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Outline
e Preparing the IMDb Movie Review Data for
Text Processing

e Introducing the Bag-of-words Model

e Training a Logistic Regression Model for
Document Classification

* Topic Modeling
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Natural Language Processing (NLP)

e Computer are great at working with
standardized and structure data, while humans
communicate using words, a form of
unstructured data

e NLP is a subfield of Al focusing on enabling
computers to understand and process human
languages
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Sentiment Analysis

e A subfield of natural language processing
(NLP)

* Also called opinion mining

e Concerned with analyzing the polarity of
documents

e Using machine learning algorithms to classify
documents based on the expressed opinions or
emotions of the authors regard to a particular
topic
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Internet Movie Database (IMDb)

* 50,000 movie reviews labeled as positive/
negative collected by Mass et. al. in 2011

—Positive: more than six stars on IMDDb

—Negative: fewer than five stars on IMDb
e Link

—http:/ /ai.stanford.edu/ ~amaas/data /sentiment/

* Download and preprocessing

—movie data.csv
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After Preprocessing

import pandas as pd

df = pd.read csv('movie data.csv', encoding='utf-8')
df .head(3)

review sentiment

0 In 1974, the teenager Martha Moxley (Maggie Gr... 1
1 OK... so... | really like Kris Kristofferson a... 0
2 **SPOILER™* Do not read this, if you think a... 0
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Introducing the Bag-of-words Model
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Bag-of-Words Model

* To represent text as numerical feature vectors

— Create a vocabulary (alphabet) of unique tokens from the
entire set of documents (e.g. words)

— Assign an integer index to each token

— Construct a feature vector from each document that
contains the counts of how often each word occurs in the
particular document

e The feature vectors are sparse
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Transforming Documents into Feature Vectors

e In scikit-learn, the bag-of-words model is implemented

as the CountVectorizer class in the
feature_extraction text module

e By calling fit_transform method on CountVectorizer,
we just constructed the vocabulary of the bag-of-words
model and transformed the following three sentences
into sparse vectors

—The sun is shinning
—The weather is sweet

—The sun is shinning, the weather is sweet, and one
and one is two.
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Construct the vocabulary (bag: 3x9 sparse matrix)

import numpy as np

from sklearn.feature extraction.text import CountVectorizer

count = CountVectorizer ()
docs = np.array(|[
'"The sun is shining',
'"The weather is sweet',
'The sun is shining, the weather is sweet, and one and one is two'])

bag = count.fit transform(docs)

Index of the vocabulary
print (count.vocabulary )

{'the': 6, 'sun': 4, 'is': 1, 'shining': 3, 'weather': 8, 'sweet': 5, 'and': 0, 'one': 2
, 'two': 7}
Feature vectors

print (bag.toarray())

[[01 011010 0]
[01 000110 1]

Raw term frequencies: tf(¢,d): (values in the feature vectors)
[232111211]]

The number of times a term t occurs in a document d
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Transforming Documents into Feature Vectors

* n-grams model

—Each item or token in the vocabulary represents n words

— Choice of n depends on the particular applications

e For example, for “the sun is shinning”

AN B /A |

—1-gram: “the”, “sun”, “is”, “shinning”

/i 1A I B

—2-gram: “the sun”, “sun is”, “is shinning”

eIn countVoctorinr, set ngnm_rango

parameter

—1-gram is by default
—For 2-gram, ngram_range=(2,2)
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Frequency-Inverse Document Frequency

e There are words that frequently occur across
multiple documents from both classes, which
typically don’t contain useful or discriminatory
information

e Term frequency-inverse document frequency
(tf-idf) can be used to downweight those
frequently occurring words in the feature

total number of documents

vectors o
1,

1+df (d,t)

tfidf (t.d) = of (¢,d ) xidf (,d) idf (t,d) =log

o number of documents d that contain the term ¢
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v Assessing Word Relevancy via Term
Frequency-Inverse Document Frequency

e Scikit-learn implements TfidfTransformer that
makes the raw term frequencies from

CountVectorizer as input and transforms them
into tf-idfs

NTHU EE

from sklearn.feature extraction.text import TfidfTransformer

tfidf = TfidfTransformer(use idf=True,
norm='12",
smooth idf=True)
print (tfidf.fit transform(count.fit transform(docs))

.toarray())

[[ O. 0.43 0. 0.56 0.56 0. 0.43 0. 0. 1
[ O. 0.43 0. 0. 0. 0.56 0.43 0. 0.56]

[ 0.5 0.5 0.19 0.19 0.19 0.3 0.25 0.19]]
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i Assessing Word Relevancy via Term
Frequency-Inverse Document Frequency

e TfidfTransformer has an option to normalize
tf-idfs directly

— By default, norm=12

V V

norm > ” 7 1/2
HvH e >
i=1 l

—If norm=None, will not normalize the tf—1c.fs

tfidf = TfidfTransformer(use idf=True, norm=None, smooth idf=True)
raw tfidf = tfidf.fit transform(count.fit transform(docs)).toarray()[-1]
raw tfidf

array([ 3.39, 3. , 3.39, 1.29, 1.29, 1.29, 2. , 1.69, 1.29])

12 tfidf = raw tfidf / np.sqgrt(np.sum(raw tfidf**2)) Manually normalize
12 tfidf

array([ 0.5 , 0.45, 0.5, 0.19, 0.19, 0.19, 0.3 , 0.25, 0.19])
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Cleaning Text Data

e The first important step before build the bag-of-
words model is to clean the text data by
stripping it of all unwanted characters

e Can use regular expressions to search for
unwanted patterns of characters

— A regular expression (regex or regexp) is a sequence of
characters that define a search pattern

—Each character in a regex is either a metacharacter,
having a special meaning, or a regular character that has
a literal meaning

—https:/ /docs.python.org /3 /library / re.html

Hsi-Pin Ma 15
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b:-.Metacharacters in Regular Expression

e . (dot): match any character except a newline

e *: match 0 or more repetitions of the preceding RE

e +: match 1 or more repetitions of

the preceding RE

e ?: match 0 or 1 repetitions of the preceding RE

e {m}: match exactly m copies of the previous RE

e {n,m}: match from n to m copies of the previous RE

e [abc]: match to one of the three ¢

naracters a, b, ¢

e [Aa]: indicate any character whic
e A|B: either A or B

n 1S not a

e \ : either escape special characters, or signals a special

sequence

— \'w: Match unicode word characters

Hsi-Pin Ma \W: Match any character which is not a wo

rd character -
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Cleaning Text Data

Display last 50 characters from the 1st document

df.loc[0, 'review'][-50:]

' would be money well spent.<br /><br />8 out of 10'

import re Use Python’s regular expression (re) library to
def preprocessor(text): remove HTML markup except emotion characters

text = re.sub('<[">]*>", '', text)

emoticons = re.findall('(?::|;|=)(?2:=-)2(2:\)]|\(|D|P)",
text)

text = (re.sub('[\W]+', ' ', text.lower()) +

'.join(emoticons).replace('-', '"))

return text

preprocessor (df.loc[0, 'review'][-50:])

would be money well spent 8 out of 10

preprocessor("</a>This :) is :( a test :-)!")

'this is a test :) :( :)'
Apply preprocessor function to all the movie reviews

df[ 'review'] = df[ 'review'].apply(preprocessor)
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e Split the text corpora into individual elements

tokenizer('runners like running and thus they run')

[ 'runners', 'like', 'running', 'and', 'thus', 'they', 'run']

e Word stemming: Transform a word into its root form

— The Poter stemming algorithm developed by Martin F. Poter in 1979
— The Natural Language Toolkit (NLTK) for Python

from nltk.stem.porter import PorterStemmer
porter = PorterStemmer()

def tokenizer(text):

return text.split()

def tokenizer porter(text):

return [porter.stem(word) for word in text.split()]

tokenizer porter('runners like running and thus they run')

[ 'runner', 'like', 'run', 'and', 'thu', 'they', 'run']

Hsi-Pin Ma
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e Stop-word removal

— Stop-words convey very little information and can be
removed

*is, and, has, like
127 English stop-words in NLTK library

import nltk

nltk.download('stopwords')

[nltk data] Downloading package stopwords to
[nltk data] /Users/sebastian/nltk data...
[nltk data] Package stopwords is already up-to-date!

True
from nltk.corpus import stopwords

stop = stopwords.words('english')

[w for w in tokenizer porter('a runner likes running and runs a lot')[-10:]

if w not in stop]

[ 'runner', 'like', 'run', 'run', 'lot']

Hsi-Pin Ma
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Training a Logistic Regression Model for
Document Classification
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Train a Logistic Regression Model

e Classify the movie reviews into positive and
negative reviews

e Strip HTML and punctuation to speed up the
GridSearch later

* 25000 for training and 25000 for testing

X train = df.loc[:25000, 'review'].values
y _train = df.loc[:25000, 'sentiment'].values
X test = df.loc[25000:, 'review'].values

y _test = df.loc[25000:, 'sentiment'].values

Hsi-Pin Ma
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Jse GridSearchCV to Find Optimal Parameters

from sklearn.pipeline import Pipeline
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from sklearn.linear model import LogisticRegression
from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.model selection import GridSearchCV

tfidf = TfidfVectorizer(strip accents=None,
lowercase=False,
preprocessor=None)
param grid = [{'vect ngram range': [(1, 1)],
'vect stop words': [stop, None],
'vect tokenizer': [tokenizer, tokenizer porter],
'clf penalty': ['1l1', 'l12'],
'clf Cc': [1.0, 10.0, 100.01]1},
{'vect ngram range': [(1l, 1)],
'vect stop words': [stop, None],
'vect tokenizer': [tokenizer, tokenizer porter],
'vect use idf':[False],
'vect norm':[None],
'clf penalty': ['1l1', 'l2'],
'clf Cc': [1.0, 10.0, 100.01]1},

lr tfidf = Pipeline([( 'vect', tfidf),

('clf', LogisticRegression(random state=0))])

gs_lr tfidf = GridSearchCV(1lr_ tfidf, param grid,
scoring='accuracy',
cv=5,
verbose=1,

Hsi-Pin Ma n_jobs=-1) 22
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Note about the Running Time

e Execute the code is time consuming (~30-60mins)
— With the parameter grid, 22*235+222*35=240 models to fit

e Possible approaches to speedup

—Reduce the size of dataset by decreasing the number of
training samples. However, may result in poorly
performing model

X train = df.loc[:2500, 'review'].values
y train = df.loc[:2500, 'sentiment'].values

—Delete the parameters from the grid to reduce the models

to fit param grid = [{'vect ngram range': [(1, 1)],
'vect stop words': [stop, None],
'vect tokenizer': [tokenizer],
'clf penalty': ['1l1', '12'],
'clf C': [1.0, 10.0]1},
Hsi-Pin Ma ] 23
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print ( 'Best parameter set:

&~ Jse GridSearchCV to Find Optimal

Parameters

$s ' % gs_lr tfidf.best params )

print('CV Accuracy: %.3f' % gs 1lr tfidf.best score )

Best parameter set: {'clf C': 10.0, 'clf penalty': '1l2', 'vect ngram range': (1,

'vect stop words': None,
CV Accuracy: 0.892

'vect tokenizer': <function tokenizer at 0x7£781£0bd0d0>}

clf = gs 1lr tfidf.best estimator

print('Test Accuracy: %.3f'

Test Accuracy: 0.899

Hsi-Pin Ma
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‘Online Algorithms and Out-of-core Learning

e In many real world applications, it is common
to work with even larger datasets that can
exceed the computer’s memory

— QOut-of-core learning: Fitting the classifier incrementally
on smaller branches of the dataset

e Use partial_fit function of SGDClassifier to

stream the documents directly from local drive,
and train a logistic regression model using
small mini-branches of documents

Hsi-Pin Ma
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Tokenizer and Stream Documents

import numpy as np

import re

from nltk.corpus import stopwords

def

def

tokenizer(text):
text = re.sub('<[">]*>", "', text)
emoticons = re.findall('(?::|;|=)(2:=-)2(2:\)|\(|D|P)', text.lower())
text = re.sub('[\W]+', ' ', text.lower()) +\
' '.join(emoticons).replace('-', '")

tokenized = [w for w in text.split() if w not in stop]

return tokenized

stream docs(path):
with open(path, 'r', encoding='utf-8') as csv:
next(csv) # skip header
for line in csv:
text, label line[:-3], int(line[-2])
yield text, label

Hsi-Pin Ma
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Verification of Document Stream

next (stream docs(path='movie data.csv'))

('"In 1974, the teenager Martha Moxley (Maggie Grace) moves to the high-class area of Be
lle Haven, Greenwich, Connecticut. On the Mischief Night, eve of Halloween, she was murd
ered in the backyard of her house and her murder remained unsolved. Twenty-two years lat
er, the writer Mark Fuhrman (Christopher Meloni), who is a former LA detective that has
fallen in disgrace for perjury in 0.J. Simpson trial and moved to Idaho, decides to inve
stigate the case with his partner Stephen Weeks (Andrew Mitchell) with the purpose of wr
iting a book. The locals squirm and do not welcome them, but with the support of the ret
ired detective Steve Carroll (Robert Forster) that was in charge of the investigation in
the 70\'s, they discover the criminal and a net of power and money to cover the murder.<
br /><br />""Murder in Greenwich"" is a good TV movie, with the true story of a murder o
f a fifteen years old girl that was committed by a wealthy teenager whose mother was a K
ennedy. The powerful and rich family used their influence to cover the murder for more t
han twenty years. However, a snoopy detective and convicted perjurer in disgrace was abl
e to disclose how the hideous crime was committed. The screenplay shows the investigatio
n of Mark and the last days of Martha in parallel, but there is a lack of the emotion in
the dramatization. My vote is seven.<br /><br />Title (Brazil): Not Available"',
1)

Hsi-Pin Ma
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Get Mini batch of Documents

def get minibatch(doc stream, size):
docs, y = [], []
try:
for in range(size):
text, label = next(doc stream)
docs.append(text)
y.append(label)
except StopIteration:
return None, None

return docs, y

Hsi-Pin Ma
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Classifier Definition

from sklearn.feature extraction.text import HashingVectorizer

from sklearn.linear model import SGDClassifier

vect = HashingVectorizer(decode error='ignore',
n features=2**21,
preprocessor=None,

tokenizer=tokenizer)

clf = SGDClassifier(loss='log', random state=1, n iter=1)

doc_stream = stream docs(path='movie data.csv')

Hsi-Pin Ma
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Model Training and Testing

import pyprind

pbar = pyprind.ProgBar (45)

classes = np.array ([0, 1])

for

in range(45):

X train, y train = get minibatch(doc_ stream, size=1000)

if not X train:

break

X train

vect.transform(X train)

clf.partial fit(X train, y train, classes=classes)

pbar.update ()

0% [ #H#AHHHHARHHHHHHHHHAHHAAHHAA#HA#] 100% | ETA: 00:00:00
Total time elapsed: 00:00:31

X test, y test

= get minibatch(doc stream, size=5000)

X test = vect.transform(X test)

print('Accuracy: %.3f' % clf.score(X test, y test))

Accuracy: 0.867

clf

= clf.partial fit(X test, y test)

Hsi-Fin ma
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Topic Modeling

e Assign topics to unlabeled text documents in a
corpus of news articles, scientific articles,
emails, web pages, blog posts, and so on.

e Considered as a clustering task, a subcategory
of unsupervised learning

e Latent Dirichlet Allocation (LDA) is a popular
technique for this

— It builds a topic per document model and words per
topic model, modeled as Dirichlet distributions

—Not to be confused with Linear Discriminant Analysis

Hsi-Pin Ma
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Latent Dirichlet Allocation (LDA)

e A generative probabilistic model that tries to find groups of
words that appear frequently together across different
documents

— These frequently appearing words represent the topics, assuming each
document is a mixture of different words

e Given a bag-of-words matrix as input LDA decompose it into
two new matrices

— A document to topic matrix

— A topic to word matrix

e [f we multiply those two matrices together, we would be able
to reproduce the input with the lowest possible error.

e However, we must define the number of topics (a
hyperparameter of LDA to be specified manually) beforehand
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Preprocessing

import pandas as pd

df = pd.read csv('movie data.csv', encoding='utf-8')
df.head(3)

review sentiment

0 In 1974, the teenager Martha Moxley (Maggie Gr... 1
1 OK... so... | really like Kris Kristofferson a... 0
2 **SPOILER*™* Do not read this, if you think a... 0

from sklearn.feature extraction.text import CountVectorizer

count = CountVectorizer(stop words='english',
max df=.1,
max features=5000)

X = count.fit transform(df['review'].values)

Hsi-Pin Ma
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LDA

from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_topics=10,
random state=123,
learning method='batch')
X topics = lda.fit transform(X)

lda.components .shape

(10, 5000)

Hsi-Pin Ma
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LDA Results

n top words = 5

feature names = count.get feature names() Topic 1:
worst minutes awful script stupid
; - : - Topic 2:
for topic idx, topic in enumerate(lda.components ):
_ . _ . _ . family mother father children girl
print("Topic %d:" % (topic 1i1dx + 1)) ,
- Topic 3:
print(" ".join([feature names[1i] american war dvd music tv
for i in topic.argsort()\ Topic 4:
[:-n top words - 1:-1]1])) human audience cinema art sense

Topic 5:

police guy car dead murder

Topic 6:

horror house sex girl woman

Topic 7:

role performance comedy actor performances
Topic 8:

series episode war episodes tv

Topic 9:

book version original read novel

Topic 10:

action fight guy guys cool

Hsi-Pin Ma 36



NTHU EE

IR Ll

 Laboratory for
Reliable
Comput ing

Topic Guess

Topic 1l:

worst minutes awful script stupid
Topic 2:

family mother father children girl
Topic 3:

american war dvd music tv

Topic 4:

human audience cinema art sense
Topic 5:

police guy car dead murder

Topic 6:

horror house sex girl woman

Topic 7:

role performance comedy actor performances
Topic 8:

series episode war episodes tv
Topic 9:

book version original read novel

Topic 10:

action fight guy guys cool

Hsi-Pin Ma
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Generally bad movies (not really a topic category)
Movies about families

War movies

Art movies

Crime movies

Horror movies

Comedies

Movies somehow related to TV shows

Movies based on books

Action movies

37



NTHU EE

 Laboratory for
‘Reliable
Comput ing

11 I900m | TN

Verification of Horror Movies

horror = X topics[:, 5].argsort()[::-1]

for iter idx, movie idx in enumerate(horror[:3]):
print('\nHorror movie #%d:' % (iter idx + 1))

print(df[ 'review' ][movie idx][:300], '...')

Horror movie #1l:

House of Dracula works from the same basic premise as House of Frankenstein from the yea
r before; namely that Universal's three most famous monsters; Dracula, Frankenstein's Mo
nster and The Wolf Man are appearing in the movie together. Naturally, the film is rathe

r messy therefore, but the fact that ...

Horror movie #2:

Okay, what the hell kind of TRASH have I been watching now? "The Witches' Mountain" has
got to be one of the most incoherent and insane Spanish exploitation flicks ever and yet
, at the same time, it's also strangely compelling. There's absolutely nothing that make

s sense here and I even doubt there ...

Horror movie #3:

<br /><br />Horror movie time, Japanese style. Uzumaki/Spiral was a total freakfest from
Hsi-Pin Ma 38

J



