

EE3700 Introduction to Machine Learning

Predicting Continuous Target Variables with Regression Analysis

Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

- Introduction to regression
- Exploring the Housing Dataset
- Implementing an ordinary least squares linear regression model
- Fitting a robust regression model using RANSAC
- Evaluating the performance of linear regression models
- Using regularized methods for regression
- Turning a linear regression model into a curve polynomial regression

Introduction to Regression

Linear Regression

- To model the relationship between one or multiple features and a *continuous* target variable
 - A subcategory of supervised learning
 - discrete category (classification) vs. continuous target variable (regression)

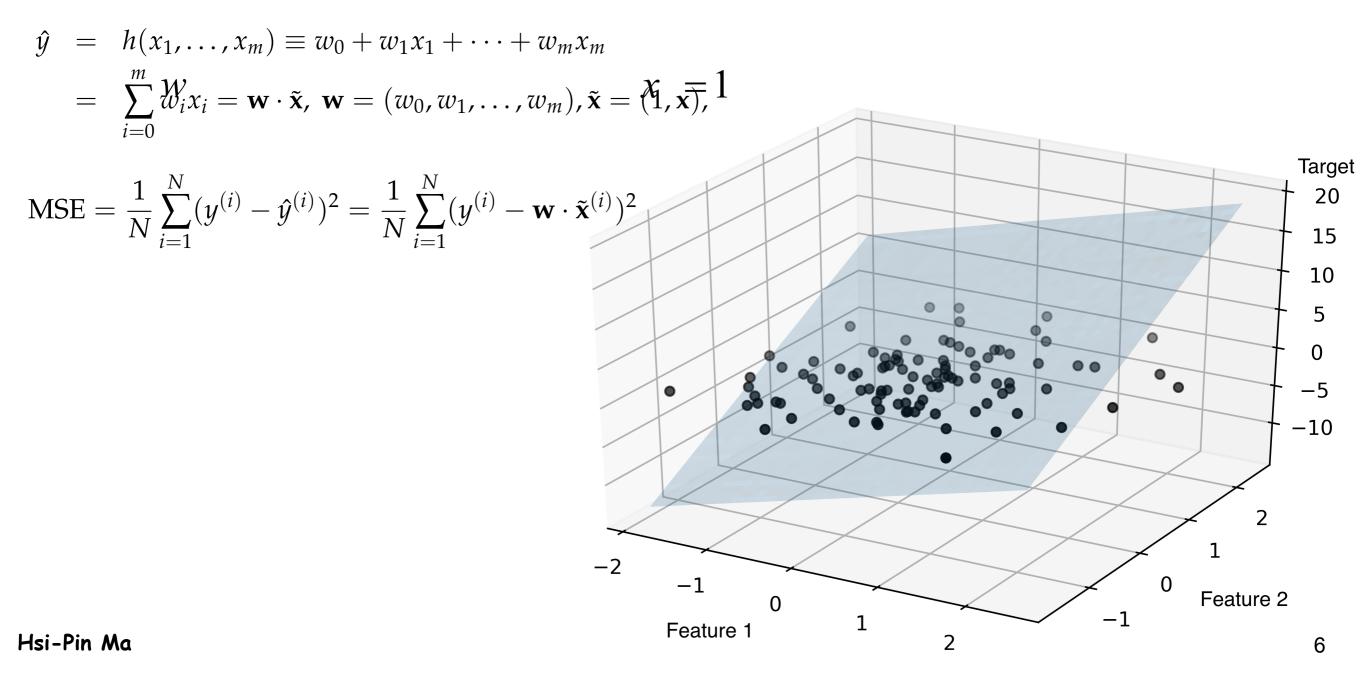
Simple (Univariate) Linear Regression • To model the relationship between a single feature (explanatory variable *x*) and a continuous valued response (target variable y) $y = w_0 + w_1 x$ $\hat{\mathbf{y}} = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}$ $\hat{y} = h(x) \equiv w_0 + w_1 x$ y (response variable) ${\mathcal W}$ ${\mathcal W}$ MSE = $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$ vertical offset $|\hat{y} - y|$ Δy w₁ (slope) $= \Delta y / \Delta x$ Δx $(\mathbf{x}_i, \mathbf{y}_i)$ w_0 (intercept) x (explanatory variable)

Hsi-Pin Ma

5

Multiple Linear Regression

• Generalize the model to multiple explanatory variables $y = w_0 x_0 + w_1 x_1 + ... + w_m x_m = \sum_{i=0}^m w_i x_i = w^T x$



Exploring the Housing Dataset

Housing Dataset

• 506 instance (houses), each with 13 features and the house price (MEDV) as the target variable

1. CRIM	per capita crime rate by town
2. ZN	proportion of residential land zoned for lots over
	25,000 sq.ft.
3. INDUS	proportion of non-retail business acres per town
4. CHAS	Charles River dummy variable (= 1 if tract bounds
	river; 0 otherwise)
5. NOX	nitric oxides concentration (parts per 10 million)
6. RM	average number of rooms per dwelling
7. AGE	proportion of owner-occupied units built prior to 1940
8. DIS	weighted distances to five Boston employment centres
9. RAD	index of accessibility to radial highways
10. TAX	full-value property-tax rate per \$10,000
11. PTRATIO	pupil-teacher ratio by town
12. B	1000(Bk - 0.63) ² where Bk is the proportion of blacks
	by town
13. LSTAT	<pre>% lower status of the population</pre>
14. MEDV	Median value of owner-occupied homes in \$1000s

Load the Housing Dataset

```
import pandas as pd
```

```
df = pd.read_csv('https://raw.githubusercontent.com/rasbt/'
                'python-machine-learning-book-2nd-edition'
                '/master/code/ch10/housing.data.txt',
                header=None,
                sep='\s+')
```

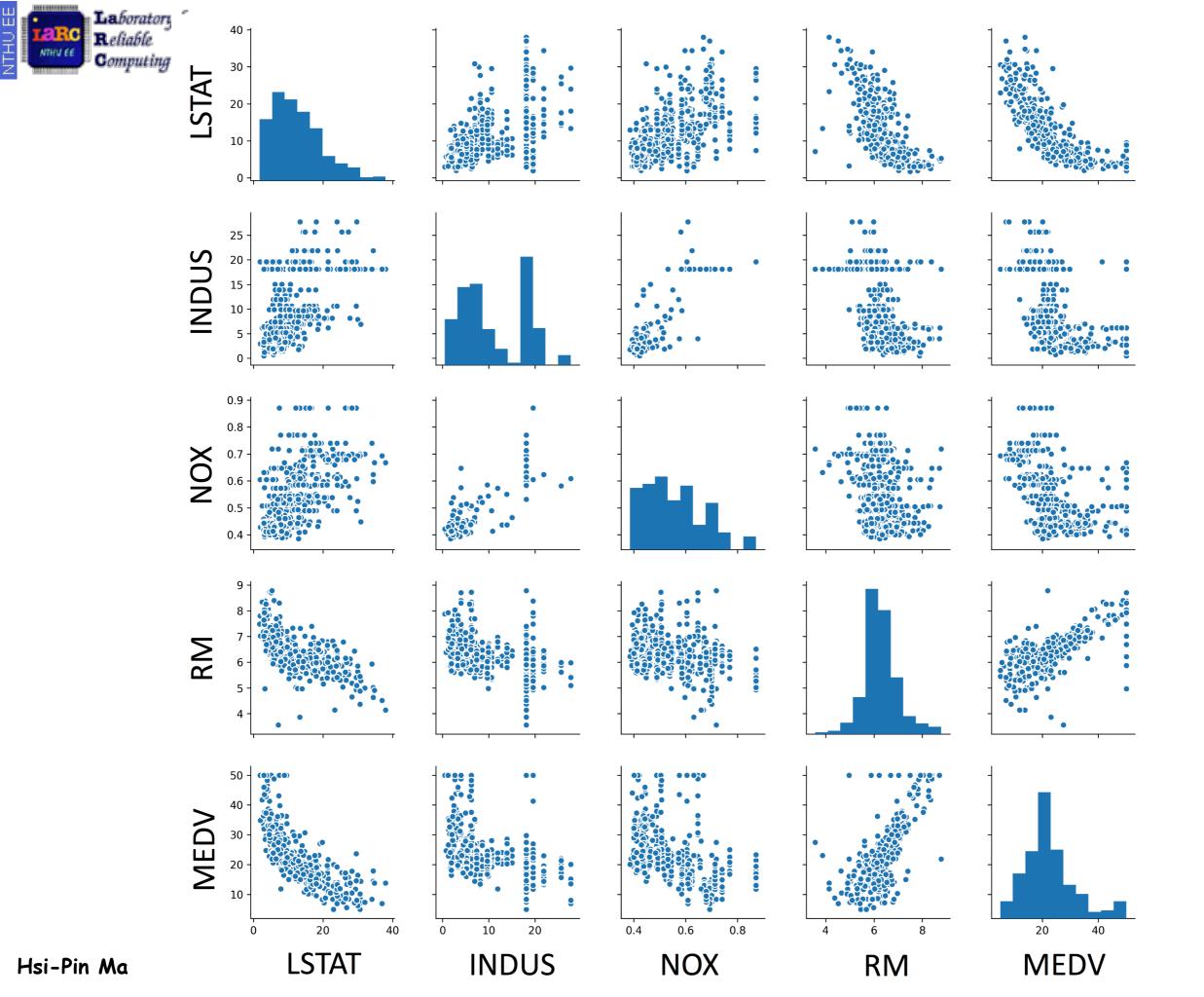
```
df.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	ΤΑΧ	PTRATIO	В	LSTAT	ME
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	2 [.]
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	3:
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	3(

Exploratory Data Analysis (EDA)

- Visualize the important characteristics of a dataset before training a model
 - Create a **scatterplot matrix** to visualize the pairwise correlations between the different features
 - Use **pairplot** function from Seaborn library
 - conda install seaborn or pip install seaborn

```
import matplotlib.pyplot as plt
import seaborn as sns
cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
sns.pairplot(df[cols], size=2.5)
plt.tight_layout()
# plt.savefig('images/10_03.png', dpi=300)
plt.show()
```



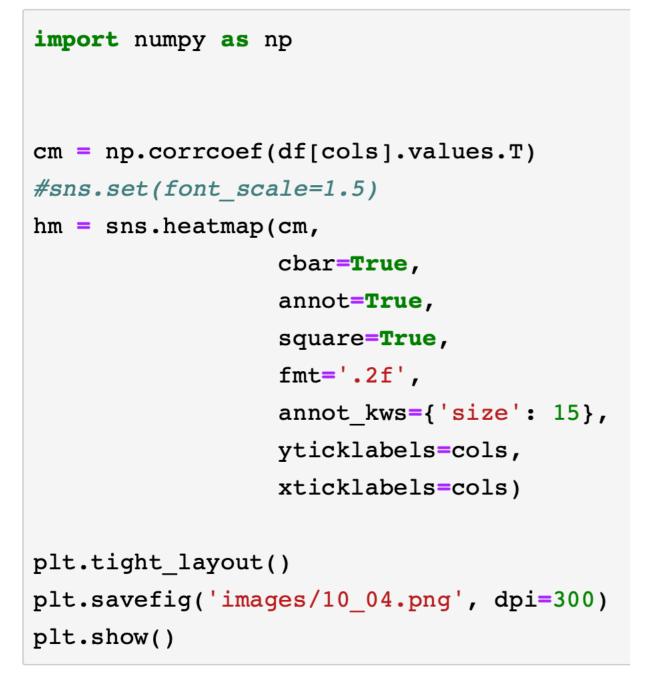
Correlation Matrix ()()

- Use correlation matrix to quantify and summarize linear relationships between variables
 - -Identical to a covariance matrix computed from standardized features x' y'
 - A square matrix that contains the Pearson productmoment correlation coefficient (Pearson's r), which measures the linear dependence between pairs of features $1\sum_{i=1}^{n} (\omega_{i}) (\omega_{i})$

$$r = \frac{\sum_{i=1}^{n} \left[\left(x^{(i)} - \mu_{x} \right) \left(y^{(i)} - \mu_{y} \right) \right]}{\sqrt{\sum_{i=1}^{n} \left(x^{(i)} - \mu_{x} \right)^{2}} \sqrt{\sum_{i=1}^{n} \left(y^{(i)} - \mu_{y} \right)^{2}}} = \frac{\sigma_{xy}}{\sigma_{x} \sigma_{y}}} - \frac{\sigma_{xy}}{\sigma_{x} \sigma_{y}}}{\frac{\sigma_{x} \sigma_{y}}{\sigma_{x} \sigma_{y}}}$$

Hsi-Pin Ma

Correlation Matrix



LSTAT	1.00	0.60	0.59	-0.61	-0.74		- 0.9
INDUS	0.60	1.00	0.76	-0.39	-0.48		- 0.6 - 0.3
XON	0.59	0.76	1.00	-0.30	-0.43		- 0.0
RM	-0.61	-0.39	-0.30	1.00	0.70		0.3
MEDV	-0.74	-0.48	-0.43	0.70	1.00		0.6
•	LSTAT	INDUS	NOX	RM	MEDV	_	_

Implementing an Ordinary Least Squares (OLS) Linear Regression Model

Reliable Computing Minimizing the Objective Function of J()Linear Regression

• Cost function J (Sum of Squared Errors, SSE)

$$J(w) = \frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - \hat{y} \hat{y}^{(i)} \right)^2 \qquad \qquad \hat{y} = w^T x$$

- -Identical to the cost function of Adaline
- OLS regression can be understood as Adaline without the unit step function, so we can obtain continuous target values
- -Use GD or SGD for optimization

Linear Regression GD

```
class LinearRegressionGD(object):
   def init (self, eta=0.001, n_iter=20):
        self.eta = eta
        self.n iter = n iter
   def fit(self, X, y):
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost = []
        for i in range(self.n iter):
            output = self.net input(X)
            errors = (y - output)
            self.w [1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors * * 2).sum() / 2.0
            self.cost .append(cost)
        return self
   def net input(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]
   def predict(self, X):
        return self.net input(X)
```


Training a Regressor

X = df[['RM']].values
y = df['MEDV'].values

```
from sklearn.preprocessing import StandardScaler
```

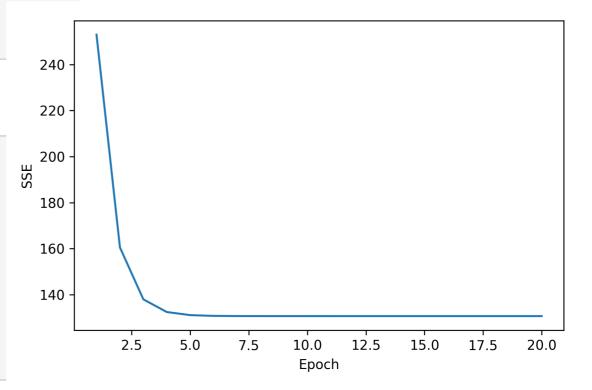
```
sc_x = StandardScaler()
```

```
sc_y = StandardScaler()
```

```
X_std = sc_x.fit_transform(X)
```

```
y_std = sc_y.fit_transform(y[:, np.newaxis]).flatten()
```

```
lr = LinearRegressionGD()
lr.fit(X_std, y_std)
<__main__.LinearRegressionGD at 0x1172ce780>
plt.plot(range(1, lr.n_iter+1), lr.cost_)
plt.ylabel('SSE')
plt.xlabel('Epoch')
#plt.tight_layout()
#plt.savefig('images/10_05.png', dpi=300)
plt.show()
```

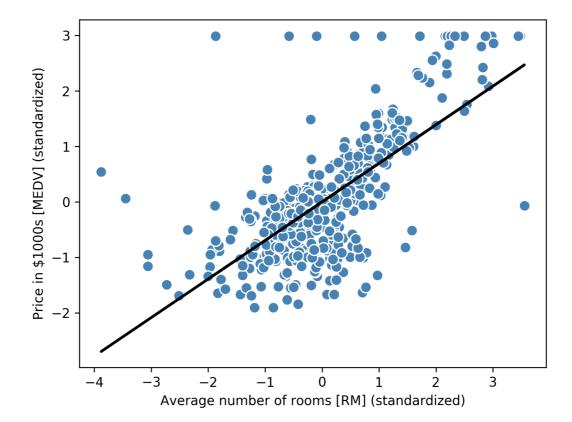


Visualize the Linear Regression

```
def lin_regplot(X, y, model):
    plt.scatter(X, y, c='steelblue', edgecolor='white', s=70)
    plt.plot(X, model.predict(X), color='black', lw=2)
    return
```

```
lin_regplot(X_std, y_std, lr)
plt.xlabel('Average number of rooms [RM] (standardized)')
plt.ylabel('Price in $1000s [MEDV] (standardized)')
```

```
plt.savefig('images/10_06.png', dpi=300)
plt.show()
```



print('Slope: %.3f' % lr.w_[1])
print('Intercept: %.3f' % lr.w_[0])

Slope: 0.695

Intercept: -0.000

```
num_rooms_std = sc_x.transform(np.array([[5.0]]))
price_std = lr.predict(num_rooms_std)
print("Price in $1000s: %.3f" % sc_y.inverse_transform(price_std))
```

Price in \$1000s: 10.840

Reference of a Regression Confliction of a Regression Model via Scikit-learn

from sklearn.linear_model import LinearRegression

```
slr = LinearRegression()
slr.fit(X, y)
                                                      50
y pred = slr.predict(X)
print('Slope: %.3f' % slr.coef [0])
                                                      40
                                                    Price in $1000s [MEDV]
0 05 05 05
print('Intercept: %.3f' % slr.intercept )
 Slope: 9.102
 Intercept: -34.671
lin_regplot(X, y, slr)
plt.xlabel('Average number of rooms [RM]')
                                                       0
plt.ylabel('Price in $1000s [MEDV]')
                                                               4
                                                                       5
                                                                                                8
                                                                               6
                                                                      Average number of rooms [RM]
#plt.savefig('images/10_07.png', dpi=300)
plt.show()
```


Fitting a Robust Regression Model Using RANSAC

Outliers

- Linear regression can be heavily affected by the presence of "outliers"
- A very small subset of our data may have a big effect on the estimated coefficient
- In practice, removing *outliers* always requires our own judgement as well as domain knowledge
- An alternative to throwing away outliers, a robust method of regression using RANdom SAmple Consensus (RANSAC) algorithm fits a regression model to a subset of the data, called *inliers*

The RANSAC Algorithm

- Select a random number of samples to be inliers and fit the model
- Test all other data points against the fitted model and add those points that fall within a user-given tolerance to the inliers
- Refit the model using all inliers
- Estimate the error of the fitted model versus inliers
- Terminate the algorithm if the performance meets a certain user-defined threshold or if a fixed number of iterations were reached; go back to step 1 otherwise

RANSAC using Scikit-learn

ransac.fit(X, y)

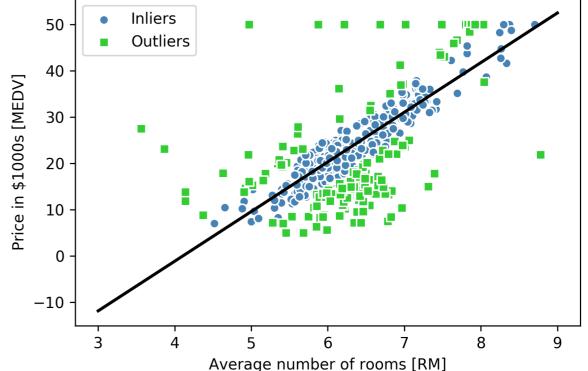
inlier_mask = ransac.inlier_mask_

RANSAC using Scikit-learn

```
outlier mask = np.logical not(inlier mask)
line X = np.arange(3, 10, 1)
line y ransac = ransac.predict(line X[:, np.newaxis])
plt.scatter(X[inlier mask], y[inlier mask],
            c='steelblue', edgecolor='white',
            marker='o', label='Inliers')
plt.scatter(X[outlier mask], y[outlier mask],
            c='limegreen', edgecolor='white',
            marker='s', label='Outliers')
plt.plot(line_X, line_y_ransac, color='black', lw=2)
plt.xlabel('Average number of rooms [RM]')
plt.ylabel('Price in $1000s [MEDV]')
                                                   50
plt.legend(loc='upper left')
                                                   40
#plt.savefig('images/10 08.png', dpi=300)
                                                   30
plt.show()
```

```
print('Slope: %.3f' % ransac.estimator_.coef_[0])
print('Intercept: %.3f' % ransac.estimator_.intercept_)
```

Slope: 10.735 Intercept: -44.089



Evaluating the Performance of Linear Regression Models

Performance Evaluation

- We will build a multiple linear regression model for the Housing dataset by using all features
- Evaluate the generalization performance by
 - -Residual plot
 - Mean square error (MSE)
 - The coefficient of determination R²

Train the Linear Regression Model

```
from sklearn.model_selection import train_test_split
X = df.iloc[:, :-1].values
y = df['MEDV'].values
X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=0)
```

```
slr = LinearRegression()
slr.fit(X_train, y_train)
y_train_pred = slr.predict(X_train)
y_test_pred = slr.predict(X_test)
```


Train the Linear Regression Model

import numpy as np

import scipy as sp

```
ary = np.array(range(100000))
```

%timeit np.linalg.norm(ary)

309 μ s ± 11.4 μ s per loop (mean ± std. dev. of 7 runs, 1000 loops each)

```
%timeit sp.linalg.norm(ary)
```

307 μ s ± 8.14 μ s per loop (mean ± std. dev. of 7 runs, 1000 loops each)

```
%timeit np.sqrt(np.sum(ary**2))
```

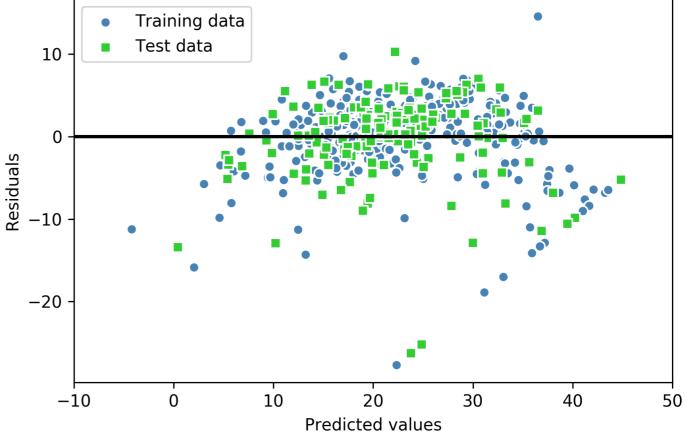
251 μ s ± 8.93 μ s per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Residual Plot

- Plot the residuals versus the predicted values to diagnose the regression model
- For a good regression model, we would expect that the residuals should be randomly scattered around the centerline
- Residual plot can be used for detect outliers, which are represented by the points with a large deviation from the centerline

Residual Plot

```
# plt.savefig('images/10_09.png', dpi=300)
plt.show()
```



Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \hat{y}^{(i)} \right)^2$$

```
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
print('MSE train: %.3f, test: %.3f' % (
            mean_squared_error(y_train, y_train_pred),
            mean_squared_error(y_test, y_test_pred)))
print('R^2 train: %.3f, test: %.3f' % (
            r2_score(y_train, y_train_pred),
            r2_score(y_test, y_test_pred)))
```

MSE train: 19.958, test: 27.196 R^2 train: 0.765, test: 0.673

Coefficient of Determination \mathbb{R}^2 R^2 is a rescaled version of the MSE

 R^2

1

R

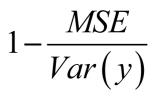
Κ

R sum of squared errors

$$R^2 = 1 - \frac{SSE}{SST}$$

$$SST = \sum_{i=1}^{n} \left(y^{(i)} - \mu_y \right)^2$$

$$-\frac{\frac{1}{n}\sum_{i=1}^{n} \left(y^{(i)} - \hat{y}^{(i)}\right)^{2}}{\frac{1}{n}\sum_{i=1}^{n} \left(y^{(i)} - \mu_{y}\right)^{2}}$$



R²
print('R^2 train: %.3f, test: %.3f' % (
 r2_score(y_train, y_train_pred),
 r2_score(y_test, y_test_pred)))

R² train: 0.765, test: 0.673

$$\begin{pmatrix} & & \\$$

MSE

Hsi-Pin Ma

Using the Regularized Methods for Regression

Regularization for Linear Regression

- Regularization is commonly used to tackle the overfitting problem
- Regularization for linear regression is achieved by adding a term to the cost function which is proportional to a norm of the weighted vector
- Three popular approaches
 - -Ridge regression
 - -Least absolute shrinkage and selection operator (LASSO)
 - Elastic net

Ridge Regression

• Cost function
$$J(w)_{Ridge} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 + \lambda \|w\|_2^2$$
 $L2: \quad \lambda \|w\|_2^2 = \lambda \sum_{j=1}^{m} w_j^2$

10

п

i 1

 W_0

- L2-panelized model
- Does not regularize the intercept w_0

```
from sklearn.linear_model import Ridge
ridge = Ridge(alpha=1.0)
```

 W_0

т

i=1

n

i 1

λ

Laboratory for Reflable Computing Compute Computing Compute Compute Compute Compute Compute Co

• **Cost function** $J(w)_{LASSO} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 + \lambda \|w\|_1$

$$L1: \lambda \| w \|_{1} = \lambda \sum_{j=1}^{m} |w_{j}|$$

- -L1-panelized model
- Does not regularize the intercept *w*⁰
- Can lead to sparse model
- LASSO selects at most N coefficients to be nonzero if m>N

[-0.11311792 0.04725111 -0.03992527 0.96478874 -0. 3.72289616 -0.02143106 -1.23370405 0.20469 -0.0129439 -0.85269025 0.00795847 -0.52392362]

Elastic Net

• **Cost function**
$$J(w)_{ElasticNet} = \sum_{i=1}^{n} \left(y^{(i)} - \hat{y}^{(i)} \right)^2 + \lambda_1 \sum_{j=1}^{m} w_j^2 + \lambda_2 \sum_{j=1}^{m} \left| w_j \right|$$

 A compromise between ridge regression and LASSO as to have L1-penalty to generate sparsity and L2-penalty to overcome the limitation of the number of selected features

from sklearn.linear_model import ElasticNet
elanet = ElasticNet(alpha=1.0, l1_ratio=0.5)

Turning a Linear Regression Model into a Curve - Polynomial Regression

Polynomial Regression

• When relation between explanatory and response variables are not linear

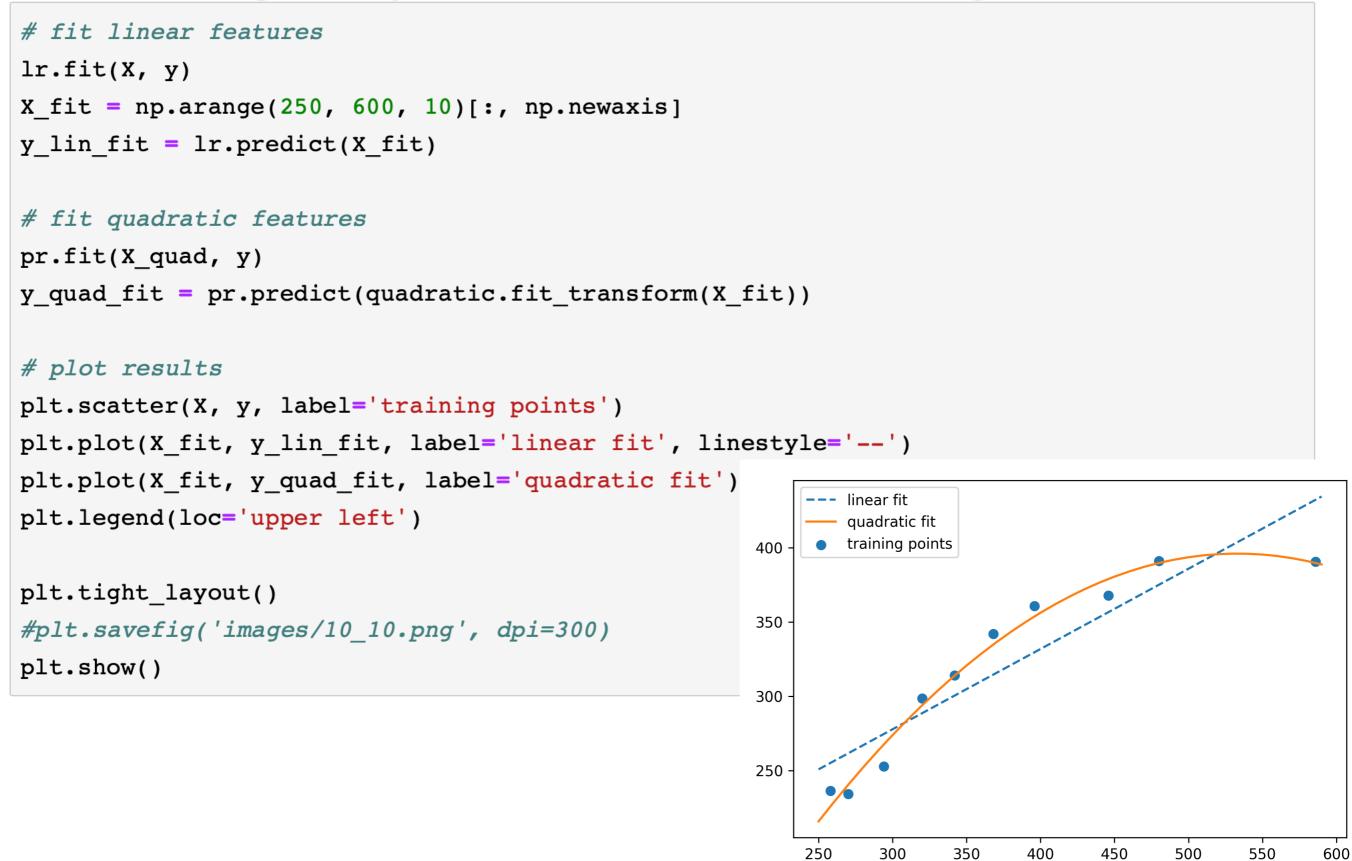
 $y = w_0 + w_1 x + w_2 x^2 + \ldots + w_d x^d$

- -*x*: explanatory variable, *y*: response variable, *d*: degree of the polynomial
- Still considered a multiple linear regression model because of the linear regression coefficient *w*.

Laboratory for Reliable Computing Adding Polynomial Terms Using Scikit-learn

```
X = np.array([258.0, 270.0, 294.0])
              320.0, 342.0, 368.0,
              396.0, 446.0, 480.0, 586.0])
             [:, np.newaxis]
y = np.array([236.4, 234.4, 252.8])
              298.6, 314.2, 342.2,
              360.8, 368.0, 391.2,
              390.81)
Add a second degree polynomial term
from sklearn.preprocessing import PolynomialFeatures
lr = LinearRegression()
pr = LinearRegression()
quadratic = PolynomialFeatures(degree=2)
X quad = quadratic.fit transform(X)
```

Reliable Reliable Comparison of the polynomial Terms Using Scikit-learn

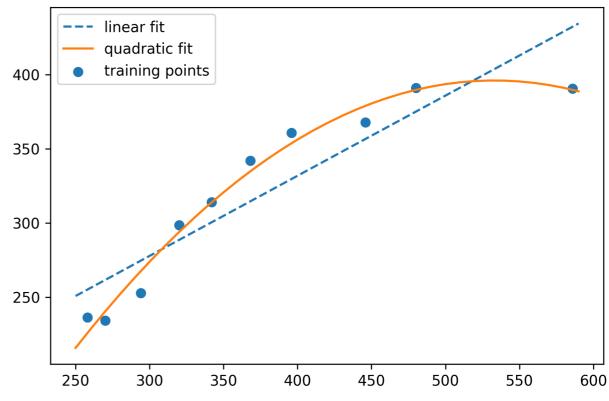


Adding Polynomial Terms Using Scikit-learn

```
y_lin_pred = lr.predict(X)
y_quad_pred = pr.predict(X_quad)
```

```
print('Training MSE linear: %.3f, quadratic: %.3f' % (
                mean_squared_error(y, y_lin_pred),
                mean_squared_error(y, y_quad_pred)))
print('Training R^2 linear: %.3f, quadratic: %.3f' % (
                r2_score(y, y_lin_pred),
                r2_score(y, y_quad_pred)))
```

Training MSE linear: 569.780, quadratic: 61.330 Training R² linear: 0.832, quadratic: 0.982



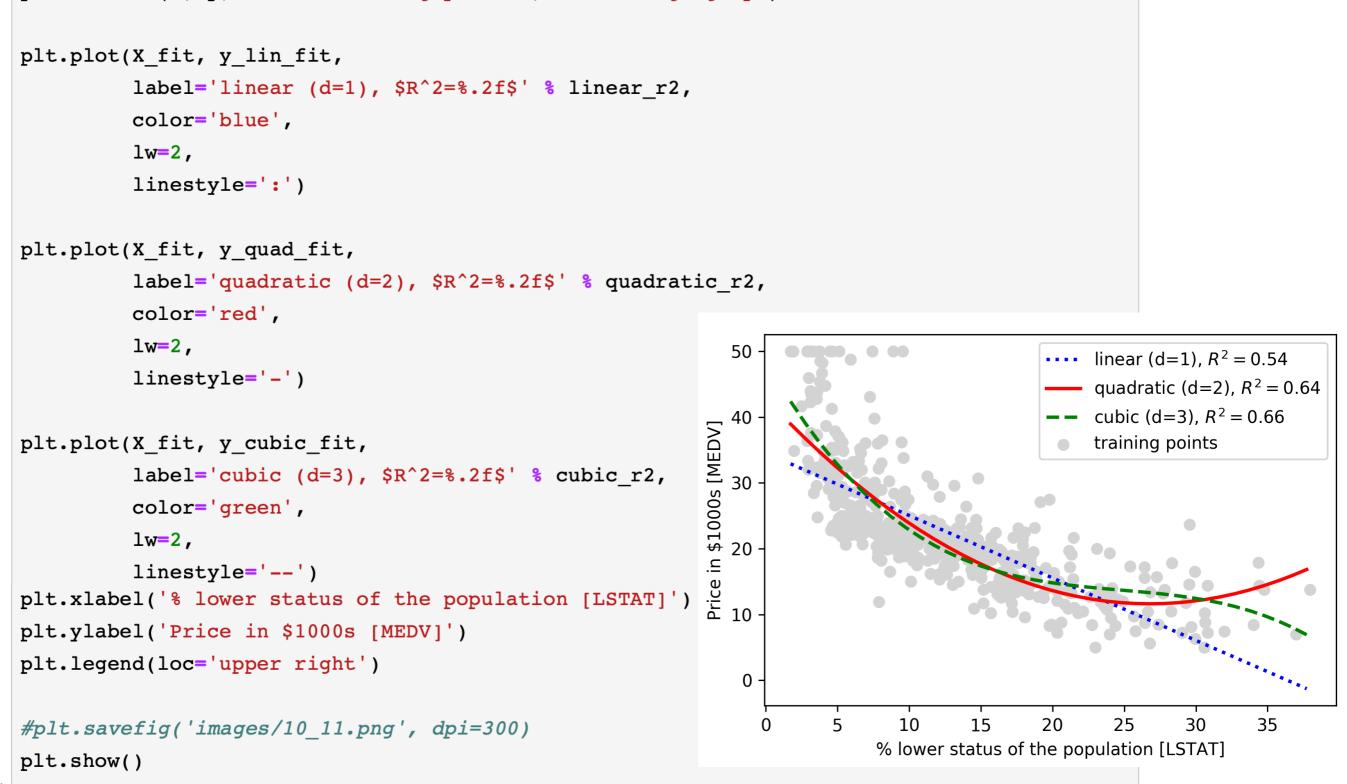
x = df[['LSTAT']].values y = df['MEDV'].values

```
regr = LinearRegression()
```

```
# create quadratic features
quadratic = PolynomialFeatures(degree=2)
cubic = PolynomialFeatures(degree=3)
X quad = quadratic.fit transform(X)
X cubic = cubic.fit transform(X)
# fit features
X fit = np.arange(X.min(), X.max(), 1)[:, np.newaxis]
regr = regr.fit(X, y)
y lin fit = regr.predict(X fit)
linear_r2 = r2_score(y, regr.predict(X))
regr = regr.fit(X guad, y)
y_quad_fit = regr.predict(quadratic.fit_transform(X_fit))
quadratic_r2 = r2_score(y, regr.predict(X_quad))
regr = regr.fit(X cubic, y)
y_cubic_fit = regr.predict(cubic.fit_transform(X_fit))
cubic_r2 = r2_score(y, regr.predict(X_cubic))
```

The Computing Modeling Nonlinear Relationships in the Housing Dataset

plt.scatter(X, y, label='training points', color='lightgray')



Transforming the Dataset

- However, polynomial features are not always the best choice for modeling nonlinear features
 - MEDV-LSTAT: may lead to the hypothesis that a logtransformation of the LSTAT feature variable and the square root of MEDV may project the data onto a linear feature space

```
X = df[['LSTAT']].values
```

```
y = df['MEDV'].values
```

```
# transform features
```

```
X_log = np.log(X)
```

```
y_sqrt = np.sqrt(y)
```

```
# fit features
```

```
X_fit = np.arange(X_log.min()-1, X_log.max()+1, 1)[:, np.newaxis]
```

 $\sqrt{y} = \ln x$

Laboratory for **Transforming the Dataset** *# fit features* X fit = np.arange(X log.min()-1, X log.max()+1, 1)[:, np.newaxis]

```
regr = regr.fit(X log, y sqrt)
y lin fit = regr.predict(X fit)
linear_r2 = r2_score(y_sqrt, regr.predict(X_log))
```

plot results

Reliable

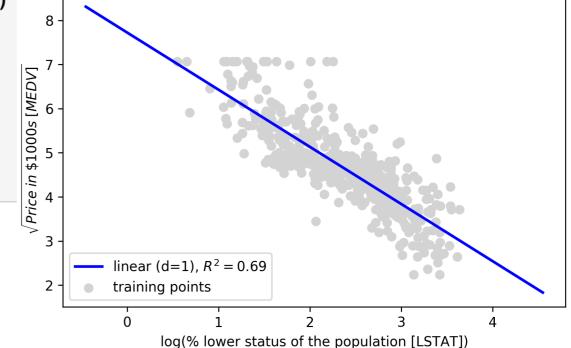
Computing

plt.scatter(X_log, y_sqrt, label='training points', color='lightgray')

```
plt.plot(X fit, y lin fit,
         label='linear (d=1), $R^2=%.2f$' % linear_r2,
         color='blue',
         lw=2)
```

```
plt.xlabel('log(% lower status of the population [LSTAT])')
plt.ylabel('$\sqrt{Price \; in \; \$1000s \; [MEDV]}$')
plt.legend(loc='lower left')
```

```
plt.tight layout()
#plt.savefig('images/10_12.png', dpi=300)
plt.show()
```



Decision Tree Regression

- A (binary) decision tree will partition the feature space into disjoint regions through simple (binary) questions
- The predicted target value associated with a region is the average of the target values of the instances in the training dataset lying in the region
- The impurity metric used in the decision tree (regression is the mean square error (MSE)

$$IG(D_{p}, x_{i}) = I(D_{p}^{N}) \underbrace{(N_{left})}_{(i)} I(D_{left}) - \frac{N_{right}}{N_{p}} I(D_{sight}) \qquad D$$
true target value
$$I(t) = MSE(t) = \frac{1}{N_{t}} \sum_{i \in D_{t}} \left(y_{D}^{(i)} - \hat{y}_{t}\right)^{2} \stackrel{N}{N}$$

$$predicted target value (sample mean)$$

$$\hat{y}_{t} = \frac{1}{N_{t}} \sum_{i \in D_{t}} y^{(i)}$$

$$\hat{y}_{t} = \frac{1}{N_{t}} \sum_{i \in D_{t}} y^{(i)}$$
training subset at node t 48

Hsi-Pin Ma

Decision Tree Regression

```
from sklearn.tree import DecisionTreeRegressor
```

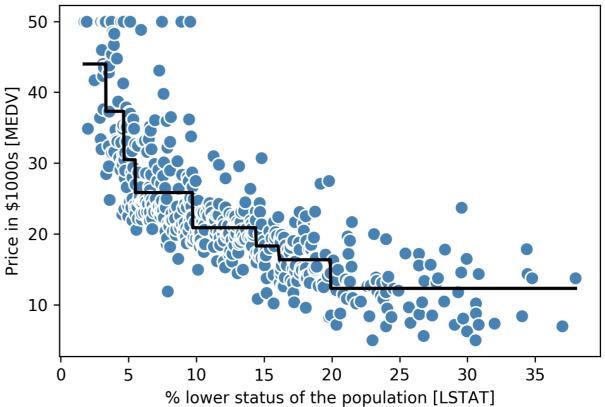
```
X = df[['LSTAT']].values
```

```
y = df['MEDV'].values
```

```
tree = DecisionTreeRegressor(max_depth=3)
tree.fit(X, y)
```

```
sort_idx = X.flatten().argsort()
```

```
lin_regplot(X[sort_idx], y[sort_idx], tree)
plt.xlabel('% lower status of the population [LSTAT]')
plt.ylabel('Price in $1000s [MEDV]')
#plt.savefig('images/10_13.png', dpi=300)
plt.show()
```



Random Forest Regression

- The number of decision trees in a random forest is a hyperparameter
- We use MSE impurity reduction (i.e. variance reduction) to grow the individual decision tree
- The predicted target value is calculated as the average prediction over all decision trees
- In scikit-learn, the random forest regression is implemented in the **ensemble** module as the class **RandomForestRegressor**

Random Forest Regression

```
X = df.iloc[:, :-1].values
y = df['MEDV'].values
```

Laboratory for

Computing

```
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.4, random_state=1)
```

```
from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor(n estimators=1000,
                               criterion='mse',
                               random state=1,
                               n jobs=-1)
forest.fit(X train, y train)
y train pred = forest.predict(X train)
y test pred = forest.predict(X test)
print('MSE train: %.3f, test: %.3f' % (
        mean squared error(y train, y train pred),
        mean squared error(y test, y test pred)))
print('R^2 train: %.3f, test: %.3f' % (
        r2 score(y train, y train pred),
        r2 score(y test, y test pred)))
```

```
MSE train: 1.642, test: 11.052
```

```
R<sup>2</sup> train: 0.979, test: 0.878
```

Random Forest Regression

```
plt.scatter(y train pred,
            y_train_pred - y_train,
                                               20
                                                       training data
                                                                                               c='steelblue',
                                                       test data
                                               15
            edgecolor='white',
            marker='o',
                                               10
            s=35,
                                            Residuals
             alpha=0.9,
                                                5
            label='training data')
plt.scatter(y test pred,
                                                0
            y test pred - y test,
                                               -5
            c='limegreen',
            edgecolor='white',
                                              -10
            marker='s',
            s=35,
                                                                   10
                                                                                     30
                                                          0
                                                                            20
                                                                                             40
                                                 -10
             alpha=0.9,
                                                                      Predicted values
            label='test data')
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='black')
plt.xlim([-10, 50])
plt.tight_layout()
# plt.savefig('images/10_14.png', dpi=300)
plt.show()
```

Laboratory for

Reliable Computing

50