
Applying Machine Learning to
Sentiment Analysis

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline
•Preparing the IMDb Movie Review Data for

Text Processing
•Introducing the Bag-of-words Model
•Training a Logistic Regression Model for

Document Classification
•Topic Modeling

2

Hsi-Pin Ma

Natural Language Processing (NLP)

•Computer are great at working with
standardized and structure data, while humans
communicate using words, a form of
unstructured data

•NLP is a subfield of AI focusing on enabling
computers to understand and process human
languages

3

Hsi-Pin Ma

Sentiment Analysis

•A subfield of natural language processing
(NLP)

•Also called opinion mining
•Concerned with analyzing the polarity of

documents
•Using machine learning algorithms to classify

documents based on the expressed opinions or
emotions of the authors regard to a particular
topic

4

Hsi-Pin Ma

Internet Movie Database (IMDb)

•50,000 movie reviews labeled as positive/
negative collected by Mass et. al. in 2011
– Positive: more than six stars on IMDb
– Negative: fewer than five stars on IMDb

•Link
– http://ai.stanford.edu/~amaas/data/sentiment/

•Download and preprocessing
– movie_data.csv

5

http://ai.stanford.edu/~amaas/data/sentiment/

Hsi-Pin Ma

After Preprocessing

6

Hsi-Pin Ma

Introducing the Bag-of-words Model

7

Hsi-Pin Ma

Bag-of-Words Model

•To represent text as numerical feature vectors
– Create a vocabulary (alphabet) of unique tokens from the

entire set of documents (e.g. words)
– Assign an integer index to each token
– Construct a feature vector from each document that

contains the counts of how often each word occurs in the
particular document

•The feature vectors are sparse

8

Hsi-Pin Ma

Transforming Documents into Feature Vectors
• In scikit-learn, the bag-of-words model is implemented

as the CountVectorizer class in the
feature_extraction text module

• By calling fit_transform method on CountVectorizer,
we just constructed the vocabulary of the bag-of-words
model and transformed the following three sentences
into sparse vectors
– The sun is shinning
– The weather is sweet
– The sun is shinning, the weather is sweet, and one

and one is two.
9

Hsi-Pin Ma

Transforming Documents into Feature Vectors

10

Construct the vocabulary (bag: 3x9 sparse matrix)

Index of the vocabulary

Feature vectors

Raw term frequencies: tf(t,d): (values in the feature vectors)
The number of times a term t occurs in a document d

Hsi-Pin Ma

Transforming Documents into Feature Vectors

•n-grams model
– Each item or token in the vocabulary represents n words
– Choice of n depends on the particular applications

•For example, for “the sun is shinning”
– 1-gram: “the”, “sun”, “is”, “shinning”
– 2-gram: “the sun”, “sun is”, “is shinning”

•In CountVectorizer, set ngram_range
parameter
– 1-gram is by default
– For 2-gram, ngram_range=(2,2)

11

Hsi-Pin Ma

Assessing Word Relevancy via Term
Frequency-Inverse Document Frequency

•There are words that frequently occur across
multiple documents from both classes, which
typically don’t contain useful or discriminatory
information

•Term frequency-inverse document frequency
(tf-idf) can be used to downweight those
frequently occurring words in the feature
vectors

12

Chapter 8

[�����]

The sequence of items in the bag-of-words model that we just created
is also called the 1-gram or unigram model—each item or token
in the vocabulary represents a single word. More generally, the
contiguous sequences of items in NLP—words, letters, or symbols—
are also called n-grams. The choice of the number n in the n-gram
model depends on the particular application; for example, a study by
Kanaris and others revealed that n-grams of size 3 and 4 yield good
SHUIRUPDQFHV�LQ�DQWL�VSDP�ÀOWHULQJ�RI�HPDLO�PHVVDJHV��Words versus
FKDUDFWHU�Q�JUDPV�IRU�DQWL�VSDP�ÀOWHULQJ, Ioannis Kanaris, Konstantinos
Kanaris, Ioannis Houvardas, and Efstathios Stamatatos, International
-RXUQDO�RQ�$UWLÀFLDO�,QWHOOLJHQFH�7RROV, :RUOG�6FLHQWLÀF�3XEOLVKLQJ�
Company, 16(06): 1047-1067, 2007). To summarize the concept of the
n-gram representation, the 1-gram and 2-gram representations of our
ÀUVW�GRFXPHQW��WKH�VXQ�LV�VKLQLQJ��ZRXOG�EH�FRQVWUXFWHG�DV�IROORZV�

�� 1-gram: "the", "sun", "is", "shining"
�� 2-gram: "the sun", "sun is", "is shining"

The CountVectorizer class in scikit-learn allows us to use different
n-gram models via its ngram_range parameter. While a 1-gram
representation is used by default, we could switch to a 2-gram
representation by initializing a new CountVectorizer instance with
ngram_range=(2,2).

Assessing word relevancy via term
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across
multiple documents from both classes. These frequently occurring words typically
don't contain useful or discriminatory information. In this subsection, we will learn
about a useful technique called term frequency-inverse document frequency
(tf-idf) that can be used to downweight these frequently occurring words in the
IHDWXUH�YHFWRUV��7KH�WI�LGI�FDQ�EH�GHÀQHG�DV�WKH�SURGXFW�RI�WKH�WHUP�IUHTXHQF\�DQG�
the inverse document frequency:

() () ()tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section, and
idf(t, d) is the inverse document frequency and can be calculated as follows:

() ()
idf t,d

1+df d,t
dnlog=

Chapter 8

[�����]

The sequence of items in the bag-of-words model that we just created
is also called the 1-gram or unigram model—each item or token
in the vocabulary represents a single word. More generally, the
contiguous sequences of items in NLP—words, letters, or symbols—
are also called n-grams. The choice of the number n in the n-gram
model depends on the particular application; for example, a study by
Kanaris and others revealed that n-grams of size 3 and 4 yield good
SHUIRUPDQFHV�LQ�DQWL�VSDP�ÀOWHULQJ�RI�HPDLO�PHVVDJHV��Words versus
FKDUDFWHU�Q�JUDPV�IRU�DQWL�VSDP�ÀOWHULQJ, Ioannis Kanaris, Konstantinos
Kanaris, Ioannis Houvardas, and Efstathios Stamatatos, International
-RXUQDO�RQ�$UWLÀFLDO�,QWHOOLJHQFH�7RROV, :RUOG�6FLHQWLÀF�3XEOLVKLQJ�
Company, 16(06): 1047-1067, 2007). To summarize the concept of the
n-gram representation, the 1-gram and 2-gram representations of our
ÀUVW�GRFXPHQW��WKH�VXQ�LV�VKLQLQJ��ZRXOG�EH�FRQVWUXFWHG�DV�IROORZV�

�� 1-gram: "the", "sun", "is", "shining"
�� 2-gram: "the sun", "sun is", "is shining"

The CountVectorizer class in scikit-learn allows us to use different
n-gram models via its ngram_range parameter. While a 1-gram
representation is used by default, we could switch to a 2-gram
representation by initializing a new CountVectorizer instance with
ngram_range=(2,2).

Assessing word relevancy via term
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across
multiple documents from both classes. These frequently occurring words typically
don't contain useful or discriminatory information. In this subsection, we will learn
about a useful technique called term frequency-inverse document frequency
(tf-idf) that can be used to downweight these frequently occurring words in the
IHDWXUH�YHFWRUV��7KH�WI�LGI�FDQ�EH�GHÀQHG�DV�WKH�SURGXFW�RI�WKH�WHUP�IUHTXHQF\�DQG�
the inverse document frequency:

() () ()tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section, and
idf(t, d) is the inverse document frequency and can be calculated as follows:

() ()
idf t,d

1+df d,t
dnlog=

total number of documents

number of documents d that contain the term t

Hsi-Pin Ma

Assessing Word Relevancy via Term
Frequency-Inverse Document Frequency

•Scikit-learn implements TfidfTransformer that
makes the raw term frequencies from
CountVectorizer as input and transforms them
into tf-idfs

13

Hsi-Pin Ma

Assessing Word Relevancy via Term
Frequency-Inverse Document Frequency

•TfidfTransformer has an option to normalize
tf-idfs directly
– By default, norm=l2

– If norm=None, will not normalize the tf-idfs

14

Chapter 8

[�����]

While it is also more typical to normalize the raw term frequencies before calculating
the tf-idfs, TfidfTransformer class normalizes the tf-idfs directly. By default
(norm='l2'), scikit-learn's TfidfTransformer applies the L2-normalization,
which returns a vector of length 1 by dividing an un-normalized feature
vector v by its L2-norm:

()1/22 2 2 22 1 2
1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑!

To make sure that we understand how TfidfTransformer works, let's walk through
an example and calculate the tf-idf of the word 'is' in the third document.

The word 'is' has a term frequency of 3 (WI �) in the third document, and the
document frequency of this term is 3 since the term 'is' occurs in all three
documents (GI �). Thus, we can calculate the inverse document frequency as follows:

() 1 3"is",d3 log 0
1 3

idf += =
+

Now, in order to calculate the tf-idf, we simply need to add 1 to the inverse
document frequency and multiply it by the term frequency:

() ()tf-idf " ",d3 3 0 1 3is = × + =

If we repeated this calculation for all terms in the third document, we'd obtain the
following tf-idf vectors: [3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29]. However,
notice that the values in this feature vector are different from the values that we
obtained from TfidfTransformer�WKDW�ZH�XVHG�SUHYLRXVO\��7KH�ÀQDO�VWHS�WKDW�ZH�
are missing in this tf-idf calculation is the L2-normalization, which can be applied
as follows:

() []
2 2 2 2 2 2 2 2 2

3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29
tf - idf 3

3.39 3.0 3.39 1.29 1.29 1.29 2.0 1.69 1.29normd =
+ + + + + + + +

[]0.5, 0.45, 0.5, 0.19, 0.19, 0.19, 0.3, 0.25, 0.19=

()tf-idf " ",d3 0.45is =

Manually normalize

Hsi-Pin Ma

•The first important step before build the bag-of-
words model is to clean the text data by
stripping it of all unwanted characters

•Can use regular expressions to search for
unwanted patterns of characters
– A regular expression (regex or regexp) is a sequence of

characters that define a search pattern
– Each character in a regex is either a metacharacter,

having a special meaning, or a regular character that has
a literal meaning

– https://docs.python.org/3/library/re.html
15

Cleaning Text Data

https://docs.python.org/3/library/re.html

Hsi-Pin Ma

Metacharacters in Regular Expression
• . (dot): match any character except a newline
• *: match 0 or more repetitions of the preceding RE
• +: match 1 or more repetitions of the preceding RE
• ?: match 0 or 1 repetitions of the preceding RE
• {m}: match exactly m copies of the previous RE
• {n,m}: match from n to m copies of the previous RE
• [abc]: match to one of the three characters a, b, c
• [^a]: indicate any character which is not a
• A|B: either A or B
• \ : either escape special characters, or signals a special

sequence
– \w: Match unicode word characters

– \W: Match any character which is not a word character
16

Hsi-Pin Ma

Cleaning Text Data

17

Display last 50 characters from the 1st document

Use Python’s regular expression (re) library to
remove HTML markup except emotion characters

Apply preprocessor function to all the movie reviews

Hsi-Pin Ma

• Split the text corpora into individual elements

• Word stemming: Transform a word into its root form
– The Poter stemming algorithm developed by Martin F. Poter in 1979
– The Natural Language Toolkit (NLTK) for Python

Processing Documents into Tokens

18

Hsi-Pin Ma

Processing Documents into Tokens

•Stop-word removal
– Stop-words convey very little information and can be

removed
•is, and, has, like
•127 English stop-words in NLTK library

19

Hsi-Pin Ma

Training a Logistic Regression Model for
Document Classification

20

Hsi-Pin Ma

Train a Logistic Regression Model

•Classify the movie reviews into positive and
negative reviews

•Strip HTML and punctuation to speed up the
GridSearch later

•25000 for training and 25000 for testing

21

Hsi-Pin Ma

Use GridSearchCV to Find Optimal Parameters

22

Hsi-Pin Ma

Note about the Running Time
•Execute the code is time consuming (~30-60mins)

– With the parameter grid, 22*235+222*35=240 models to fit

•Possible approaches to speedup
– Reduce the size of dataset by decreasing the number of

training samples. However, may result in poorly
performing model

– Delete the parameters from the grid to reduce the models
to fit

23

Hsi-Pin Ma

Use GridSearchCV to Find Optimal
Parameters

24

Hsi-Pin Ma

Online Algorithms and Out-of-core Learning

•In many real world applications, it is common
to work with even larger datasets that can
exceed the computer’s memory
– Out-of-core learning: Fitting the classifier incrementally

on smaller branches of the dataset

•Use partial_fit function of SGDClassifier to
stream the documents directly from local drive,
and train a logistic regression model using
small mini-branches of documents

25

Hsi-Pin Ma

Tokenizer and Stream Documents

26

Hsi-Pin Ma

Verification of Document Stream

27

Hsi-Pin Ma

Get Mini batch of Documents

28

Hsi-Pin Ma

Classifier Definition

29

Hsi-Pin Ma

Model Training and Testing

30

Hsi-Pin Ma

Topic Modeling

31

Hsi-Pin Ma

Topic Modeling

•Assign topics to unlabeled text documents in a
corpus of news articles, scientific articles,
emails, web pages, blog posts, and so on.

•Considered as a clustering task, a subcategory
of unsupervised learning

•Latent Dirichlet Allocation (LDA) is a popular
technique for this
– It builds a topic per document model and words per

topic model, modeled as Dirichlet distributions
– Not to be confused with Linear Discriminant Analysis

32

Hsi-Pin Ma

Latent Dirichlet Allocation (LDA)
• A generative probabilistic model that tries to find groups of

words that appear frequently together across different
documents
– These frequently appearing words represent the topics, assuming each

document is a mixture of different words

• Given a bag-of-words matrix as input LDA decompose it into
two new matrices
– A document to topic matrix
– A topic to word matrix

• If we multiply those two matrices together, we would be able
to reproduce the input with the lowest possible error.

• However, we must define the number of topics (a
hyperparameter of LDA to be specified manually) beforehand

33

Hsi-Pin Ma

Preprocessing

34

Hsi-Pin Ma

LDA

35

Hsi-Pin Ma

LDA Results

36

Hsi-Pin Ma

Topic Guess

37

Hsi-Pin Ma

Verification of Horror Movies

38

