applications with Noise

- DBSCAN does not make assumptions about spherical clusters like *k*-means, nor it partition the dataset into a hierarchical tree that requires a manual cut-off points
- Assign cluster labels based on dense region of points
- Density is defined as the number of points within a specific radius \mathcal{E}
- -Given a set of points in some space, it groups together points that are closely packed together, marking as outliers points that lie alone in low-density regions

DBSCAN Algorithm (1/3)

- Step 1: A special label is assigned to each data point using the following criteria
 - A **core** point: a point which has at least a specific number (MinPts) of neighboring points falling within the specified radius \mathcal{E}
 - A **border** point: a point which has fewer neighbors than MinPts within the specified radius \mathcal{E} but lies within the \mathcal{E} radius of a core point

E

A noise point: a point which is neither a core nor a border point

 \mathcal{E}

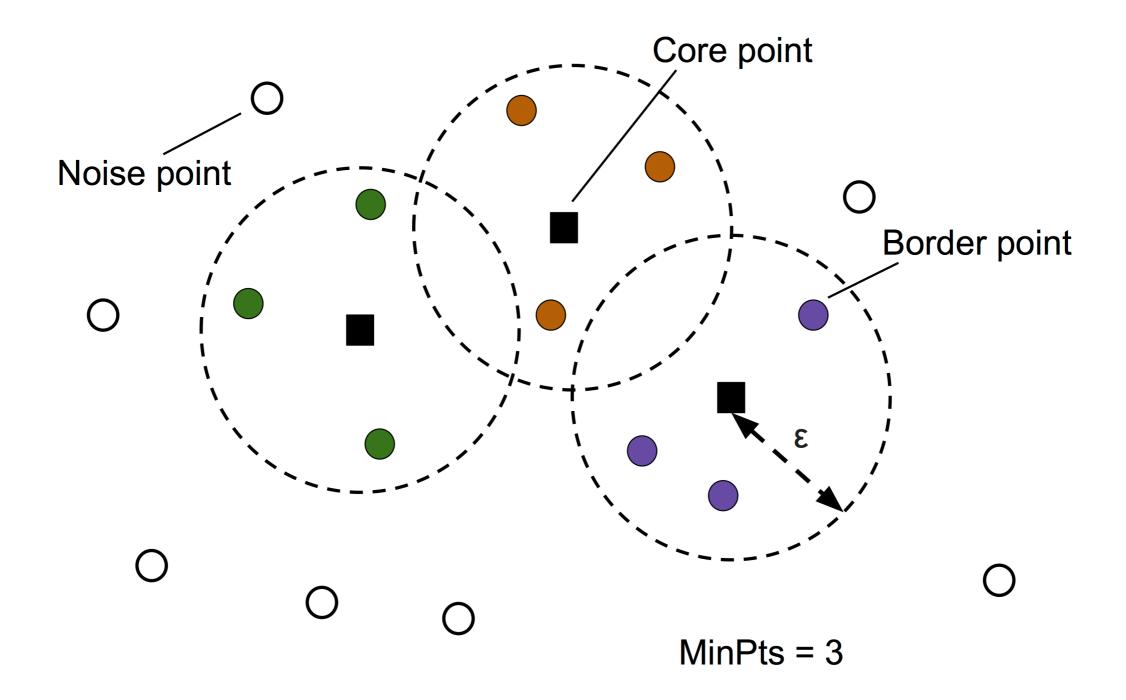
DBSCAN Algorithm (2/3)

• Step 2: Form a separate cluster for each disconnected core point or for a connected group of core points

- Two core points are connected (by an edge) if they are no farther away than \mathcal{E} . This establish a graph of core points
- A connected group of core points is a (path-)connected component of the graph of core points
- A disconnected core point is a core point which forms a (path-)connected component by itself in the graph of core points

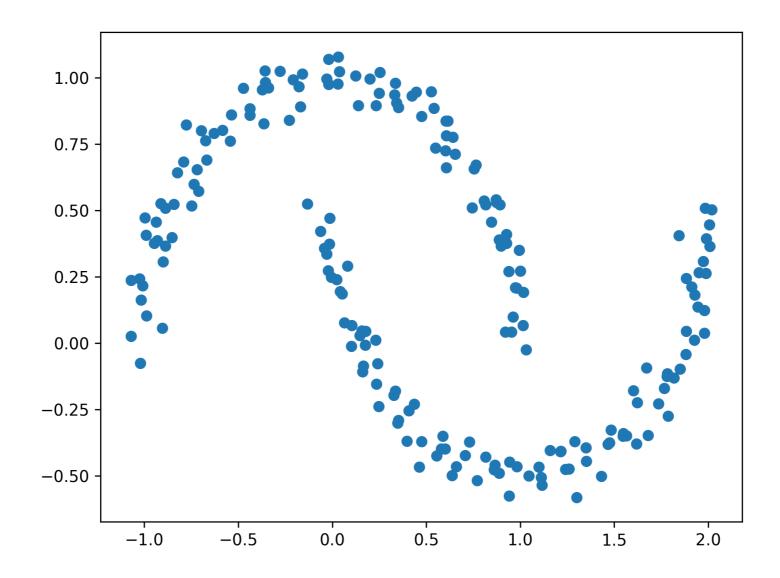
• Step 3: Assign each border point to the cluster of its corresponding core points

DBSCAN Algorithm (3/3)



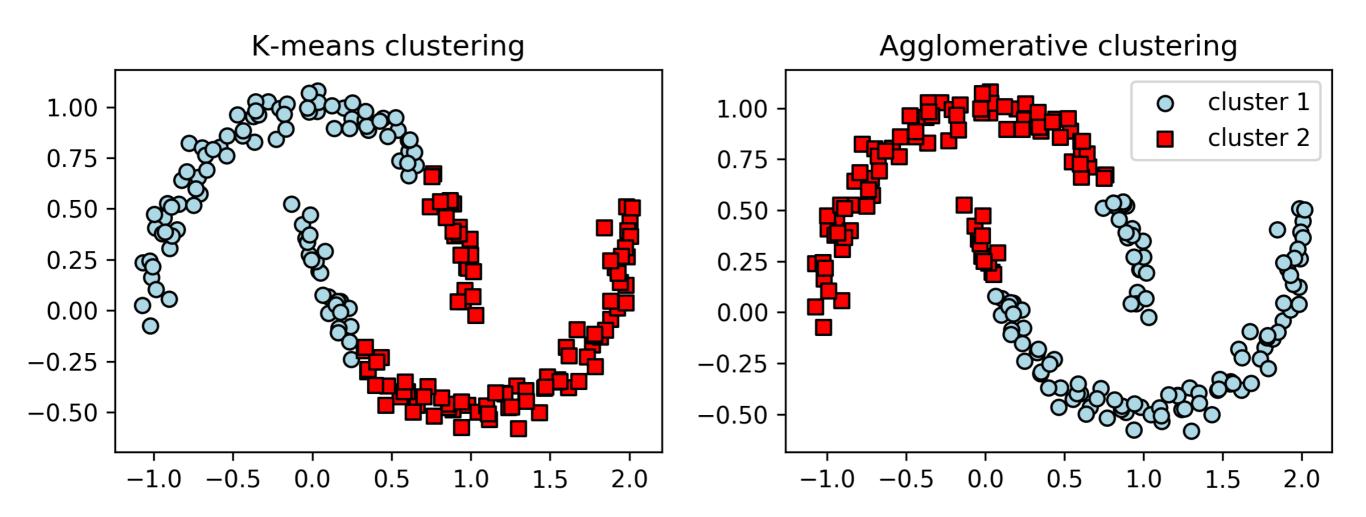
Half-moon-shaped Dataset

```
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
plt.scatter(X[:, 0], X[:, 1])
plt.tight_layout()
#plt.savefig('images/11_14.png', dpi=300)
plt.show()
```



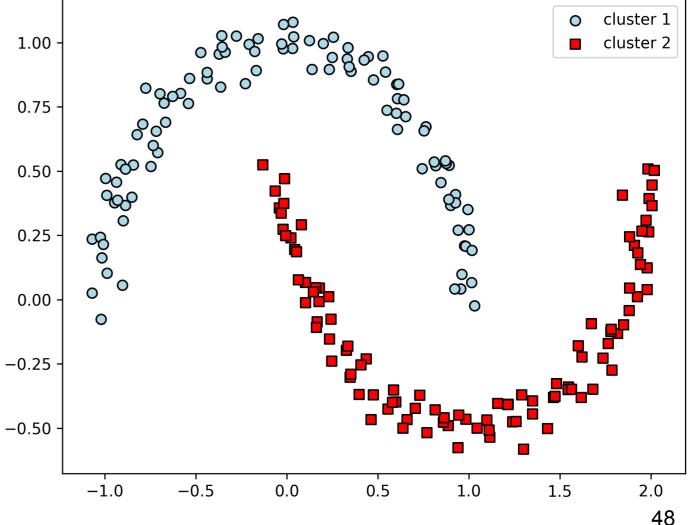
Take Indefinitions of Beliable Computing Use k-means and Hierarchical Clustering

```
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3))
km = KMeans(n clusters=2, random state=0)
y km = km.fit predict(X)
ax1.scatter(X[y km == 0, 0], X[y km == 0, 1],
            edgecolor='black',
            c='lightblue', marker='o', s=40, label='cluster 1')
ax1.scatter(X[y km == 1, 0], X[y km == 1, 1],
            edgecolor='black',
            c='red', marker='s', s=40, label='cluster 2')
ax1.set_title('K-means clustering')
ac = AgglomerativeClustering(n clusters=2,
                             affinity='euclidean',
                             linkage='complete')
y ac = ac.fit predict(X)
ax2.scatter(X[y ac == 0, 0], X[y ac == 0, 1], c='lightblue',
            edgecolor='black',
            marker='o', s=40, label='cluster 1')
ax2.scatter(X[y ac == 1, 0], X[y ac == 1, 1], c='red',
            edgecolor='black',
            marker='s', s=40, label='cluster 2')
ax2.set title('Agglomerative clustering')
plt.legend()
plt.tight layout()
# plt.savefig('images/11 15.png', dpi=300)
plt.show()
```


```
from sklearn.cluster import DBSCAN
```

```
db = DBSCAN(eps=0.2, min samples=5, metric='euclidean')
y db = db.fit_predict(X)
plt.scatter(X[y db == 0, 0], X[y db == 0, 1],
            c='lightblue', marker='o', s=40,
            edgecolor='black',
            label='cluster 1')
plt.scatter(X[y db == 1, 0], X[y db == 1, 1],
            c='red', marker='s', s=40,
            edgecolor='black',
                                              1.00
            label='cluster 2')
plt.legend()
                                              0.75
plt.tight layout()
#plt.savefig('images/11_16.png', dpi=300)
                                              0.50 -
                                                     O_{O}
plt.show()
```

Issues of DBSCAN

- Two hyperparameters, i.e., MinPts and *ɛ* to be optimized
- Finding a good combination of MinPts and ε can be problematic if the density differences in the dataset are relatively large
- curse of dimensionality increases as increasing number of features and fixed number of training samples, especially when using Euclidean distance metric

Common Practices for Clustering Algorithms

- To reduce the curse of dimensionality, apply unsupervised dimensionality reduction techniques prior to performing clustering, such as PCA or RBF-kernel PCA
- To visualize the clusters, compress datasets down to 2D subspace. This is particularly helpful for evaluating results
- A successful clustering not only depends on the algorithm and its hyperparameters, but also on the *choice of an appropriate distance metric* and the use of *domain knowledge*