
Predicting Continuous Target Variables
with Regression Analysis

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline
•Introduction to regression
•Exploring the Housing Dataset
•Implementing an ordinary least squares linear

regression model
•Fitting a robust regression model using RANSAC
•Evaluating the performance of linear regression

models
•Using regularized methods for regression
•Turning a linear regression model into a curve -

polynomial regression
2

Hsi-Pin Ma

Introduction to Regression

3

Hsi-Pin Ma

Linear Regression

•To model the relationship between one or
multiple features and a continuous target
variable
– A subcategory of supervised learning
– discrete category (classification) vs. continuous target

variable (regression)

4

Hsi-Pin Ma

Simple (Univariate) Linear Regression
•To model the relationship between a single

feature (explanatory variable x) and a
continuous valued response (target variable y)

5

Predicting Continuous Target Variables with Regression Analysis

[310]

Introducing linear regression
The goal of linear regression is to model the relationship between one or multiple
features and a continuous target variable. As discussed in Chapter 1, Giving Computers
the Ability to Learn from Data, regression analysis is a subcategory of supervised
PDFKLQH�OHDUQLQJ��,Q�FRQWUDVW�WR�FODVVLÀFDWLRQ³DQRWKHU�VXEFDWHJRU\�RI�VXSHUYLVHG�
learning—regression analysis aims to predict outputs on a continuous scale rather
than categorical class labels.

In the following subsections, we will introduce the most basic type of linear
regression, simple linear regression, and relate it to the more general, multivariate
case (linear regression with multiple features).

Simple linear regression
The goal of simple (univariate) linear regression is to model the relationship between
a single feature (explanatory variable x) and a continuous valued response (target
variable y). The equation of a linear model with one�H[SODQDWRU\�YDULDEOH�LV�GHÀQHG�
as follows:

0 1y w w x= +

Here, the weight 0w represents the y-axis intercept and 1w �LV�WKH�ZHLJKW�FRHIÀFLHQW�
of the explanatory variable. Our goal is to learn the weights of the linear equation to
describe the relationship between the explanatory variable and the target variable,
which can then be used to predict the responses of new explanatory variables that
were not part of the training dataset.

%DVHG�RQ�WKH�OLQHDU�HTXDWLRQ�WKDW�ZH�GHÀQHG�SUHYLRXVO\��OLQHDU�UHJUHVVLRQ�FDQ�EH�
XQGHUVWRRG�DV�ÀQGLQJ�WKH�EHVW�ÀWWLQJ�VWUDLJKW�OLQH�WKURXJK�WKH�VDPSOH�SRLQWV��DV�
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�

EE3950 Introduction to Machine Learning Lecturenotes
Chapter 10 2018 Spring Semester

May 8, 2018

Python Machine Learning 2nd Edition by Sebastian Raschka, Packt Publishing Ltd. 2017
Code Repository: https://github.com/rasbt/python-machine-learning-book-2nd-edition
Code License: MIT License
Chapter 10 - Predicting Continuous Target Variables with Regression Analysis
Modified by Chung-Chin Lu for EE3950 Introduction to Machine Learning in the 2018 spring

semester on May 3, 2018

In [1]: from IPython.display import Image
%matplotlib inline

1 Introducing Linear Regression

1.1 Simple (Univariate) Linear Regression

• x : a single feature, usually called the explanatory variable.

• y : a continuous target value, usually called the response variable, which is conceived as an
unknown function c(x) of the explanatory variable x.

• {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} : a dataset of N instances of the pair (x, y) of the
explanatory feature x and the response variable y.

• Goal : to model the response variable y as an affine function of the explanatory variable x,
based on the dataset,

ŷ = h(x) ≡ w0 + w1x

such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2

is minimized.

• A function approximation problem : to approximate the unknown function c(x) by an affine
function h(x) such that the MSE is minimized.

In [2]: Image(filename='images/10_01.png', width=500)

1

EE3950 Introduction to Machine Learning Lecturenotes
Chapter 10 2018 Spring Semester

May 8, 2018

Python Machine Learning 2nd Edition by Sebastian Raschka, Packt Publishing Ltd. 2017
Code Repository: https://github.com/rasbt/python-machine-learning-book-2nd-edition
Code License: MIT License
Chapter 10 - Predicting Continuous Target Variables with Regression Analysis
Modified by Chung-Chin Lu for EE3950 Introduction to Machine Learning in the 2018 spring

semester on May 3, 2018

In [1]: from IPython.display import Image
%matplotlib inline

1 Introducing Linear Regression

1.1 Simple (Univariate) Linear Regression

• x : a single feature, usually called the explanatory variable.

• y : a continuous target value, usually called the response variable, which is conceived as an
unknown function c(x) of the explanatory variable x.

• {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} : a dataset of N instances of the pair (x, y) of the
explanatory feature x and the response variable y.

• Goal : to model the response variable y as an affine function of the explanatory variable x,
based on the dataset,

ŷ = h(x) ≡ w0 + w1x

such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2

is minimized.

• A function approximation problem : to approximate the unknown function c(x) by an affine
function h(x) such that the MSE is minimized.

In [2]: Image(filename='images/10_01.png', width=500)

1

Hsi-Pin Ma

Multiple Linear Regression
•Generalize the model to multiple explanatory

variables

6

Chapter 10

[311]

7KLV�EHVW�ÀWWLQJ�OLQH�LV�also called the regression line, and the vertical lines from the
regression line to the sample points are the so-called offsets or residuals—the errors
of our prediction.

Multiple linear regression
The special case of linear regression with one explanatory variable that we
introduced in the previous subsection is also called simple linear regression. Of
course, we can also generalize the linear regression model to multiple explanatory
variables; this process is called multiple linear regression:

0 0 1 1
0

T
m m i i

i

m

y w x w x w x w x w x
=

= + +…+ = =∑

Here, 0w is the y-axis intercept with 0 1x = .

Out[2]:

1.2 Multiple (Multivariate) Linear Regression

• x1, x2, . . . , xm : m features, each of which is called an explanatory variable.

• y : a continuous target value, called the response variable, which is conceived as a function
c(x1, x2, . . . , xm) of the m explanatory variables.

• ((x(1)1 , . . . , x(1)m , y(1)), (x(2)1 , . . . , x(2)m , y(2)), . . . , (x(N)
1 , . . . , x(N)

m , y(N))) : a dataset of N instances
of the pair (x1, . . . , xm, y) of the m explanatory features x1, . . . , xm and the response variable
y.

• Goal : to model the response variable y as an affine function of the explanatory variables
x1, x2, . . . , xm, based on the dataset,

ŷ = h(x1, . . . , xm) ≡ w0 + w1x1 + · · ·+ wmxm

=
m

∑
i=0

wixi = w · x̃, w = (w0, w1, . . . , wm), x̃ = (1, x),

where x0 = 1, such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2 =
1
N

N

∑
i=1

(y(i) −w · x̃(i))2

is minimized.

2

Out[2]:

1.2 Multiple (Multivariate) Linear Regression

• x1, x2, . . . , xm : m features, each of which is called an explanatory variable.

• y : a continuous target value, called the response variable, which is conceived as a function
c(x1, x2, . . . , xm) of the m explanatory variables.

• ((x(1)1 , . . . , x(1)m , y(1)), (x(2)1 , . . . , x(2)m , y(2)), . . . , (x(N)
1 , . . . , x(N)

m , y(N))) : a dataset of N instances
of the pair (x1, . . . , xm, y) of the m explanatory features x1, . . . , xm and the response variable
y.

• Goal : to model the response variable y as an affine function of the explanatory variables
x1, x2, . . . , xm, based on the dataset,

ŷ = h(x1, . . . , xm) ≡ w0 + w1x1 + · · ·+ wmxm

=
m

∑
i=0

wixi = w · x̃, w = (w0, w1, . . . , wm), x̃ = (1, x),

where x0 = 1, such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2 =
1
N

N

∑
i=1

(y(i) −w · x̃(i))2

is minimized.

2

Hsi-Pin Ma

Exploring the Housing Dataset

7

Hsi-Pin Ma

Housing Dataset
•506 instance (houses), each with 13 features and

the house price (MEDV) as the target variable

8

Hsi-Pin Ma

Load the Housing Dataset

9

Hsi-Pin Ma

Exploratory Data Analysis (EDA)
•Visualize the important characteristics of a

dataset before training a model
– Create a scatterplot matrix to visualize the pairwise

correlations between the different features
– Use pairplot function from Seaborn library

•conda install seaborn or pip install seaborn

10

Hsi-Pin Ma 11

Hsi-Pin Ma

Correlation Matrix
•Use correlation matrix to quantify and

summarize linear relationships between
variables
– Identical to a covariance matrix computed from

standardized features
– A square matrix that contains the Pearson product-

moment correlation coefficient (Pearson’s r), which
measures the linear dependence between pairs of
features

12

Chapter 10

[�����]

()() ()()
()() ()()

1

2 2

1 1

n i i
x yi xy

n ni i x y
x yi i

x y
r

x y

µ µ σ
σ σµ µ

=

= =

 − − = =
− −

∑
∑ ∑

Here, µ denotes the sample mean of the corresponding feature, xyσ is the covariance
between the features x and y, and xσ and yσ are the features' standard deviations.

We can show that the covariance between a pair of standardized
IHDWXUHV�LV�LQ�IDFW�HTXDO�WR�WKHLU�OLQHDU�FRUUHODWLRQ�FRHIÀFLHQW��7R�VKRZ�
WKLV��OHW�XV�ÀUVW�VWDQGDUGL]H�WKH�IHDWXUHV�x and y to obtain their z-scores,
which we will denote as x′ and y′ , respectively:

, yx

x y

yxx y
µµ

σ σ
′ ′

−−= =

Remember that we compute the (population) covariance between two
features as follows:

()() ()()1 n
i i

xy x y
i
x y

n
σ µ µ= − −∑

Since standardization centers a feature variable at mean zero, we can
now calculate the covariance between the scaled features as follows:

()()1 ' 0 ' 0
n

xy
i
x y

n
σ = −′ −∑

Through resubstitution, we then get the following result:

1 n
yx

i x y

yx
n

µµ
σ σ

 − −
     

∑

()() ()()1 n
i i

x y
ix y

x y
n

µ µ
σ σ

− −
⋅ ∑

Finally, we can simplify this equation as follows:

' xy
xy

x y

σ
σ

σ σ
=

Chapter 10

[�����]

()() ()()
()() ()()

1

2 2

1 1

n i i
x yi xy

n ni i x y
x yi i

x y
r

x y

µ µ σ
σ σµ µ

=

= =

 − − = =
− −

∑
∑ ∑

Here, µ denotes the sample mean of the corresponding feature, xyσ is the covariance
between the features x and y, and xσ and yσ are the features' standard deviations.

We can show that the covariance between a pair of standardized
IHDWXUHV�LV�LQ�IDFW�HTXDO�WR�WKHLU�OLQHDU�FRUUHODWLRQ�FRHIÀFLHQW��7R�VKRZ�
WKLV��OHW�XV�ÀUVW�VWDQGDUGL]H�WKH�IHDWXUHV�x and y to obtain their z-scores,
which we will denote as x′ and y′ , respectively:

, yx

x y

yxx y
µµ

σ σ
′ ′

−−= =

Remember that we compute the (population) covariance between two
features as follows:

()() ()()1 n
i i

xy x y
i
x y

n
σ µ µ= − −∑

Since standardization centers a feature variable at mean zero, we can
now calculate the covariance between the scaled features as follows:

()()1 ' 0 ' 0
n

xy
i
x y

n
σ = −′ −∑

Through resubstitution, we then get the following result:

1 n
yx

i x y

yx
n

µµ
σ σ

 − −
     

∑

()() ()()1 n
i i

x y
ix y

x y
n

µ µ
σ σ

− −
⋅ ∑

Finally, we can simplify this equation as follows:

' xy
xy

x y

σ
σ

σ σ
=

2.3 Correlation Matrix

• x, y : two random variables with means µx, µy.

• {(x(1), y(1)), . . . , (x(N), y(N)))} : a dataset of N instances of the pair (x, y) of random variables.

• rx,y : the Pearson (product-moment) correlation coefficient between two random variables
x, y, defined as

rx,y =
σx,y

σxσy
,

where σx,y = E[(x− µx)(y− µy)] and σx, σy are standard deviations of x and y respectively.

• −1 ≤ rx,y ≤ +1.

5

Hsi-Pin Ma

Correlation Matrix

13

Hsi-Pin Ma

Implementing an Ordinary Least Squares
(OLS) Linear Regression Model

14

Hsi-Pin Ma

Minimizing the Objective Function of
Linear Regression

•Cost function J (Sum of Squared Errors, SSE)

– Identical to the cost function of Adaline
– OLS regression can be understood as Adaline without

the unit step function, so we can obtain continuous target
values

– Use GD or SGD for optimization

15

Chapter 10

[319]

7R�ÀW�D�linear regression model, we are interested in those features that have a high
correlation with our target variable MEDV. Looking at the previous correlation matrix,
we see that our target variable MEDV shows the largest correlation with the LSTAT
variable (-0.74); however, as you might remember from inspecting the scatterplot
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the other
hand, the correlation between RM and MEDV is also relatively high (0.70). Given the
linear relationship between these two variables that we observed in the scatterplot,
RM seems to be a good choice for an exploratory variable to introduce the concepts of
a simple linear regression model in the following section.

Implementing an ordinary least squares
linear regression model
At the beginning of this chapter, we mentioned that linear regression can be
XQGHUVWRRG�DV�REWDLQLQJ�WKH�EHVW�ÀWWLQJ�VWUDLJKW�OLQH�WKURXJK�WKH�VDPSOH�SRLQWV�
RI�RXU�WUDLQLQJ�GDWD��+RZHYHU��ZH�KDYH�QHLWKHU�GHÀQHG�WKH�WHUP�EHVW�ÀWWLQJ nor
KDYH�ZH�GLVFXVVHG�WKH�GLIIHUHQW�WHFKQLTXHV�RI�ÀWWLQJ�VXFK�D�PRGHO��,Q�WKH�IROORZLQJ�
VXEVHFWLRQV��ZH�ZLOO�ÀOO�LQ�WKH�PLVVLQJ�SLHFHV�RI�WKLV�SX]]OH�XVLQJ�WKH�Ordinary Least
Squares (OLS) method (sometimes also called linear least squares) to estimate
the parameters of the linear regression line that minimizes the sum of the squared
vertical distances (residuals or errors) to the sample points.

Solving regression for regression parameters
with gradient descent
Consider our implementation of the $'$SWLYH�/,QHDU�1(XURQ (Adaline) from
Chapter 2, 7UDLQLQJ�6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ; we remember
WKDW�WKH�DUWLÀFLDO�QHXURQ�XVHV�D�OLQHDU�DFWLYDWLRQ�IXQFWLRQ��$OVR��ZH�GHÀQHG�D�FRVW�
function ()J ⋅ , which we minimized to learn the weights via optimization algorithms,
such as Gradient Descent (GD) and Stochastic Gradient Descent (SGD). This cost
function in Adaline is the Sum of Squared Errors (SSE), which is identical to the cost
function that we use for OLS:

() () ()()2

1

1 ˆ
2

n
i i

i
J w y y

=

= −∑

Predicting Continuous Target Variables with Regression Analysis

[320]

Here, ŷ is the predicted value ˆ Ty w x= (note that the term 1
2

 is just used for

convenience to derive the update rule of GD). Essentially, OLS regression can be

understood as Adaline without the unit step function so that we obtain continuous

target values instead of the class labels -1 and 1. To demonstrate this, let us take

the GD implementation of Adaline from Chapter 2, Training Simple Machine Learning
$OJRULWKPV�IRU�&ODVVLÀFDWLRQ�DQG�UHPRYH�WKH�XQLW�VWHS�IXQFWLRQ�WR�LPSOHPHQW�RXU�ÀUVW�
linear regression model:

class LinearRegressionGD(object):

 def __init__(self, eta=0.001, n_iter=20):
 self.eta = eta
 self.n_iter = n_iter

 def fit(self, X, y):
 self.w_ = np.zeros(1 + X.shape[1])
 self.cost_ = []

 for i in range(self.n_iter):
 output = self.net_input(X)
 errors = (y - output)
 self.w_[1:] += self.eta * X.T.dot(errors)
 self.w_[0] += self.eta * errors.sum()
 cost = (errors**2).sum() / 2.0
 self.cost_.append(cost)
 return self

 def net_input(self, X):
 return np.dot(X, self.w_[1:]) + self.w_[0]

 def predict(self, X):
 return self.net_input(X)

If you need a refresher about how the weights are being updated—taking

a step into the opposite direction of the gradient—please revisit the

Adaptive linear neurons and the convergence of learning section in Chapter 2,

7UDLQLQJ�6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ.

Hsi-Pin Ma

Linear Regression GD

16

Hsi-Pin Ma

Training a Regressor

17

Hsi-Pin Ma

Visualize the Linear Regression

18

Hsi-Pin Ma

Predicting with the Linear Regression
Model

19

Hsi-Pin Ma

Estimating the Coefficient of a Regression
Model via Scikit-learn

20

Hsi-Pin Ma

Fitting a Robust Regression Model Using
RANSAC

21

Hsi-Pin Ma

Outliers

•Linear regression can be heavily affected by the
presence of “outliers”

•A very small subset of our data may have a big
effect on the estimated coefficient

•In practice, removing outliers always requires our
own judgement as well as domain knowledge

•An alternative to throwing away outliers, a robust
method of regression using RANdom SAmple
Consensus (RANSAC) algorithm fits a regression
model to a subset of the data, called inliers

22

Hsi-Pin Ma

The RANSAC Algorithm
• Select a random number of samples to be inliers and

fit the model
• Test all other data points against the fitted model and

add those points that fall within a user-given
tolerance to the inliers

• Refit the model using all inliers
• Estimate the error of the fitted model versus inliers
• Terminate the algorithm if the performance meets a

certain user-defined threshold or if a fixed number of
iterations were reached; go back to step 1 otherwise

23

Hsi-Pin Ma

RANSAC using Scikit-learn

24

Hsi-Pin Ma

RANSAC using Scikit-learn

25

Hsi-Pin Ma

Evaluating the Performance of
Linear Regression Models

26

Hsi-Pin Ma

Performance Evaluation

•We will build a multiple linear regression
model for the Housing dataset by using all
features

•Evaluate the generalization performance by
– Residual plot
– Mean square error (MSE)
– The coefficient of determination R2

27

Hsi-Pin Ma

Train the Linear Regression Model

28

Hsi-Pin Ma

Train the Linear Regression Model

29

Hsi-Pin Ma

Residual Plot

•Plot the residuals versus the predicted values to
diagnose the regression model

•For a good regression model, we would expect
that the residuals should be randomly scattered
around the centerline

•Residual plot can be used for detect outliers,
which are represented by the points with a large
deviation from the centerline

30

Hsi-Pin Ma

Residual Plot

31

Hsi-Pin Ma

Mean Squared Error (MSE)

32

Predicting Continuous Target Variables with Regression Analysis

[330]

In case of a perfect prediction, the residuals would be exactly zero, which we will
probably never encounter in realistic and practical applications. However, for a good
regression model, we would expect that the errors are randomly distributed and
the residuals should be randomly scattered around the centerline. If we see patterns
in a residual plot, it means that our model is unable to capture some explanatory
information, which has leaked into the residuals, as we can slightly see in our
previous residual plot. Furthermore, we can also use residual plots to detect outliers,
which are represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called
Mean Squared Error (MSE), which is simply the averaged value of the SSE cost
WKDW�ZH�PLQLPL]HG�WR�ÀW�WKH�OLQHDU regression model. The MSE is useful to compare
different regression models or for tuning their parameters via grid search and
cross-validation, as it normalizes the SSE by the sample size:

() ()()2

1

1 ˆ
n

i i

i
MSE y y

n =

= −∑

Let's compute the MSE of our training and test predictions:

>>> from sklearn.metrics import mean_squared_error
>>> print('MSE train: %.3f, test: %.3f' % (
... mean_squared_error(y_train, y_train_pred),
... mean_squared_error(y_test, y_test_pred)))
MSE train: 19.958, test: 27.196

We see that the MSE on the training set is 19.96, and the MSE of the test set is much
ODUJHU��ZLWK�D�YDOXH�RI��������ZKLFK�LV�DQ�LQGLFDWRU�WKDW�RXU�PRGHO�LV�RYHUÀWWLQJ�WKH�
training data.

Sometimes it may be more useful to report the FRHIÀFLHQW�RI�GHWHUPLQDWLRQ
(2R), which can be understood as a standardized version of the MSE, for better
interpretability of the model's performance. Or in other words, 2R is the fraction of
response variance that is captured by the model. The 2R �YDOXH�LV�GHÀQHG�DV�

2 1 SSER
SST

= −

Hsi-Pin Ma

Coefficient of Determination R2

33

Predicting Continuous Target Variables with Regression Analysis

[330]

In case of a perfect prediction, the residuals would be exactly zero, which we will
probably never encounter in realistic and practical applications. However, for a good
regression model, we would expect that the errors are randomly distributed and
the residuals should be randomly scattered around the centerline. If we see patterns
in a residual plot, it means that our model is unable to capture some explanatory
information, which has leaked into the residuals, as we can slightly see in our
previous residual plot. Furthermore, we can also use residual plots to detect outliers,
which are represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called
Mean Squared Error (MSE), which is simply the averaged value of the SSE cost
WKDW�ZH�PLQLPL]HG�WR�ÀW�WKH�OLQHDU regression model. The MSE is useful to compare
different regression models or for tuning their parameters via grid search and
cross-validation, as it normalizes the SSE by the sample size:

() ()()2

1

1 ˆ
n

i i

i
MSE y y

n =

= −∑

Let's compute the MSE of our training and test predictions:

>>> from sklearn.metrics import mean_squared_error
>>> print('MSE train: %.3f, test: %.3f' % (
... mean_squared_error(y_train, y_train_pred),
... mean_squared_error(y_test, y_test_pred)))
MSE train: 19.958, test: 27.196

We see that the MSE on the training set is 19.96, and the MSE of the test set is much
ODUJHU��ZLWK�D�YDOXH�RI��������ZKLFK�LV�DQ�LQGLFDWRU�WKDW�RXU�PRGHO�LV�RYHUÀWWLQJ�WKH�
training data.

Sometimes it may be more useful to report the FRHIÀFLHQW�RI�GHWHUPLQDWLRQ
(2R), which can be understood as a standardized version of the MSE, for better
interpretability of the model's performance. Or in other words, 2R is the fraction of
response variance that is captured by the model. The 2R �YDOXH�LV�GHÀQHG�DV�

2 1 SSER
SST

= −
Chapter 10

[331]

Here, SSE is the sum of squared errors and SST is the total sum of squares:

()()2

1

n i
yi

SST y µ
=

= −∑

In other words, SST is simply the variance of the response.

Let us quickly show that 2R is indeed just a rescaled version of the MSE:

2 1 SSER
SST

= −

() ()()
()()

2

1

2

1

1 ˆ
1 1

n i i
i

n i
yi

y y
n

y
n

µ

=

=

−
−

−

∑
∑

()
1 MSE
Var y

−

For the training dataset, the 2R is bounded between 0 and 1, but it can become
negative for the test set. If 2 1R = ��WKH�PRGHO�ÀWV�WKH�GDWD�SHUIHFWO\�ZLWK�D�
corresponding 0MSE = .

Evaluated on the training data, the 2R of our model is 0.765, which doesn't sound
too bad. However, the 2R on the test dataset is only 0.673, which we can compute by
executing the following code:

>>> from sklearn.metrics import r2_score
>>> print('R^2 train: %.3f, test: %.3f' %
... (r2_score(y_train, y_train_pred),
... r2_score(y_test, y_test_pred)))
R^2 train: 0.765, test: 0.673

Chapter 10

[331]

Here, SSE is the sum of squared errors and SST is the total sum of squares:

()()2

1

n i
yi

SST y µ
=

= −∑

In other words, SST is simply the variance of the response.

Let us quickly show that 2R is indeed just a rescaled version of the MSE:

2 1 SSER
SST

= −

() ()()
()()

2

1

2

1

1 ˆ
1 1

n i i
i

n i
yi

y y
n

y
n

µ

=

=

−
−

−

∑
∑

()
1 MSE
Var y

−

For the training dataset, the 2R is bounded between 0 and 1, but it can become
negative for the test set. If 2 1R = ��WKH�PRGHO�ÀWV�WKH�GDWD�SHUIHFWO\�ZLWK�D�
corresponding 0MSE = .

Evaluated on the training data, the 2R of our model is 0.765, which doesn't sound
too bad. However, the 2R on the test dataset is only 0.673, which we can compute by
executing the following code:

>>> from sklearn.metrics import r2_score
>>> print('R^2 train: %.3f, test: %.3f' %
... (r2_score(y_train, y_train_pred),
... r2_score(y_test, y_test_pred)))
R^2 train: 0.765, test: 0.673

sum of squared errors

R2 is a rescaled version of the MSE

Hsi-Pin Ma

Using the Regularized Methods for
Regression

34

Hsi-Pin Ma

Regularization for Linear Regression

•Regularization is commonly used to tackle the
overfitting problem

•Regularization for linear regression is achieved
by adding a term to the cost function which is
proportional to a norm of the weighted vector

•Three popular approaches
– Ridge regression
– Least absolute shrinkage and selection operator (LASSO)
– Elastic net

35

Hsi-Pin Ma

Ridge Regression

•Cost function
– L2-panelized model
– Does not regularize the intercept w0

36

Predicting Continuous Target Variables with Regression Analysis

[332]

8VLQJ�UHJXODUL]HG�PHWKRGV�IRU�UHJUHVVLRQ
As we discussed in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�
VFLNLW�OHDUQ, regularization is one approach to tackle the problem of RYHUÀWWLQJ�E\�
adding additional information, and thereby shrinking the parameter values of the
model to induce a penalty against complexity. The most popular approaches to
regularized linear regression are the so-called Ridge Regression, Least Absolute
Shrinkage and Selection Operator (LASSO), and Elastic Net.

Ridge regression is an L2 penalized model where we simply add the squared sum of
the weights to our least-squares cost function:

() () ()()2 2
2

1

ˆ
n

i i
Ridge

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

2 2
2

1
2 :

m

j
j

L w wλ λ
=

= ∑‖ ‖

By increasing the value of hyperparameter λ , we increase the regularization
strength and shrink the weights of our model. Please note that we don't regularize
the intercept term 0w .

An alternative approach that can lead to sparse models is LASSO. Depending on the
regularization strength, certain weights can become zero, which also makes LASSO
useful as a supervised feature selection technique:

() () ()()2

1
1

ˆ
n

i i
LASSO

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

1
1

1:
m

j
j

L w wλ λ
=

= ∑‖ ‖

Predicting Continuous Target Variables with Regression Analysis

[332]

8VLQJ�UHJXODUL]HG�PHWKRGV�IRU�UHJUHVVLRQ
As we discussed in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�
VFLNLW�OHDUQ, regularization is one approach to tackle the problem of RYHUÀWWLQJ�E\�
adding additional information, and thereby shrinking the parameter values of the
model to induce a penalty against complexity. The most popular approaches to
regularized linear regression are the so-called Ridge Regression, Least Absolute
Shrinkage and Selection Operator (LASSO), and Elastic Net.

Ridge regression is an L2 penalized model where we simply add the squared sum of
the weights to our least-squares cost function:

() () ()()2 2
2

1

ˆ
n

i i
Ridge

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

2 2
2

1
2 :

m

j
j

L w wλ λ
=

= ∑‖ ‖

By increasing the value of hyperparameter λ , we increase the regularization
strength and shrink the weights of our model. Please note that we don't regularize
the intercept term 0w .

An alternative approach that can lead to sparse models is LASSO. Depending on the
regularization strength, certain weights can become zero, which also makes LASSO
useful as a supervised feature selection technique:

() () ()()2

1
1

ˆ
n

i i
LASSO

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

1
1

1:
m

j
j

L w wλ λ
=

= ∑‖ ‖

Hsi-Pin Ma

Least Absolute Shrinkage and Selection
Operator (LASSO)

•Cost function
– L1-panelized model
– Does not regularize the intercept w0

– Can lead to sparse model
– LASSO selects at most N coefficients to be nonzero if m>N

37

Predicting Continuous Target Variables with Regression Analysis

[332]

8VLQJ�UHJXODUL]HG�PHWKRGV�IRU�UHJUHVVLRQ
As we discussed in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�
VFLNLW�OHDUQ, regularization is one approach to tackle the problem of RYHUÀWWLQJ�E\�
adding additional information, and thereby shrinking the parameter values of the
model to induce a penalty against complexity. The most popular approaches to
regularized linear regression are the so-called Ridge Regression, Least Absolute
Shrinkage and Selection Operator (LASSO), and Elastic Net.

Ridge regression is an L2 penalized model where we simply add the squared sum of
the weights to our least-squares cost function:

() () ()()2 2
2

1

ˆ
n

i i
Ridge

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

2 2
2

1
2 :

m

j
j

L w wλ λ
=

= ∑‖ ‖

By increasing the value of hyperparameter λ , we increase the regularization
strength and shrink the weights of our model. Please note that we don't regularize
the intercept term 0w .

An alternative approach that can lead to sparse models is LASSO. Depending on the
regularization strength, certain weights can become zero, which also makes LASSO
useful as a supervised feature selection technique:

() () ()()2

1
1

ˆ
n

i i
LASSO

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

1
1

1:
m

j
j

L w wλ λ
=

= ∑‖ ‖

Predicting Continuous Target Variables with Regression Analysis

[332]

8VLQJ�UHJXODUL]HG�PHWKRGV�IRU�UHJUHVVLRQ
As we discussed in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�
VFLNLW�OHDUQ, regularization is one approach to tackle the problem of RYHUÀWWLQJ�E\�
adding additional information, and thereby shrinking the parameter values of the
model to induce a penalty against complexity. The most popular approaches to
regularized linear regression are the so-called Ridge Regression, Least Absolute
Shrinkage and Selection Operator (LASSO), and Elastic Net.

Ridge regression is an L2 penalized model where we simply add the squared sum of
the weights to our least-squares cost function:

() () ()()2 2
2

1

ˆ
n

i i
Ridge

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

2 2
2

1
2 :

m

j
j

L w wλ λ
=

= ∑‖ ‖

By increasing the value of hyperparameter λ , we increase the regularization
strength and shrink the weights of our model. Please note that we don't regularize
the intercept term 0w .

An alternative approach that can lead to sparse models is LASSO. Depending on the
regularization strength, certain weights can become zero, which also makes LASSO
useful as a supervised feature selection technique:

() () ()()2

1
1

ˆ
n

i i
LASSO

i
J w y y wλ

=

= − +∑ ‖ ‖

Here:

1
1

1:
m

j
j

L w wλ λ
=

= ∑‖ ‖

Hsi-Pin Ma

Elastic Net

•Cost function
– A compromise between ridge regression and LASSO as

to have L1-penalty to generate sparsity and L2-penalty to
overcome the limitation of the number of selected
features

38

Chapter 10

[333]

However, a limitation of LASSO is that it selects at most n variables if m>n. A
compromise between Ridge regression and LASSO is Elastic Net, which has an L1
penalty to generate sparsity and an L2 penalty to overcome some of the limitations
of LASSO, such as the number of selected variables:

() () ()()2 2
1 2

1 1 1

ˆ
n m m

i i
j jElasticNet

i j j
J w y y w wλ λ

= = =

= − + +∑ ∑ ∑

Those regularized regression models are all available via scikit-learn, and the
usage is similar to the regular regression model except that we have to specify the
regularization strength via the parameter λ , for example, optimized via k-fold
cross-validation.

A Ridge regression model can be initialized via:

>>> from sklearn.linear_model import Ridge
>>> ridge = Ridge(alpha=1.0)

Note that the regularization strength is regulated by the parameter alpha, which is
similar to the parameter λ . Likewise, we can initialize a LASSO regressor from the
linear_model submodule:

>>> from sklearn.linear_model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> elanet = ElasticNet(alpha=1.0, l1_ratio=0.5)

For example, if we set the l1_ratio to 1.0, the ElasticNet regressor
would be equal to LASSO regression. For more detailed information about the
different implementations of linear regression, please see the documentation at
http://scikit-learn.org/stable/modules/linear_model.html.

Hsi-Pin Ma

Turning a Linear Regression Model into a
Curve - Polynomial Regression

39

Hsi-Pin Ma

Polynomial Regression

•When relation between explanatory and
response variables are not linear

– x: explanatory variable, y: response variable, d: degree of
the polynomial

•Still considered a multiple linear regression
model because of the linear regression
coefficient w.

40

Predicting Continuous Target Variables with Regression Analysis

[334]

Turning a linear regression model into a
FXUYH�±�SRO\QRPLDO�UHJUHVVLRQ
In the previous sections, we assumed a linear relationship between explanatory and
response variables. One way to account for the violation of linearity assumption is to
use a polynomial regression model by adding polynomial terms:

2
0 1 2

d
dy w w x w x w x= + + + +…

Here, d denotes the degree of the polynomial. Although we can use polynomial
regression to model a nonlinear relationship, it is still considered a multiple linear
UHJUHVVLRQ�PRGHO�EHFDXVH�RI�WKH�OLQHDU�UHJUHVVLRQ�FRHIÀFLHQWV�w. In the following
subsections, we will see how we can add such polynomial terms to an existing
GDWDVHW�FRQYHQLHQWO\�DQG�ÀW�D�SRO\QRPLDO�UHJUHVVLRQ�PRGHO�

Adding polynomial terms using scikit-learn
We will now learn how to use the PolynomialFeatures transformer class from
scikit-learn to add a quadratic term (G� ��) to a simple regression problem with one
H[SODQDWRU\�YDULDEOH��7KHQ��ZH�FRPSDUH�WKH�SRO\QRPLDO�WR�WKH�OLQHDU�ÀW�IROORZLQJ�
these steps:

1. Add a second degree polynomial term:
from sklearn.preprocessing import PolynomialFeatures
>>> X = np.array([258.0, 270.0, 294.0, 320.0, 342.0,
... 368.0, 396.0, 446.0, 480.0, 586.0])\
... [:, np.newaxis]
>>> y = np.array([236.4, 234.4, 252.8, 298.6, 314.2,
... 342.2, 360.8, 368.0, 391.2, 390.8])
>>> lr = LinearRegression()
>>> pr = LinearRegression()
>>> quadratic = PolynomialFeatures(degree=2)
>>> X_quad = quadratic.fit_transform(X)

2. Fit a simple linear regression model for comparison:
>>> lr.fit(X, y)
>>> X_fit = np.arange(250,600,10)[:, np.newaxis]
>>> y_lin_fit = lr.predict(X_fit)

Hsi-Pin Ma

Adding Polynomial Terms Using Scikit-learn

41

Add a second degree polynomial term

Hsi-Pin Ma

Adding Polynomial Terms Using Scikit-learn

42

Hsi-Pin Ma

Adding Polynomial Terms Using Scikit-learn

43

Hsi-Pin Ma

Modeling Nonlinear Relationships in the
Housing Dataset

44

Hsi-Pin Ma

Modeling Nonlinear Relationships in the
Housing Dataset

45

Hsi-Pin Ma

Transforming the Dataset

•However, polynomial features are not always
the best choice for modeling nonlinear features
– MEDV-LSTAT: may lead to the hypothesis that a log-

transformation of the LSTAT feature variable and the
square root of MEDV may project the data onto a linear
feature space

46

8.4 Other Nonlinear Feature Transformations

• The ’LSTAT’ feature is taken as the explanatory variable and ’MEDV’ as the response vari-
able.

• Model : √y = ln x.

In [60]: X = df[['LSTAT']].values
y = df['MEDV'].values

transform features
X_log = np.log(X)
y_sqrt = np.sqrt(y)

fit features
X_fit = np.arange(X_log.min()-1, X_log.max()+1, 1)[:, np.newaxis]

regr = regr.fit(X_log, y_sqrt)
y_lin_fit = regr.predict(X_fit)
linear_r2 = r2_score(y_sqrt, regr.predict(X_log))

plot results
plt.scatter(X_log, y_sqrt, label='training points', color='lightgray')

plt.plot(X_fit, y_lin_fit,
label='linear (d=1), $R^2=%.2f$' % linear_r2,
color='blue',
lw=2)

plt.xlabel('log(% lower status of the population [LSTAT])')
plt.ylabel('$\sqrt{Price \; in \; \$1000s \; [MEDV]}$')
plt.legend(loc='lower left')

plt.tight_layout()
#plt.savefig('images/10_12.png', dpi=300)
plt.show()

25

Hsi-Pin Ma

Transforming the Dataset

47

Hsi-Pin Ma

Decision Tree Regression
• A (binary) decision tree will partition the feature space

into disjoint regions through simple (binary) questions
• The predicted target value associated with a region is

the average of the target values of the instances in the
training dataset lying in the region

• The impurity metric used in the decision tree
regression is the mean square error (MSE)

48

Predicting Continuous Target Variables with Regression Analysis

[340]

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any
transformation of the features if we are dealing with nonlinear data. We remember
from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, that we grow a
decision tree by iteratively splitting its nodes until the leaves are pure or a stopping
FULWHULRQ�LV�VDWLVÀHG��:KHQ�ZH�XVHG�GHFLVLRQ�WUHHV�IRU�FODVVLÀFDWLRQ��ZH�GHÀQHG�
entropy as a measure of impurity to determine which feature split maximizes the
,QIRUPDWLRQ�*DLQ (,*), which can�EH�GHÀQHG�DV�IROORZV�IRU�D�ELQDU\�VSOLW�

() () () (),
left right

left righp i p
p p

tIG D x I D I D
N N

I D
N N

= − −

Here, x is the feature to perform the split, pN is the number of samples in the parent
node, I is the impurity function, pD is the subset of training samples at the parent
node, and leftD and rightD are the subsets of training samples at the left and right
FKLOG�QRGH�DIWHU�WKH�VSOLW��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�IHDWXUH�VSOLW�WKDW�
PD[LPL]HV�WKH�LQIRUPDWLRQ�JDLQ��RU�LQ�RWKHU�ZRUGV��ZH�ZDQW�WR�ÀQG�WKH�IHDWXUH�VSOLW�
that reduces the impurities in the child nodes most. In Chapter 3, A Tour of Machine
/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ we discussed Gini impurity and entropy as
PHDVXUHV�RI�LPSXULW\��ZKLFK�DUH�ERWK�XVHIXO�FULWHULD�IRU�FODVVLÀFDWLRQ��7R�XVH�D�
decision tree for regression, however, we need an impurity metric that is suitable
for continuous variables, so we GHÀQH�WKH�LPSXULW\�PHDVXUH�RI�D�QRGH�W�DV�WKH�
MSE instead:

() () ()()21 ˆ
t

i
t

i Dt

I t MSE t y y
N ∈

= = −∑

Here, tN is the number of training samples at node t, tD is the training subset at
node t, ()iy is the true target value, and ˆty is the predicted target value (sample
mean):

()1ˆ
t

i
t

i Dt

y y
N ∈

= ∑

Predicting Continuous Target Variables with Regression Analysis

[340]

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any
transformation of the features if we are dealing with nonlinear data. We remember
from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, that we grow a
decision tree by iteratively splitting its nodes until the leaves are pure or a stopping
FULWHULRQ�LV�VDWLVÀHG��:KHQ�ZH�XVHG�GHFLVLRQ�WUHHV�IRU�FODVVLÀFDWLRQ��ZH�GHÀQHG�
entropy as a measure of impurity to determine which feature split maximizes the
,QIRUPDWLRQ�*DLQ (,*), which can�EH�GHÀQHG�DV�IROORZV�IRU�D�ELQDU\�VSOLW�

() () () (),
left right

left righp i p
p p

tIG D x I D I D
N N

I D
N N

= − −

Here, x is the feature to perform the split, pN is the number of samples in the parent
node, I is the impurity function, pD is the subset of training samples at the parent
node, and leftD and rightD are the subsets of training samples at the left and right
FKLOG�QRGH�DIWHU�WKH�VSOLW��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�IHDWXUH�VSOLW�WKDW�
PD[LPL]HV�WKH�LQIRUPDWLRQ�JDLQ��RU�LQ�RWKHU�ZRUGV��ZH�ZDQW�WR�ÀQG�WKH�IHDWXUH�VSOLW�
that reduces the impurities in the child nodes most. In Chapter 3, A Tour of Machine
/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ we discussed Gini impurity and entropy as
PHDVXUHV�RI�LPSXULW\��ZKLFK�DUH�ERWK�XVHIXO�FULWHULD�IRU�FODVVLÀFDWLRQ��7R�XVH�D�
decision tree for regression, however, we need an impurity metric that is suitable
for continuous variables, so we GHÀQH�WKH�LPSXULW\�PHDVXUH�RI�D�QRGH�W�DV�WKH�
MSE instead:

() () ()()21 ˆ
t

i
t

i Dt

I t MSE t y y
N ∈

= = −∑

Here, tN is the number of training samples at node t, tD is the training subset at
node t, ()iy is the true target value, and ˆty is the predicted target value (sample
mean):

()1ˆ
t

i
t

i Dt

y y
N ∈

= ∑

Predicting Continuous Target Variables with Regression Analysis

[340]

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any
transformation of the features if we are dealing with nonlinear data. We remember
from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, that we grow a
decision tree by iteratively splitting its nodes until the leaves are pure or a stopping
FULWHULRQ�LV�VDWLVÀHG��:KHQ�ZH�XVHG�GHFLVLRQ�WUHHV�IRU�FODVVLÀFDWLRQ��ZH�GHÀQHG�
entropy as a measure of impurity to determine which feature split maximizes the
,QIRUPDWLRQ�*DLQ (,*), which can�EH�GHÀQHG�DV�IROORZV�IRU�D�ELQDU\�VSOLW�

() () () (),
left right

left righp i p
p p

tIG D x I D I D
N N

I D
N N

= − −

Here, x is the feature to perform the split, pN is the number of samples in the parent
node, I is the impurity function, pD is the subset of training samples at the parent
node, and leftD and rightD are the subsets of training samples at the left and right
FKLOG�QRGH�DIWHU�WKH�VSOLW��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�IHDWXUH�VSOLW�WKDW�
PD[LPL]HV�WKH�LQIRUPDWLRQ�JDLQ��RU�LQ�RWKHU�ZRUGV��ZH�ZDQW�WR�ÀQG�WKH�IHDWXUH�VSOLW�
that reduces the impurities in the child nodes most. In Chapter 3, A Tour of Machine
/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ we discussed Gini impurity and entropy as
PHDVXUHV�RI�LPSXULW\��ZKLFK�DUH�ERWK�XVHIXO�FULWHULD�IRU�FODVVLÀFDWLRQ��7R�XVH�D�
decision tree for regression, however, we need an impurity metric that is suitable
for continuous variables, so we GHÀQH�WKH�LPSXULW\�PHDVXUH�RI�D�QRGH�W�DV�WKH�
MSE instead:

() () ()()21 ˆ
t

i
t

i Dt

I t MSE t y y
N ∈

= = −∑

Here, tN is the number of training samples at node t, tD is the training subset at
node t, ()iy is the true target value, and ˆty is the predicted target value (sample
mean):

()1ˆ
t

i
t

i Dt

y y
N ∈

= ∑

of training samples at node t training subset at node t

true target value predicted target value (sample mean)

Hsi-Pin Ma

Decision Tree Regression

49

Hsi-Pin Ma

Random Forest Regression

•The number of decision trees in a random forest
is a hyperparameter

•We use MSE impurity reduction (i.e. variance
reduction) to grow the individual decision tree

•The predicted target value is calculated as the
average prediction over all decision trees

•In scikit-learn, the random forest regression is
implemented in the ensemble module as the
class RandomForestRegressor

50

Hsi-Pin Ma

Random Forest Regression

51

Hsi-Pin Ma

Random Forest Regression

52

