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Outline
•Introduction to regression
•Exploring the Housing Dataset
•Implementing an ordinary least squares linear 

regression model
•Fitting a robust regression model using RANSAC
•Evaluating the performance of linear regression 

models
•Using regularized methods for regression
•Turning a linear regression model into a curve - 

polynomial regression
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Introduction to Regression
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Linear Regression

•To model the relationship between one or 
multiple features and a continuous target 
variable
– A subcategory of supervised learning
– discrete category (classification) vs. continuous target 

variable (regression)
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Simple (Univariate) Linear Regression
•To model the relationship between a single 

feature (explanatory variable x) and a 
continuous valued response (target variable y)
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Introducing linear regression
The goal of linear regression is to model the relationship between one or multiple 
features and a continuous target variable. As discussed in Chapter 1, Giving Computers 
the Ability to Learn from Data, regression analysis is a subcategory of supervised 
PDFKLQH�OHDUQLQJ��,Q�FRQWUDVW�WR�FODVVLÀFDWLRQ³DQRWKHU�VXEFDWHJRU\�RI�VXSHUYLVHG�
learning—regression analysis aims to predict outputs on a continuous scale rather 
than categorical class labels.

In the following subsections, we will introduce the most basic type of linear 
regression, simple linear regression, and relate it to the more general, multivariate 
case (linear regression with multiple features).

Simple linear regression
The goal of simple (univariate) linear regression is to model the relationship between 
a single feature (explanatory variable x) and a continuous valued response (target 
variable y). The equation of a linear model with one�H[SODQDWRU\�YDULDEOH�LV�GHÀQHG�
as follows:

0 1y w w x= +

Here, the weight 0w  represents the y-axis intercept and 1w �LV�WKH�ZHLJKW�FRHIÀFLHQW�
of the explanatory variable. Our goal is to learn the weights of the linear equation to 
describe the relationship between the explanatory variable and the target variable, 
which can then be used to predict the responses of new explanatory variables that 
were not part of the training dataset.

%DVHG�RQ�WKH�OLQHDU�HTXDWLRQ�WKDW�ZH�GHÀQHG�SUHYLRXVO\��OLQHDU�UHJUHVVLRQ�FDQ�EH�
XQGHUVWRRG�DV�ÀQGLQJ�WKH�EHVW�ÀWWLQJ�VWUDLJKW�OLQH�WKURXJK�WKH�VDPSOH�SRLQWV��DV�
VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�
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1 Introducing Linear Regression

1.1 Simple (Univariate) Linear Regression

• x : a single feature, usually called the explanatory variable.

• y : a continuous target value, usually called the response variable, which is conceived as an
unknown function c(x) of the explanatory variable x.

• {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} : a dataset of N instances of the pair (x, y) of the
explanatory feature x and the response variable y.

• Goal : to model the response variable y as an affine function of the explanatory variable x,
based on the dataset,

ŷ = h(x) ≡ w0 + w1x

such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2

is minimized.

• A function approximation problem : to approximate the unknown function c(x) by an affine
function h(x) such that the MSE is minimized.
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Multiple Linear Regression
•Generalize the model to multiple explanatory 

variables

6
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7KLV�EHVW�ÀWWLQJ�OLQH�LV�also called the regression line, and the vertical lines from the 
regression line to the sample points are the so-called offsets or residuals—the errors 
of our prediction.

Multiple linear regression
The special case of linear regression with one explanatory variable that we 
introduced in the previous subsection is also called simple linear regression. Of 
course, we can also generalize the linear regression model to multiple explanatory 
variables; this process is called multiple linear regression:

0 0 1 1
0

T
m m i i

i

m

y w x w x w x w x w x
=

= + +…+ = =∑

Here, 0w  is the y-axis intercept with 0 1x = .

Out[2]:

1.2 Multiple (Multivariate) Linear Regression

• x1, x2, . . . , xm : m features, each of which is called an explanatory variable.

• y : a continuous target value, called the response variable, which is conceived as a function
c(x1, x2, . . . , xm) of the m explanatory variables.

• ((x(1)1 , . . . , x(1)m , y(1)), (x(2)1 , . . . , x(2)m , y(2)), . . . , (x(N)
1 , . . . , x(N)

m , y(N))) : a dataset of N instances
of the pair (x1, . . . , xm, y) of the m explanatory features x1, . . . , xm and the response variable
y.

• Goal : to model the response variable y as an affine function of the explanatory variables
x1, x2, . . . , xm, based on the dataset,

ŷ = h(x1, . . . , xm) ≡ w0 + w1x1 + · · ·+ wmxm

=
m

∑
i=0

wixi = w · x̃, w = (w0, w1, . . . , wm), x̃ = (1, x),

where x0 = 1, such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2 =
1
N

N

∑
i=1

(y(i) −w · x̃(i))2

is minimized.
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ŷ = h(x1, . . . , xm) ≡ w0 + w1x1 + · · ·+ wmxm

=
m

∑
i=0

wixi = w · x̃, w = (w0, w1, . . . , wm), x̃ = (1, x),

where x0 = 1, such that the mean squared error (MSE)

MSE =
1
N

N

∑
i=1

(y(i) − ŷ(i))2 =
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Exploring the Housing Dataset
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Housing Dataset
•506 instance (houses), each with 13 features and 

the house price (MEDV) as the target variable
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Load the Housing Dataset
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Exploratory Data Analysis (EDA)
•Visualize the important characteristics of a 

dataset before training a model
– Create a scatterplot matrix to visualize the pairwise 

correlations between the different features 
– Use pairplot function from Seaborn library

•conda install seaborn or pip install seaborn

10
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Correlation Matrix
•Use correlation matrix to quantify and 

summarize linear relationships between 
variables
– Identical to a covariance matrix computed from 

standardized features
– A square matrix that contains the Pearson product-

moment correlation coefficient (Pearson’s r), which 
measures the linear dependence between pairs of 
features

12
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− −

∑
∑ ∑

Here, µ  denotes the sample mean of the corresponding feature, xyσ  is the covariance 
between the features x and y, and xσ and yσ  are the features' standard deviations.

We can show that the covariance between a pair of standardized 
IHDWXUHV�LV�LQ�IDFW�HTXDO�WR�WKHLU�OLQHDU�FRUUHODWLRQ�FRHIÀFLHQW��7R�VKRZ�
WKLV��OHW�XV�ÀUVW�VWDQGDUGL]H�WKH�IHDWXUHV�x and y to obtain their z-scores, 
which we will denote as x′  and y′ , respectively:

, yx

x y

yxx y
µµ

σ σ
′ ′

−−= =

Remember that we compute the (population) covariance between two 
features as follows:

 

( )( ) ( )( )1 n
i i

xy x y
i
x y

n
σ µ µ= − −∑

Since standardization centers a feature variable at mean zero, we can 
now calculate the covariance between the scaled features as follows:

( )( )1 ' 0 ' 0
n

xy
i
x y

n
σ = −′ −∑

Through resubstitution, we then get the following result:

1 n
yx

i x y

yx
n

µµ
σ σ

 − −
     

∑

( )( ) ( )( )1 n
i i

x y
ix y

x y
n

µ µ
σ σ

− −
⋅ ∑

Finally, we can simplify this equation as follows:

' xy
xy

x y

σ
σ

σ σ
=
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2.3 Correlation Matrix

• x, y : two random variables with means µx, µy.

• {(x(1), y(1)), . . . , (x(N), y(N)))} : a dataset of N instances of the pair (x, y) of random variables.

• rx,y : the Pearson (product-moment) correlation coefficient between two random variables
x, y, defined as

rx,y =
σx,y

σxσy
,

where σx,y = E[(x− µx)(y− µy)] and σx, σy are standard deviations of x and y respectively.

• −1 ≤ rx,y ≤ +1.

5



Hsi-Pin Ma

Correlation Matrix
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Implementing an Ordinary Least Squares 
(OLS) Linear Regression Model
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Minimizing the Objective Function of 
Linear Regression

•Cost function J (Sum of Squared Errors, SSE)

– Identical to the cost function of Adaline
– OLS regression can be understood as Adaline without 

the unit step function, so we can obtain continuous target 
values

– Use GD or SGD for optimization

15
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7R�ÀW�D�linear regression model, we are interested in those features that have a high 
correlation with our target variable MEDV. Looking at the previous correlation matrix, 
we see that our target variable MEDV shows the largest correlation with the LSTAT 
variable (-0.74); however, as you might remember from inspecting the scatterplot 
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the other 
hand, the correlation between RM and MEDV is also relatively high (0.70). Given the 
linear relationship between these two variables that we observed in the scatterplot, 
RM seems to be a good choice for an exploratory variable to introduce the concepts of 
a simple linear regression model in the following section.

Implementing an ordinary least squares 
linear regression model
At the beginning of this chapter, we mentioned that linear regression can be 
XQGHUVWRRG�DV�REWDLQLQJ�WKH�EHVW�ÀWWLQJ�VWUDLJKW�OLQH�WKURXJK�WKH�VDPSOH�SRLQWV�
RI�RXU�WUDLQLQJ�GDWD��+RZHYHU��ZH�KDYH�QHLWKHU�GHÀQHG�WKH�WHUP�EHVW�ÀWWLQJ nor 
KDYH�ZH�GLVFXVVHG�WKH�GLIIHUHQW�WHFKQLTXHV�RI�ÀWWLQJ�VXFK�D�PRGHO��,Q�WKH�IROORZLQJ�
VXEVHFWLRQV��ZH�ZLOO�ÀOO�LQ�WKH�PLVVLQJ�SLHFHV�RI�WKLV�SX]]OH�XVLQJ�WKH�Ordinary Least 
Squares (OLS) method (sometimes also called linear least squares) to estimate 
the parameters of the linear regression line that minimizes the sum of the squared 
vertical distances (residuals or errors) to the sample points.

Solving regression for regression parameters 
with gradient descent
Consider our implementation of the $'$SWLYH�/,QHDU�1(XURQ (Adaline) from 
Chapter 2, 7UDLQLQJ�6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ; we remember 
WKDW�WKH�DUWLÀFLDO�QHXURQ�XVHV�D�OLQHDU�DFWLYDWLRQ�IXQFWLRQ��$OVR��ZH�GHÀQHG�D�FRVW�
function ( )J ⋅ , which we minimized to learn the weights via optimization algorithms, 
such as Gradient Descent (GD) and Stochastic Gradient Descent (SGD). This cost 
function in Adaline is the Sum of Squared Errors (SSE), which is identical to the cost 
function that we use for OLS:

( ) ( ) ( )( )2

1

1 ˆ
2

n
i i

i
J w y y

=

= −∑
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Here, ŷ  is the predicted value ˆ Ty w x=  (note that the term 1
2

 is just used for 

convenience to derive the update rule of GD). Essentially, OLS regression can be 

understood as Adaline without the unit step function so that we obtain continuous 

target values instead of the class labels -1 and 1. To demonstrate this, let us take 

the GD implementation of Adaline from Chapter 2, Training Simple Machine Learning 
$OJRULWKPV�IRU�&ODVVLÀFDWLRQ�DQG�UHPRYH�WKH�XQLW�VWHS�IXQFWLRQ�WR�LPSOHPHQW�RXU�ÀUVW�
linear regression model:

class LinearRegressionGD(object):

    def __init__(self, eta=0.001, n_iter=20):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        return self.net_input(X)

If you need a refresher about how the weights are being updated—taking 

a step into the opposite direction of the gradient—please revisit the 

Adaptive linear neurons and the convergence of learning section in Chapter 2, 

7UDLQLQJ�6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ.
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Linear Regression GD
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Training a Regressor
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Visualize the Linear Regression
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Predicting with the Linear Regression 
Model
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Estimating the Coefficient of a Regression 
Model via Scikit-learn

20
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Fitting a Robust Regression Model Using 
RANSAC
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Outliers

•Linear regression can be heavily affected by the 
presence of “outliers”

•A very small subset of our data may have a big 
effect on the estimated coefficient

•In practice, removing outliers always requires our 
own judgement as well as domain knowledge

•An alternative to throwing away outliers, a robust 
method of regression using RANdom SAmple 
Consensus (RANSAC) algorithm fits a regression 
model to a subset of the data, called inliers

22
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The RANSAC Algorithm
• Select a random number of samples to be inliers and 

fit the model
• Test all other data points against the fitted model and 

add those points that fall within a user-given 
tolerance to the inliers

• Refit the model using all inliers
• Estimate the error of the fitted model versus inliers
• Terminate the algorithm if the performance meets a 

certain user-defined threshold or if a fixed number of 
iterations were reached; go back to step 1 otherwise

23
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RANSAC using Scikit-learn
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RANSAC using Scikit-learn
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Evaluating the Performance of 
Linear Regression Models
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Performance Evaluation

•We will build a multiple linear regression 
model for the Housing dataset by using all 
features

•Evaluate the generalization performance by
– Residual plot
– Mean square error (MSE)
– The coefficient of determination R2

27
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Train the Linear Regression Model
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Train the Linear Regression Model
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Residual Plot

•Plot the residuals versus the predicted values to 
diagnose the regression model

•For a good regression model, we would expect 
that the residuals should be randomly scattered 
around the centerline

•Residual plot can be used for detect outliers, 
which are represented by the points with a large 
deviation from the centerline

30
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Residual Plot
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Mean Squared Error (MSE)

32
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In case of a perfect prediction, the residuals would be exactly zero, which we will 
probably never encounter in realistic and practical applications. However, for a good 
regression model, we would expect that the errors are randomly distributed and 
the residuals should be randomly scattered around the centerline. If we see patterns 
in a residual plot, it means that our model is unable to capture some explanatory 
information, which has leaked into the residuals, as we can slightly see in our 
previous residual plot. Furthermore, we can also use residual plots to detect outliers, 
which are represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called  
Mean Squared Error (MSE), which is simply the averaged value of the SSE cost 
WKDW�ZH�PLQLPL]HG�WR�ÀW�WKH�OLQHDU regression model. The MSE is useful to compare 
different regression models or for tuning their parameters via grid search and  
cross-validation, as it normalizes the SSE by the sample size:

( ) ( )( )2

1

1 ˆ
n

i i

i
MSE y y

n =

= −∑

Let's compute the MSE of our training and test predictions:

>>> from sklearn.metrics import mean_squared_error
>>> print('MSE train: %.3f, test: %.3f' % (
...        mean_squared_error(y_train, y_train_pred),
...        mean_squared_error(y_test, y_test_pred)))
MSE train: 19.958, test: 27.196

We see that the MSE on the training set is 19.96, and the MSE of the test set is much 
ODUJHU��ZLWK�D�YDOXH�RI��������ZKLFK�LV�DQ�LQGLFDWRU�WKDW�RXU�PRGHO�LV�RYHUÀWWLQJ�WKH�
training data.

Sometimes it may be more useful to report the FRHIÀFLHQW�RI�GHWHUPLQDWLRQ  
( 2R ), which can be understood as a standardized version of the MSE, for better 
interpretability of the model's performance. Or in other words, 2R  is the fraction of 
response variance that is captured by the model. The 2R �YDOXH�LV�GHÀQHG�DV�

2 1 SSER
SST

= −
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Coefficient of Determination R2

33
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Here, SSE is the sum of squared errors and SST is the total sum of squares:

( )( )2

1

n i
yi

SST y µ
=

= −∑

In other words, SST is simply the variance of the response.

Let us quickly show that 2R  is indeed just a rescaled version of the MSE:

2 1 SSER
SST

= −

( ) ( )( )
( )( )

2

1

2

1

1 ˆ
1 1

n i i
i

n i
yi

y y
n

y
n

µ

=

=

−
−

−

∑
∑

( )
1 MSE
Var y

−

For the training dataset, the 2R  is bounded between 0 and 1, but it can become 
negative for the test set. If 2 1R = ��WKH�PRGHO�ÀWV�WKH�GDWD�SHUIHFWO\�ZLWK�D�
corresponding 0MSE = .

Evaluated on the training data, the 2R  of our model is 0.765, which doesn't sound 
too bad. However, the 2R  on the test dataset is only 0.673, which we can compute by 
executing the following code:

>>> from sklearn.metrics import r2_score
>>> print('R^2 train: %.3f, test: %.3f' % 
...       (r2_score(y_train, y_train_pred),
...        r2_score(y_test, y_test_pred)))
R^2 train: 0.765, test: 0.673
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Here, SSE is the sum of squared errors and SST is the total sum of squares:
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In other words, SST is simply the variance of the response.
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For the training dataset, the 2R  is bounded between 0 and 1, but it can become 
negative for the test set. If 2 1R = ��WKH�PRGHO�ÀWV�WKH�GDWD�SHUIHFWO\�ZLWK�D�
corresponding 0MSE = .

Evaluated on the training data, the 2R  of our model is 0.765, which doesn't sound 
too bad. However, the 2R  on the test dataset is only 0.673, which we can compute by 
executing the following code:

>>> from sklearn.metrics import r2_score
>>> print('R^2 train: %.3f, test: %.3f' % 
...       (r2_score(y_train, y_train_pred),
...        r2_score(y_test, y_test_pred)))
R^2 train: 0.765, test: 0.673

sum of squared errors

R2 is a rescaled version of the MSE
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Using the Regularized Methods for 
Regression
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Regularization for Linear Regression

•Regularization is commonly used to tackle the 
overfitting problem

•Regularization for linear regression is achieved 
by adding a term to the cost function which is 
proportional to a norm of the weighted vector

•Three popular approaches 
– Ridge regression
– Least absolute shrinkage and selection operator (LASSO)
– Elastic net

35



Hsi-Pin Ma

Ridge Regression

•Cost function
– L2-panelized model
– Does not regularize the intercept w0

36
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8VLQJ�UHJXODUL]HG�PHWKRGV�IRU�UHJUHVVLRQ
As we discussed in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ� 
VFLNLW�OHDUQ, regularization is one approach to tackle the problem of RYHUÀWWLQJ�E\�
adding additional information, and thereby shrinking the parameter values of the 
model to induce a penalty against complexity. The most popular approaches to 
regularized linear regression are the so-called Ridge Regression, Least Absolute 
Shrinkage and Selection Operator (LASSO), and Elastic Net.

Ridge regression is an L2 penalized model where we simply add the squared sum of 
the weights to our least-squares cost function:
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By increasing the value of hyperparameter λ , we increase the regularization 
strength and shrink the weights of our model. Please note that we don't regularize 
the intercept term 0w .

An alternative approach that can lead to sparse models is LASSO. Depending on the 
regularization strength, certain weights can become zero, which also makes LASSO 
useful as a supervised feature selection technique:
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Least Absolute Shrinkage and Selection 
Operator (LASSO)

•Cost function
– L1-panelized model
– Does not regularize the intercept w0

– Can lead to sparse model
– LASSO selects at most N coefficients to be nonzero if m>N
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Elastic Net

•Cost function
– A compromise between ridge regression and LASSO as 

to have L1-penalty to generate sparsity and L2-penalty to 
overcome the limitation of the number of selected 
features

38
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However, a limitation of LASSO is that it selects at most n variables if m>n. A 
compromise between Ridge regression and LASSO is Elastic Net, which has an L1 
penalty to generate sparsity and an L2 penalty to overcome some of the limitations  
of LASSO, such as the number of selected variables:
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Those regularized regression models are all available via scikit-learn, and the 
usage is similar to the regular regression model except that we have to specify the 
regularization strength via the parameter λ , for example, optimized via k-fold  
cross-validation.

A Ridge regression model can be initialized via:

>>> from sklearn.linear_model import Ridge
>>> ridge = Ridge(alpha=1.0)

Note that the regularization strength is regulated by the parameter alpha, which is 
similar to the parameter λ . Likewise, we can initialize a LASSO regressor from the 
linear_model submodule:

>>> from sklearn.linear_model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> elanet = ElasticNet(alpha=1.0, l1_ratio=0.5)

For example, if we set the l1_ratio to 1.0, the ElasticNet regressor  
would be equal to LASSO regression. For more detailed information about the 
different implementations of linear regression, please see the documentation at 
http://scikit-learn.org/stable/modules/linear_model.html.
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Turning a Linear Regression Model into a 
Curve - Polynomial Regression
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Polynomial Regression

•When relation between explanatory and 
response variables are not linear

– x: explanatory variable, y: response variable, d: degree of 
the polynomial

•Still considered a multiple linear regression 
model because of the linear regression 
coefficient w.
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Turning a linear regression model into a 
FXUYH�±�SRO\QRPLDO�UHJUHVVLRQ
In the previous sections, we assumed a linear relationship between explanatory and 
response variables. One way to account for the violation of linearity assumption is to 
use a polynomial regression model by adding polynomial terms:

2
0 1 2

d
dy w w x w x w x= + + + +…

Here, d denotes the degree of the polynomial. Although we can use polynomial 
regression to model a nonlinear relationship, it is still considered a multiple linear 
UHJUHVVLRQ�PRGHO�EHFDXVH�RI�WKH�OLQHDU�UHJUHVVLRQ�FRHIÀFLHQWV�w. In the following 
subsections, we will see how we can add such polynomial terms to an existing 
GDWDVHW�FRQYHQLHQWO\�DQG�ÀW�D�SRO\QRPLDO�UHJUHVVLRQ�PRGHO�

Adding polynomial terms using scikit-learn
We will now learn how to use the PolynomialFeatures transformer class from 
scikit-learn to add a quadratic term (G� ��) to a simple regression problem with one 
H[SODQDWRU\�YDULDEOH��7KHQ��ZH�FRPSDUH�WKH�SRO\QRPLDO�WR�WKH�OLQHDU�ÀW�IROORZLQJ�
these steps:

1. Add a second degree polynomial term:
from sklearn.preprocessing import PolynomialFeatures
>>> X = np.array([ 258.0, 270.0, 294.0, 320.0, 342.0, 
...              368.0, 396.0, 446.0, 480.0, 586.0])\
...              [:, np.newaxis]
>>> y = np.array([ 236.4, 234.4, 252.8, 298.6, 314.2, 
...               342.2, 360.8, 368.0, 391.2, 390.8])
>>> lr = LinearRegression()
>>> pr = LinearRegression()
>>> quadratic = PolynomialFeatures(degree=2)
>>> X_quad = quadratic.fit_transform(X)

2. Fit a simple linear regression model for comparison:
>>> lr.fit(X, y)
>>> X_fit = np.arange(250,600,10)[:, np.newaxis]
>>> y_lin_fit = lr.predict(X_fit)
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Adding Polynomial Terms Using Scikit-learn
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Add a second degree polynomial term
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Adding Polynomial Terms Using Scikit-learn
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Adding Polynomial Terms Using Scikit-learn
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Modeling Nonlinear Relationships in the 
Housing Dataset
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Modeling Nonlinear Relationships in the 
Housing Dataset
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Transforming the Dataset

•However, polynomial features are not always 
the best choice for modeling nonlinear features
– MEDV-LSTAT: may lead to the hypothesis that a log-

transformation of the LSTAT feature variable and the 
square root of MEDV may project the data onto a linear 
feature space

46

8.4 Other Nonlinear Feature Transformations

• The ’LSTAT’ feature is taken as the explanatory variable and ’MEDV’ as the response vari-
able.

• Model : √y = ln x.

In [60]: X = df[['LSTAT']].values
y = df['MEDV'].values

# transform features
X_log = np.log(X)
y_sqrt = np.sqrt(y)

# fit features
X_fit = np.arange(X_log.min()-1, X_log.max()+1, 1)[:, np.newaxis]

regr = regr.fit(X_log, y_sqrt)
y_lin_fit = regr.predict(X_fit)
linear_r2 = r2_score(y_sqrt, regr.predict(X_log))

# plot results
plt.scatter(X_log, y_sqrt, label='training points', color='lightgray')

plt.plot(X_fit, y_lin_fit,
label='linear (d=1), $R^2=%.2f$' % linear_r2,
color='blue',
lw=2)

plt.xlabel('log(% lower status of the population [LSTAT])')
plt.ylabel('$\sqrt{Price \; in \; \$1000s \; [MEDV]}$')
plt.legend(loc='lower left')

plt.tight_layout()
#plt.savefig('images/10_12.png', dpi=300)
plt.show()
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Transforming the Dataset
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Decision Tree Regression
• A (binary) decision tree will partition the feature space 

into disjoint regions through simple (binary) questions
• The predicted target value associated with a region is 

the average of the target values of the instances in the 
training dataset lying in the region

• The impurity metric used in the decision tree 
regression is the mean square error (MSE) 
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Decision tree regression
An advantage of the decision tree algorithm is that it does not require any 
transformation of the features if we are dealing with nonlinear data. We remember 
from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, that we grow a 
decision tree by iteratively splitting its nodes until the leaves are pure or a stopping 
FULWHULRQ�LV�VDWLVÀHG��:KHQ�ZH�XVHG�GHFLVLRQ�WUHHV�IRU�FODVVLÀFDWLRQ��ZH�GHÀQHG�
entropy as a measure of impurity to determine which feature split maximizes the 
,QIRUPDWLRQ�*DLQ (,*), which can�EH�GHÀQHG�DV�IROORZV�IRU�D�ELQDU\�VSOLW�
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Here, x is the feature to perform the split, pN  is the number of samples in the parent 
node, I is the impurity function, pD  is the subset of training samples at the parent 
node, and leftD  and rightD  are the subsets of training samples at the left and right 
FKLOG�QRGH�DIWHU�WKH�VSOLW��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�IHDWXUH�VSOLW�WKDW�
PD[LPL]HV�WKH�LQIRUPDWLRQ�JDLQ��RU�LQ�RWKHU�ZRUGV��ZH�ZDQW�WR�ÀQG�WKH�IHDWXUH�VSOLW�
that reduces the impurities in the child nodes most. In Chapter 3, A Tour of Machine 
/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ we discussed Gini impurity and entropy as 
PHDVXUHV�RI�LPSXULW\��ZKLFK�DUH�ERWK�XVHIXO�FULWHULD�IRU�FODVVLÀFDWLRQ��7R�XVH�D�
decision tree for regression, however, we need an impurity metric that is suitable  
for continuous variables, so we GHÀQH�WKH�LPSXULW\�PHDVXUH�RI�D�QRGH�W�DV�WKH� 
MSE instead:
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Here, tN  is the number of training samples at node t, tD  is the training subset at 
node t, ( )iy  is the true target value, and ˆty  is the predicted target value (sample 
mean):
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Decision Tree Regression
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Random Forest Regression

•The number of decision trees in a random forest 
is a hyperparameter

•We use MSE impurity reduction (i.e. variance 
reduction) to grow the individual decision tree

•The predicted target value is calculated as the 
average prediction over all decision trees

•In scikit-learn, the random forest regression is 
implemented in the ensemble module as the 
class RandomForestRegressor
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Random Forest Regression
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Random Forest Regression
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