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Outline
•Preparing the IMDb Movie Review Data for 

Text Processing
•Introducing the Bag-of-words Model
•Training a Logistic Regression Model for 

Document Classification
•Topic Modeling
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Natural Language Processing (NLP)

•Computer are great at working with 
standardized and structure data, while humans 
communicate using words, a form of 
unstructured data

•NLP is a subfield of AI focusing on enabling 
computers to understand and process human 
languages
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Sentiment Analysis

•A subfield of natural language processing 
(NLP)

•Also called opinion mining
•Concerned with analyzing the polarity of 

documents
•Using machine learning algorithms to classify 

documents based on the expressed opinions or 
emotions of the authors regard to a particular 
topic
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Internet Movie Database (IMDb)

•50,000 movie reviews labeled as positive/
negative collected by Mass et. al. in 2011
– Positive: more than six stars on IMDb
– Negative: fewer than five stars on IMDb

•Link
– http://ai.stanford.edu/~amaas/data/sentiment/

•Download and preprocessing
– movie_data.csv
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After Preprocessing
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Introducing the Bag-of-words Model
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Bag-of-Words Model

•To represent text as numerical feature vectors 
– Create a vocabulary (alphabet) of unique tokens from the 

entire set of documents (e.g. words)
– Assign an integer index to each token
– Construct a feature vector from each document that 

contains the counts of how often each word occurs in the 
particular document

•The feature vectors are sparse
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Transforming Documents into Feature Vectors
• In scikit-learn, the bag-of-words model is implemented 

as the CountVectorizer class in the 
feature_extraction text module

• By calling fit_transform method on CountVectorizer, 
we just constructed the vocabulary of the bag-of-words 
model and transformed the following three sentences 
into sparse vectors
– The sun is shinning
– The weather is sweet
– The sun is shinning, the weather is sweet, and one 

and one is two.
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Transforming Documents into Feature Vectors
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Construct the vocabulary (bag: 3x9 sparse matrix)

Index of the vocabulary

Feature vectors

Raw term frequencies: tf(t,d): (values in the feature vectors)
The number of times a term t occurs in a document d
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Transforming Documents into Feature Vectors

•n-grams model
– Each item or token in the vocabulary represents n words
– Choice of n depends on the particular applications

•For example, for “the sun is shinning”
– 1-gram: “the”, “sun”, “is”, “shinning”
– 2-gram: “the sun”, “sun is”, “is shinning”

•In CountVectorizer, set ngram_range 
parameter
– 1-gram is by default
– For 2-gram, ngram_range=(2,2)

11



Hsi-Pin Ma

Assessing Word Relevancy via Term 
Frequency-Inverse Document Frequency

•There are words that frequently occur across 
multiple documents from both classes, which 
typically don’t contain useful or discriminatory 
information

•Term frequency-inverse document frequency 
(tf-idf) can be used to downweight those 
frequently occurring words in the feature 
vectors
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The sequence of items in the bag-of-words model that we just created 
is also called the 1-gram or unigram model—each item or token 
in the vocabulary represents a single word. More generally, the 
contiguous sequences of items in NLP—words, letters, or symbols—
are also called n-grams. The choice of the number n in the n-gram 
model depends on the particular application; for example, a study by 
Kanaris and others revealed that n-grams of size 3 and 4 yield good 
SHUIRUPDQFHV�LQ�DQWL�VSDP�ÀOWHULQJ�RI�HPDLO�PHVVDJHV��Words versus 
FKDUDFWHU�Q�JUDPV�IRU�DQWL�VSDP�ÀOWHULQJ, Ioannis Kanaris, Konstantinos 
Kanaris, Ioannis Houvardas, and Efstathios Stamatatos, International 
-RXUQDO�RQ�$UWLÀFLDO�,QWHOOLJHQFH�7RROV, :RUOG�6FLHQWLÀF�3XEOLVKLQJ�
Company, 16(06): 1047-1067, 2007). To summarize the concept of the 
n-gram representation, the 1-gram and 2-gram representations of our 
ÀUVW�GRFXPHQW��WKH�VXQ�LV�VKLQLQJ��ZRXOG�EH�FRQVWUXFWHG�DV�IROORZV�

�� 1-gram: "the", "sun", "is", "shining"
�� 2-gram: "the sun", "sun is", "is shining"

The CountVectorizer class in scikit-learn allows us to use different 
n-gram models via its ngram_range parameter. While a 1-gram 
representation is used by default, we could switch to a 2-gram 
representation by initializing a new CountVectorizer instance with 
ngram_range=(2,2).

Assessing word relevancy via term 
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across 
multiple documents from both classes. These frequently occurring words typically 
don't contain useful or discriminatory information. In this subsection, we will learn 
about a useful technique called term frequency-inverse document frequency  
(tf-idf) that can be used to downweight these frequently occurring words in the 
IHDWXUH�YHFWRUV��7KH�WI�LGI�FDQ�EH�GHÀQHG�DV�WKH�SURGXFW�RI�WKH�WHUP�IUHTXHQF\�DQG�
the inverse document frequency:

( ) ( ) ( )tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section, and 
idf(t, d) is the inverse document frequency and can be calculated as follows:

( ) ( )
idf t,d

1+df d,t
dnlog=
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Assessing Word Relevancy via Term 
Frequency-Inverse Document Frequency

•Scikit-learn implements TfidfTransformer that 
makes the raw term frequencies from 
CountVectorizer as input and transforms them 
into tf-idfs
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Assessing Word Relevancy via Term 
Frequency-Inverse Document Frequency

•TfidfTransformer has an option to normalize 
tf-idfs directly
– By default, norm=l2

– If norm=None, will not normalize the tf-idfs
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While it is also more typical to normalize the raw term frequencies before calculating 
the tf-idfs, TfidfTransformer class normalizes the tf-idfs directly. By default 
(norm='l2'), scikit-learn's TfidfTransformer applies the L2-normalization,  
which returns a vector of length 1 by dividing an un-normalized feature  
vector v by its L2-norm:

( )1/22 2 2 22 1 2
1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑!

To make sure that we understand how TfidfTransformer works, let's walk through 
an example and calculate the tf-idf of the word 'is' in the third document.

The word 'is' has a term frequency of 3 (WI �) in the third document, and the 
document frequency of this term is 3 since the term 'is' occurs in all three 
documents (GI �). Thus, we can calculate the inverse document frequency as follows:

( ) 1 3"is",d3 log 0
1 3

idf += =
+

Now, in order to calculate the tf-idf, we simply need to add 1 to the inverse 
document frequency and multiply it by the term frequency:

( ) ( )tf-idf " ",d3 3 0 1 3is = × + =

If we repeated this calculation for all terms in the third document, we'd obtain the 
following tf-idf vectors: [3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29]. However, 
notice that the values in this feature vector are different from the values that we 
obtained from TfidfTransformer�WKDW�ZH�XVHG�SUHYLRXVO\��7KH�ÀQDO�VWHS�WKDW�ZH�
are missing in this tf-idf calculation is the L2-normalization, which can be applied  
as follows:

( ) [ ]
2 2 2 2 2 2 2 2 2

3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29
tf - idf 3

3.39 3.0 3.39 1.29 1.29 1.29 2.0 1.69 1.29normd =
+ + + + + + + +

[ ]0.5, 0.45, 0.5, 0.19, 0.19, 0.19, 0.3, 0.25, 0.19=

( )tf-idf " ",d3 0.45is =

Manually normalize
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•The first important step before build the bag-of-
words model is to clean the text data by 
stripping it of all unwanted characters 

•Can use regular expressions to search for 
unwanted patterns of characters
– A regular expression (regex or regexp) is a sequence of 

characters that define a search pattern
– Each character in a regex is either a metacharacter, 

having a special meaning, or a regular character that has 
a literal meaning

– https://docs.python.org/3/library/re.html
15
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Metacharacters in Regular Expression
• . (dot): match any character except a newline
• *: match 0 or more repetitions of the preceding RE
• +: match 1 or more repetitions of the preceding RE
• ?: match 0 or 1 repetitions of the preceding RE
• {m}: match exactly m copies of the previous RE
• {n,m}: match from n to m copies of the previous RE
• [abc]: match to one of the three characters a, b, c
• [^a]: indicate any character which is not a
• A|B: either A or B
• \ : either escape special characters, or signals a special 

sequence
– \w: Match unicode word characters

– \W: Match any character which is not a word character
16



Hsi-Pin Ma

Cleaning Text Data

17

Display last 50 characters from the 1st document

Use Python’s regular expression (re) library to 
remove HTML markup except emotion characters 

Apply preprocessor function to all the movie reviews
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• Split the text corpora into individual elements

• Word stemming: Transform a word into its root form
– The Poter stemming algorithm developed by Martin F. Poter in 1979
– The Natural Language Toolkit (NLTK) for Python

Processing Documents into Tokens
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Processing Documents into Tokens

•Stop-word removal
– Stop-words convey very little information and can be 

removed
•is, and, has, like
•127 English stop-words in NLTK library
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Training a Logistic Regression Model for 
Document Classification
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Train a Logistic Regression Model

•Classify the movie reviews into positive and 
negative reviews

•Strip HTML and punctuation to speed up the 
GridSearch later

•25000 for training and 25000 for testing
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Use GridSearchCV to Find Optimal Parameters

22



Hsi-Pin Ma

Note about the Running Time
•Execute the code is time consuming (~30-60mins)

– With the parameter grid, 22*235+222*35=240 models to fit

•Possible approaches to speedup
– Reduce the size of dataset by decreasing the number of 

training samples. However, may result in poorly 
performing model

– Delete the parameters from the grid to reduce the models 
to fit
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Use GridSearchCV to Find Optimal 
Parameters
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Online Algorithms and Out-of-core Learning

•In many real world applications, it is common 
to work with even larger datasets that can 
exceed the computer’s memory
– Out-of-core learning: Fitting the classifier incrementally 

on smaller branches of the dataset

•Use partial_fit function of SGDClassifier to 
stream the documents directly from local drive, 
and train a logistic regression model using 
small mini-branches of documents
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Tokenizer and Stream Documents
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Verification of Document Stream
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Get Mini batch of Documents
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Classifier Definition
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Model Training and Testing
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Topic Modeling 
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Topic Modeling

•Assign topics to unlabeled text documents in a 
corpus of news articles, scientific articles, 
emails, web pages, blog posts, and so on.

•Considered as a clustering task, a subcategory 
of unsupervised learning

•Latent Dirichlet Allocation (LDA) is a popular 
technique for this
– It builds a topic per document model and words per 

topic model, modeled as Dirichlet distributions
– Not to be confused with Linear Discriminant Analysis
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Latent Dirichlet Allocation (LDA)
• A generative probabilistic model that tries to find groups of 

words that appear frequently together across different 
documents
– These frequently appearing words represent the topics, assuming each 

document is a mixture of different words

• Given a bag-of-words matrix as input LDA decompose it into 
two new matrices
– A document to topic matrix
– A topic to word matrix

• If we multiply those two matrices together, we would be able 
to reproduce the input with the lowest possible error.

• However, we must define the number of topics (a 
hyperparameter of LDA to be specified manually) beforehand
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Preprocessing
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LDA
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LDA Results
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Topic Guess
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Verification of Horror Movies
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