

EE3700 Introduction to Machine Learning

Model Evaluation and Hyperparameter Tuning Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

- Streaming Workflows with Pipelines
- Using k-fold Cross-Validation to Assess Model Performance
- Debugging Algorithms with Learning and Validation Curves
- Fine-Tuning Machine Learning Models via Grid Search
- Looking at Different Performance Evaluation Metrics
- Dealing with Class Imbalance

Streamlining Workflows with Pipelines

Pipeline Class

- In preprocessing, the parameters obtained during the fitting of the training data should be reused in the separate test dataset
- **Pipeline** class in scikit-learn allows to fit a model including an arbitrary number of transformation steps and apply it to make predictions about new data.

Breast Cancer Wisconsin Dataset

Load dataset

import pandas as pd

if the Breast Cancer dataset is temporarily unavailable from the # UCI machine learning repository, un-comment the following line # of code to load the dataset from a local path:

df_wine = pd.read_csv('wdbc.data', header=None)

df.head()

	0	1	2	3	4	5	6	7	8	9		22	23	:
0	842302	Μ	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710		25.38	17.33	184.(
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017		24.99	23.41	158.{
2	84300903	Μ	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790		23.57	25.53	152.{
3	84348301	Μ	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520		14.91	26.50	98.{
4	84358402	Μ	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430		22.54		152.2
df	df.shape													

Hsi-Pin Ma (569, 32)

Breast Cancer Wisconsin Dataset

Assign 30 features to X and use LabelEncoder to transform the class label

from sklearn.preprocessing import LabelEncoder

```
X = df.loc[:, 2:].values
y = df.loc[:, 1].values
le = LabelEncoder()
y = le.fit_transform(y)
le.classes_
```

```
array(['B', 'M'], dtype=object)
```

```
le.transform(['M', 'B'])
```

```
array([1, 0])
```


Breast Cancer Wisconsin Dataset

```
• Split dataset with 80:20
```

Comparison of Comparison of C

• Put standardization, dimensionality reduction of features (PCA), logistic regression in a pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline

```
pipe_lr.fit(X_train, y_train)
y_pred = pipe_lr.predict(X_test)
print('Test Accuracy: %.3f' % pipe_lr.score(X_test, y_test))
```

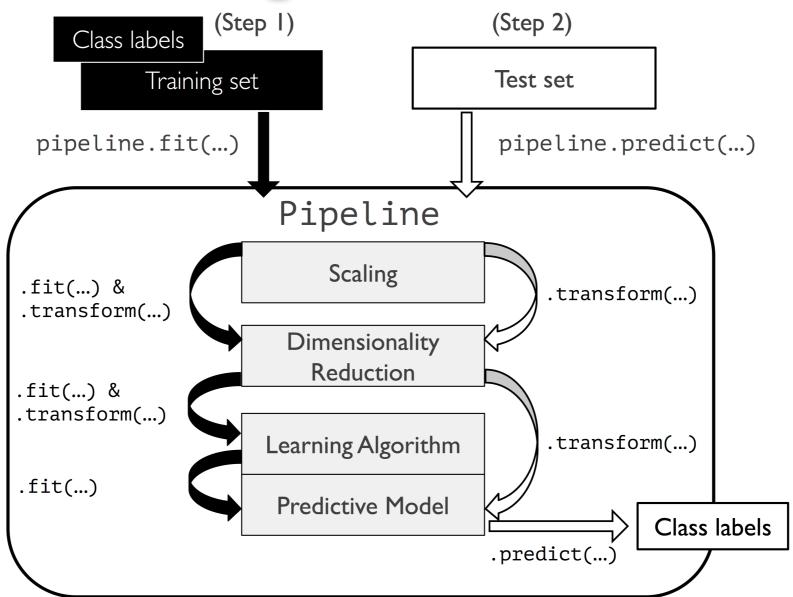
```
Test Accuracy: 0.956
```

Computing Combining Transformers and Estimators in a Pipeline

• **make_pipeline** function takes *an arbitrary number of*

scikit-learn transformers that support the **fit** and **transform** method, followed by *a scikit-learn estimator*

that implements **fit** and **predict** methods



Using k-fold Cross Validation to Assess Model Performance

Model Selection

How to obtain an unbiased estimate of models' performance

– Estimate model performance on **unseen** data

Model selection

 For a given classification, to select the optimal values of tuning parameters (i.e., hyperparameters) to further improve the performance of predicting unseen data.

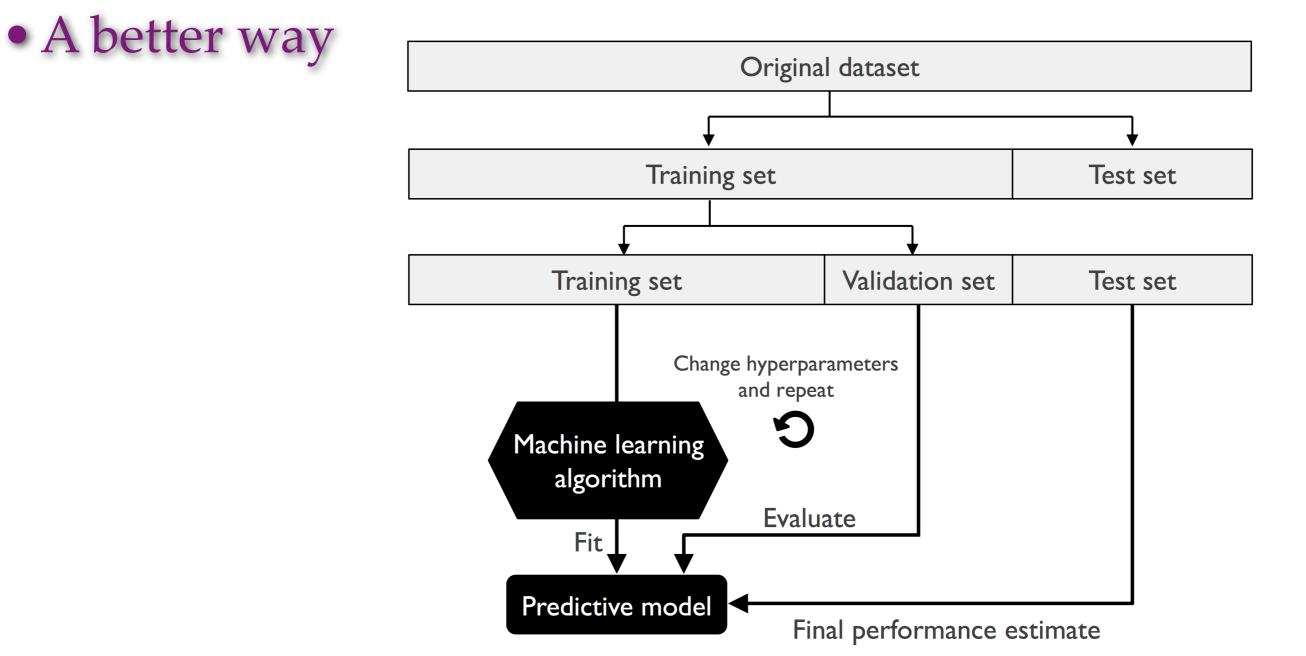
• There are two general methods

- -holdout cross-validation method
- -k-fold cross-validation method

The Holdout Method

- Split the initial dataset into a separating training and test dataset
 - The former is for model training and the latter is to estimate its generalization performance
- However, during model selection, if the same test dataset is reused over and over again, the test dataset will become part of the training data, and the model may be overfitted.

The Holdout Method



 However, performance estimate will be sensitive on how to partition the training set into training and validation subsets.

k-fold Cross-Validation

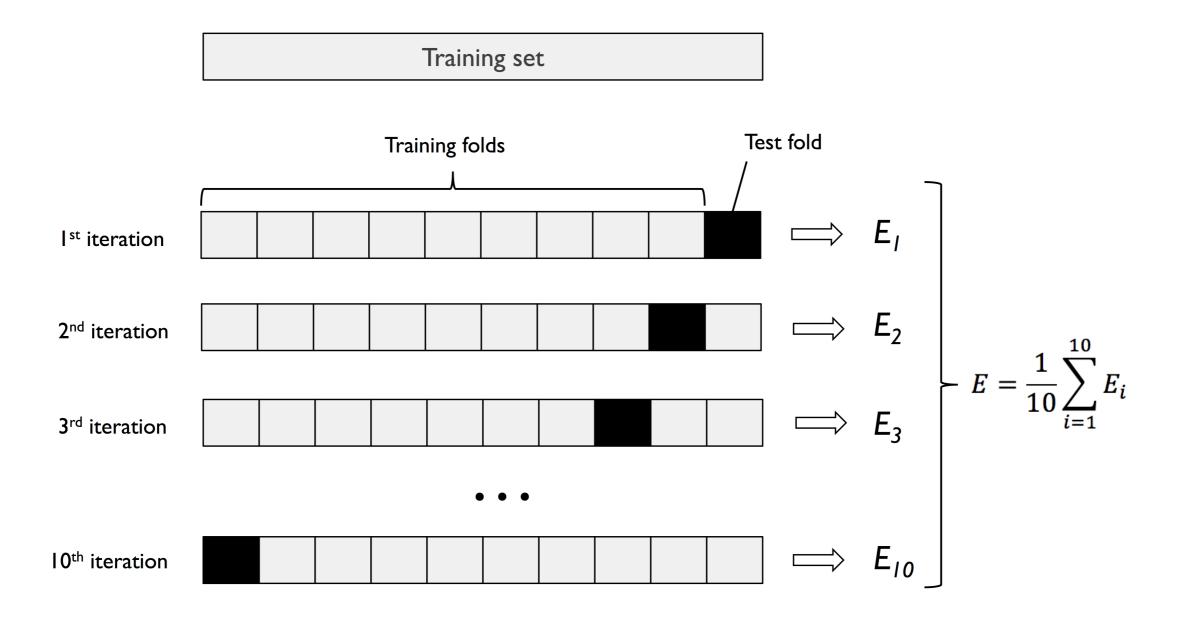
Repeat the holdout method k times on k subset of the training data

- Randomly split the training dataset into k folds without replacement (resampling without replacement)
 - k-1 fold for model training, and one fold for performance evaluation
- Repeat k times => k models and performance estimates
- A configuration of hyperparameters is selected when its average performance is the best.
- Low-variance estimate of model performance than holdout method
 - Each sample point will be used for training and validation exactly once

k-fold Cross-Validation

• A good standard value of k is 10

- -k increases as the training dataset is relatively small
- -k decreases as the training dataset is relatively large



Leave-one-out cross-validation

- Set the number of folds equal to the number of training samples
- -Only a single training sample used for testing during each iteration
- -Recommended approach for very small dataset

Stratified k-fold cross-validation

- -Class proportions preserved in each fold
 - •each fold is representative of the class proportions in the training set

– Better performance estimates for imbalanced data

aboratory for

Stratified k-fold Cross-Validation

print('\nCV accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))

Fold: 1, Class dist.: [256 153], Acc: 0.935
Fold: 2, Class dist.: [256 153], Acc: 0.935
Fold: 3, Class dist.: [256 153], Acc: 0.957
Fold: 4, Class dist.: [256 153], Acc: 0.957
Fold: 5, Class dist.: [256 153], Acc: 0.935
Fold: 6, Class dist.: [257 153], Acc: 0.956
Fold: 7, Class dist.: [257 153], Acc: 0.978
Fold: 8, Class dist.: [257 153], Acc: 0.933
Fold: 9, Class dist.: [257 153], Acc: 0.956
Fold: 10, Class dist.: [257 153], Acc: 0.956

Laboratory for

Reliable Computing

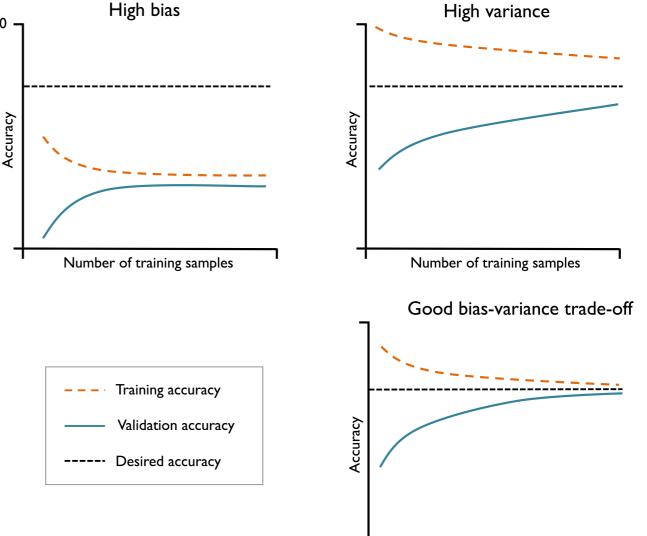
Stratified k-fold Cross-Validation scikit-learn implements a k-fold cross-validation scorer (cross_val_score)

-n_jobs provides parallel processing capability

Debugging Algorithms with Learning and Validation Curves

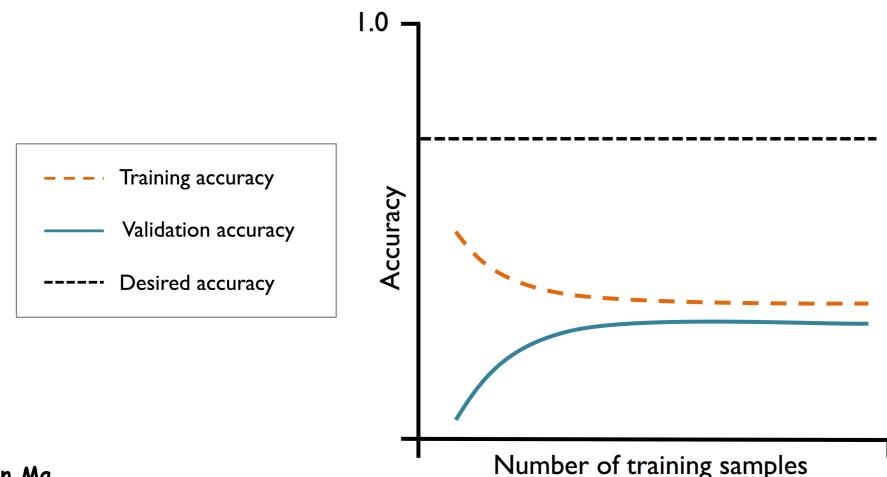
^{Laboratory for} ^{Compute} iagnosing Bias and Variance Problems with Learning Curves (1/3)

• By plotting the model *training* and *validation accuracies* as functions of the <u>training set size</u>, we can easily detect whether the model suffers from high variance or high bias, and whether the collection of more data could help address the problem



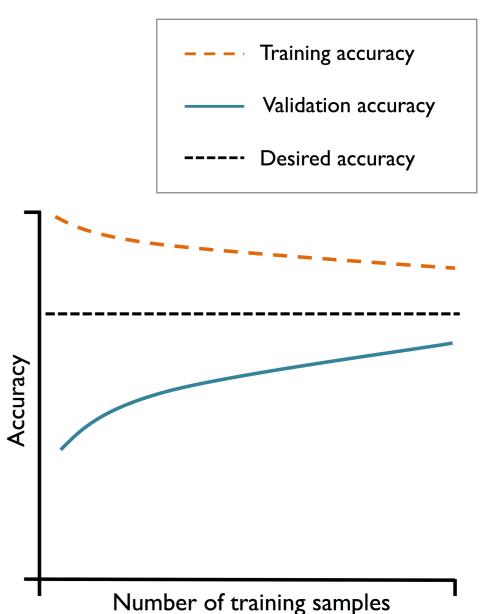
Laboratory for Betliable Computing Diagnosing Bias and Variance Problems with Learning Curves (2/3) High bias

- -Model underfits the training data
- Possible solutions
 - Increase the number of parameters of the model
 - Decrease the degree of regularization



Interfactory for Beliable Computer in the problems With Learning Curves (3/3) High variance

- Large gap between training and crossvalidation accuracy
- Possible solutions
 - •Collect more training data, reduce the complexity of the model
 - •Increase the regularization parameter
 - •For unregularized models, decrease the number of features via feature selection or feature extraction
- •However, collect more training data may not always help (noisy training data)



Reliable Computed Com

import matplotlib.pyplot as plt
from sklearn.model selection import learning curve

```
pipe lr = make pipeline(StandardScaler(),
                        LogisticRegression(penalty='12', random state=1))
train sizes, train scores, test scores =\
                learning curve(estimator=pipe_lr,
                               X=X train,
                               y=y train,
                               train sizes=np.linspace(0.1, 1.0, 10),
                               cv=10,
                               n jobs=1)
train mean = np.mean(train scores, axis=1)
train std = np.std(train scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test std = np.std(test scores, axis=1)
plt.plot(train sizes, train mean,
         color='blue', marker='o',
        markersize=5, label='training accuracy')
```

Laboratory for Reliable Computed Learning Curves with Scikit-learn (2/2)

```
plt.fill between(train sizes,
                  train mean + train std,
                  train mean - train_std,
                  alpha=0.15, color='blue')
plt.plot(train sizes, test mean,
         color='green', linestyle='--',
         marker='s', markersize=5,
         label='validation accuracy')
plt.fill_between(train_sizes,
                  test mean + test std,
                  test_mean - test_std,
                                                  1.00 -
                  alpha=0.15, color='green')
                                                  0.95
plt.grid()
                                                 Accuracy
06'0
plt.xlabel('Number of training samples')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.ylim([0.8, 1.03])
                                                  0.85
plt.tight layout()
#plt.savefig('images/06 05.png', dpi=300)
                                                  0.80
plt.show()
                                                        50
                                                             100
                                                                  150
                                                                       200
                                                                             250
```

Hisi-rin ma

400

training accuracy

--- validation accuracy

350

300

Number of training samples

Laboratory for Reliable Computing Address Over- and Under-fitting with Validation Curves (1/2)

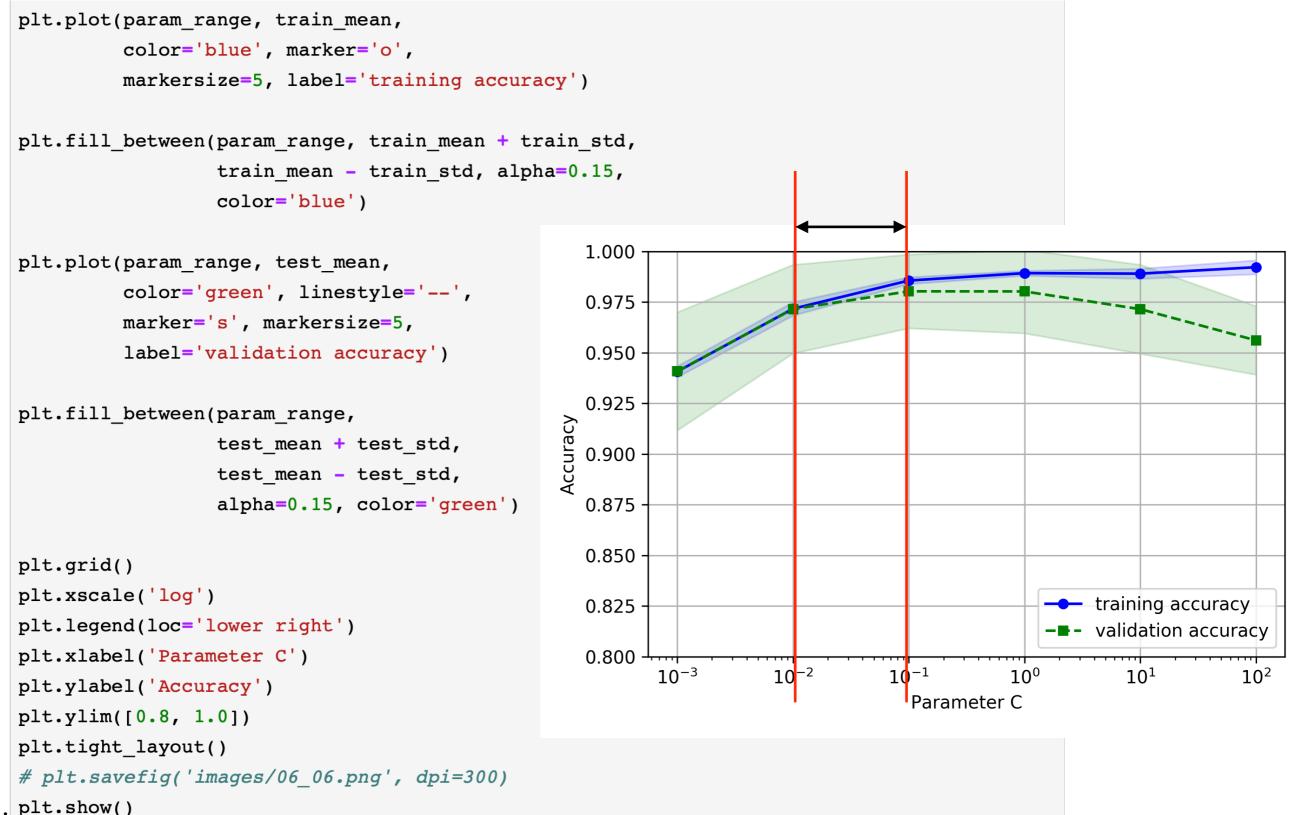
• The validation curves are the figures of the model training and validation accuracies as functions of the *model parameters*

from sklearn.model_selection import validation_curve

```
test_mean = np.mean(test_scores, axis=1)
```

```
H test_std = np.std(test_scores, axis=1)
```

Address Over- and Under-fitting with Computing Address Over- and Under-fitting with Validation Curves (2/2)



Fine-Tuning Machine Learning Models via Grid Search

Tuning Hyperparameters via Grid Search

- Grid search is a brute-force exhaustive search paradigm
- A list of values is specified for each hyperparameter
- We evaluate the model performance for each possible combination of those listed values to obtain the optimal combination of values

Refiable Computing Myperparameters via Grid Search

```
from sklearn.model selection import GridSearchCV
from sklearn.svm import SVC
pipe svc = make pipeline(StandardScaler(),
                         SVC(random state=1))
param range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
param_grid = [{'svc_C': param_range,
               'svc kernel': ['linear']},
              {'svc C': param range,
               'svc gamma': param_range,
               'svc kernel': ['rbf']}]
gs = GridSearchCV(estimator=pipe svc,
                  param_grid=param_grid,
                  scoring='accuracy',
                  cv=10,
                  n jobs=-1)
gs = gs.fit(X_train, y train)
print(gs.best_score_)
print(gs.best params )
```


Tuning Hyperparameters via Grid Search

0.984615384615

{'svc_C': 100.0, 'svc_gamma': 0.001, 'svc_kernel': 'rbf'}

clf = gs.best_estimator_ clf.fit(X_train, y_train) print('Test accuracy: %.3f' % clf.score(X test, y test))

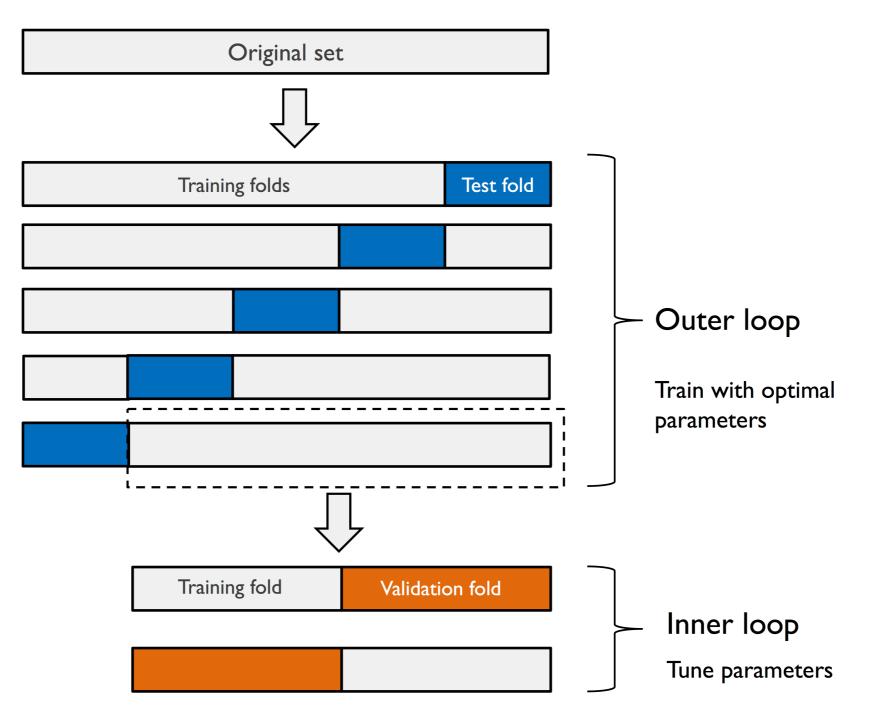
Test accuracy: 0.974

• In a nested cross-validation, we have two loops

- one outer *k*-fold cross-validation loop to split the data into training and test folds
- one inner *k*-fold cross-validation loop to select the model using *k*-fold cross-validation on the training folds,
- after model selection, use the test fold to evaluate model performance
- the two loops may have different value of *k*

• Used to evaluate the generalization performance of different classification algorithms in order to select the best one

• 5x2 cross-validation



Hsi-Pin Ma

- Compare SVM and decision tree classifier with only depth parameter
- SVM classifier

CV accuracy: 0.974 +/- 0.015

Decision tree classifier

CV accuracy: 0.934 +/- 0.016

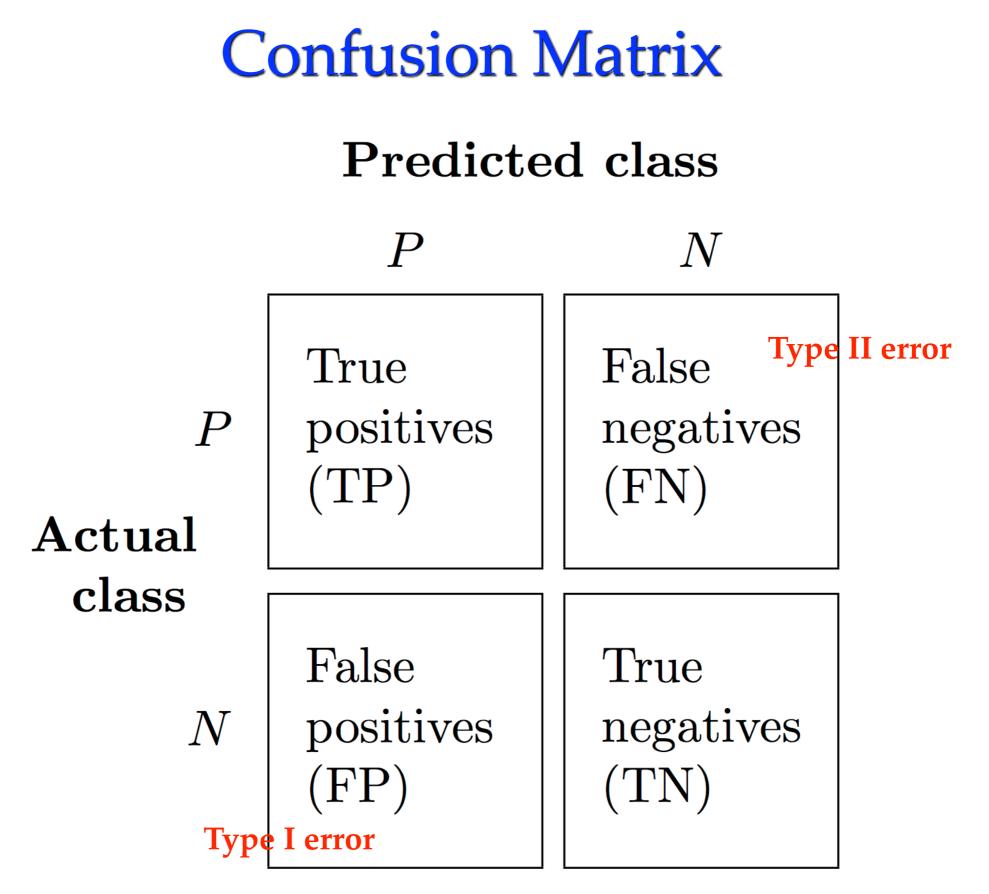
• SVM model (97.4%) is better then decision tree model (93.4%)

Looking at Different Performance Evaluation Metrics

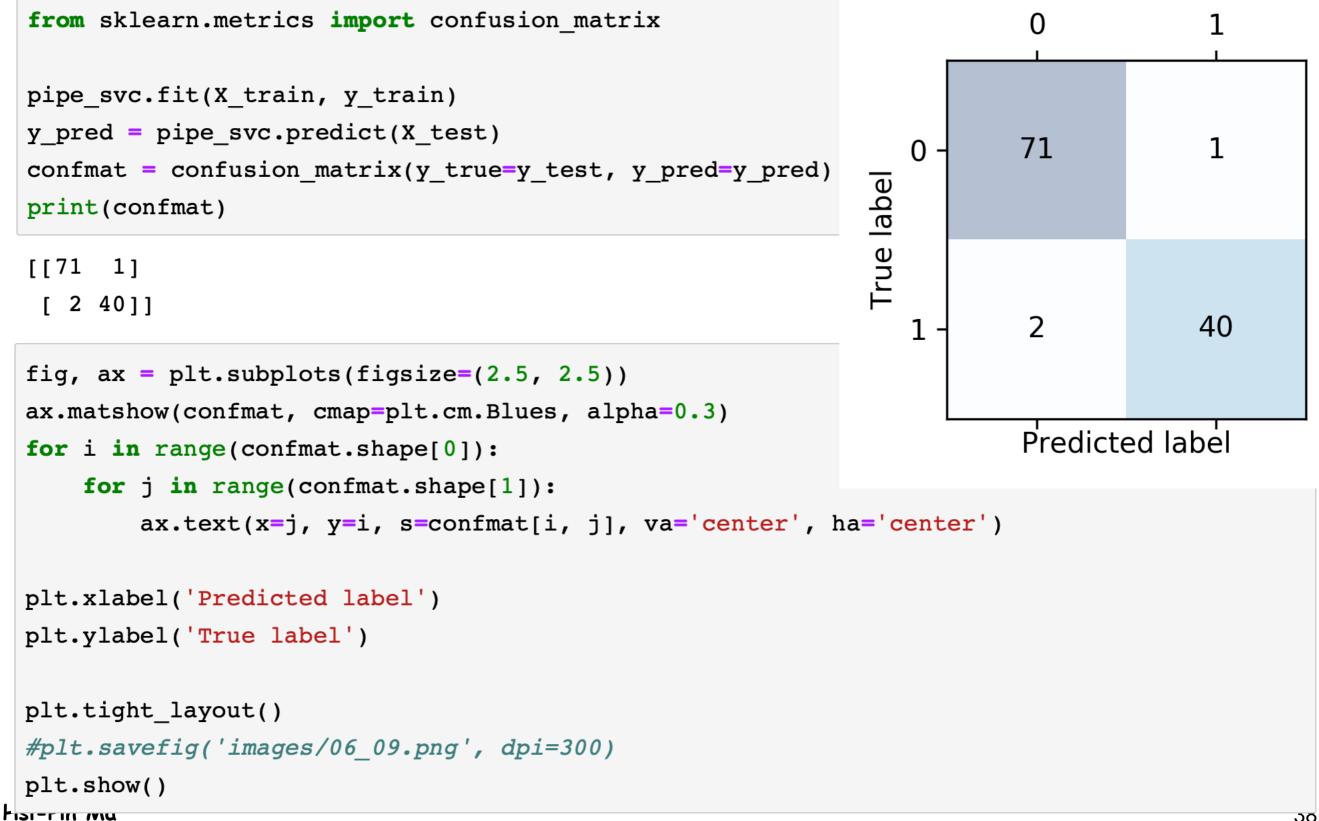
Confusion Matrix

- Accuracy can be misleading for imbalanced datasets
- Need ways to compute performance for a specific class
- Confusion matrix helps to visualize different types of errors a classifier can make by reporting the counts of these errors

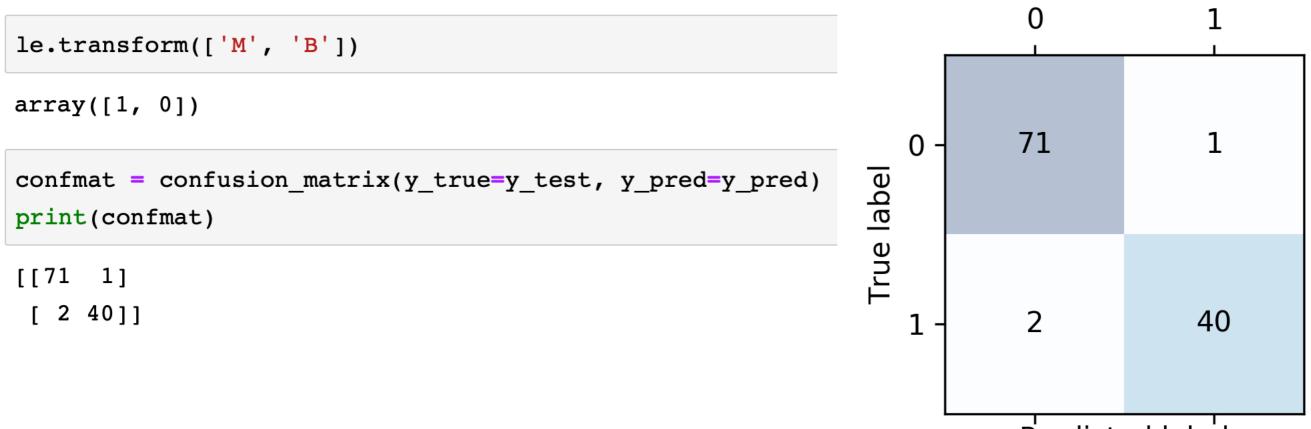
Laboratory for Reliable Computing



Confusion Matrix



Confusion Matrix



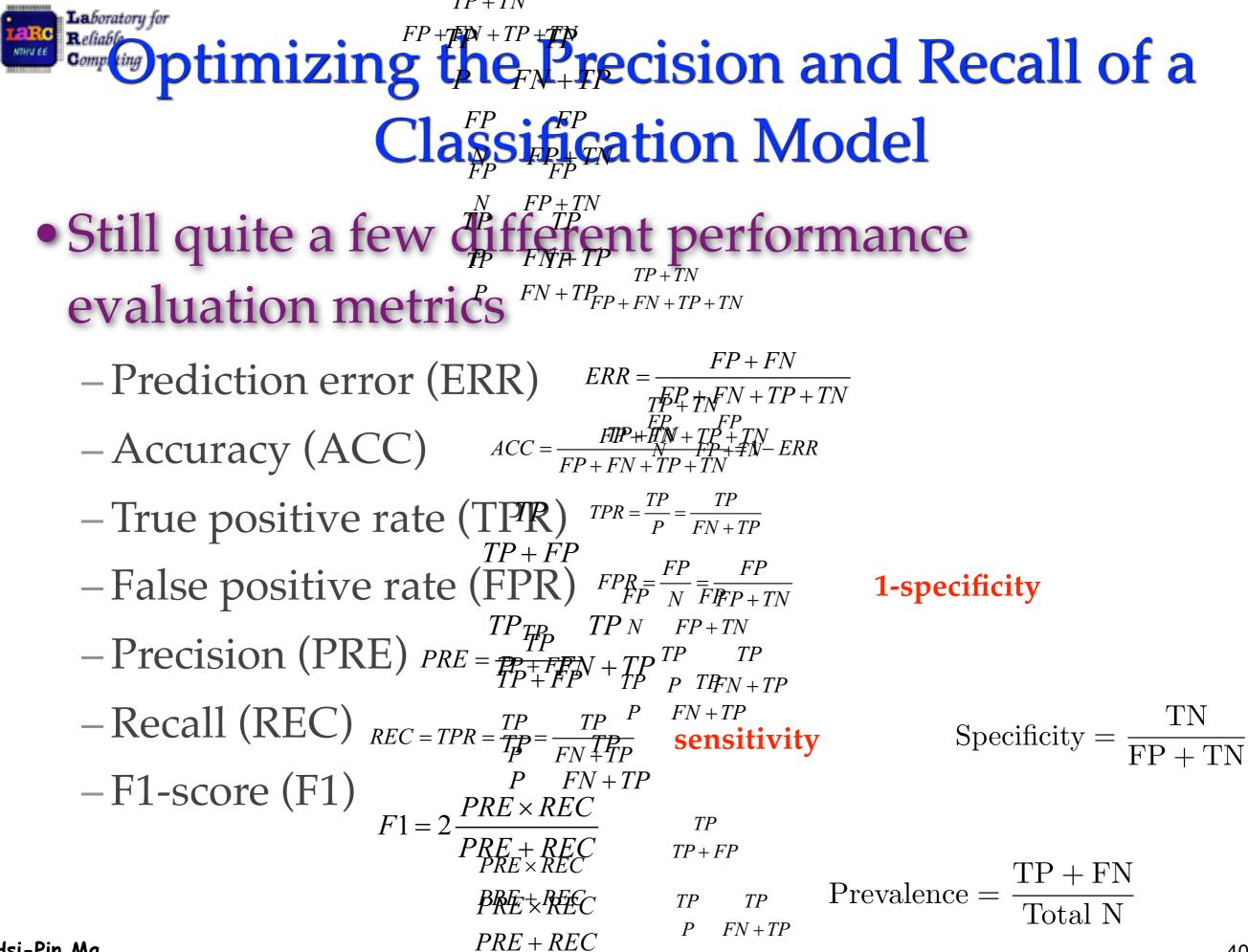
Predicted label

Change the order of the class label

```
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred, labels=[1, 0])
print(confmat)
```

[[40 2]

[1 71]]



Hsi-Pin Ma

40

^{Laboratory for} ^{Completing} ptimizing the Precision and Recall of a Classification Model

Scoring metrics are all implemented in scikit-learn

from sklearn.metrics import precision_score, recall_score, f1_score

```
print('Precision: %.3f' % precision_score(y_true=y_test, y_pred=y_pred))
print('Recall: %.3f' % recall_score(y_true=y_test, y_pred=y_pred))
print('F1: %.3f' % f1_score(y_true=y_test, y_pred=y_pred))
```

Precision: 0.976 Recall: 0.952 F1: 0.964

Laboratory for editable Computing Optimizing the Precision and Recall of a Classification Model We can use the make_scorer function in scikit-learn's metrics module to designate our own positive label and scoring function

```
from sklearn.metrics import make scorer
scorer = make scorer(f1 score, pos label=0)
c gamma range = [0.01, 0.1, 1.0, 10.0]
param grid = [{'svc C': c gamma range,
               'svc kernel': ['linear']},
              {'svc C': c gamma range,
               'svc__gamma': c_gamma_range,
               'svc kernel': ['rbf']}]
gs = GridSearchCV(estimator=pipe svc,
                  param grid=param grid,
                  scoring=scorer,
                  cv=10,
                  n jobs=-1)
gs = gs.fit(X train, y train)
print(gs.best score )
print(gs.best params )
```

```
Hsi-Pin Ma
```

0.986202145696

Ma {'svc C': 10.0, 'svc gamma': 0.01, 'svc kernel': 'rbf'}

Receiving Operating Characteristic (ROC)

- A tool to select models for classification based on performance with respect to FPR and TPR
 - FPR and TPR are computed by shifting the decision threshold of the classifier
- The diagonal of an ROC graph can be interpreted as *random guessing*
 - Classification models that fall below the diagonal are considered as worse than random guessing
- A perfect classifier would fall into the top left corner
- ROC Area Under the Curve (ROC AUC) to characterize the performance

The long a Receiver Operating Characteristic

```
• TPR vs. FPR
- ROC AUC
```

from sklearn.metrics import roc_curve, auc
from scipy import interp

```
C=100.0))
```

```
X_{train2} = X_{train[:, [4, 14]]}
```

```
fig = plt.figure(figsize=(7, 5))
```

```
mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all tpr = []
```

```
for i, (train, test) in enumerate(cv):
    probas = pipe_lr.fit(X_train2[train],
```

```
y_train[train]).predict_proba(X_train2[test])
```

% (i+1, roc_auc))

Reliable Plotting a Receiver Operating Characteristic

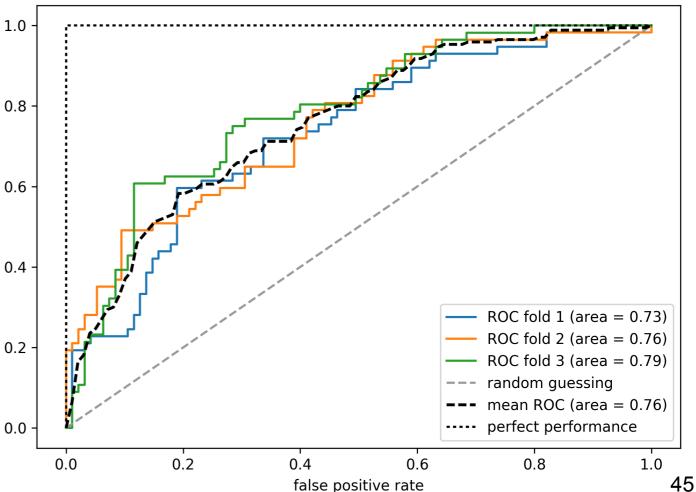
```
plt.plot([0, 1],
         [0, 1],
         linestyle='--',
         color=(0.6, 0.6, 0.6),
         label='random guessing')
```

Laboratory for

```
mean tpr /= len(cv)
mean tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
plt.plot(mean fpr, mean tpr, 'k--',
         label='mean ROC (area = %0.2f)' % mean auc, lw=2)
plt.plot([0, 0, 1],
         [0, 1, 1],
                                                   1.0
         linestyle=':',
         color='black',
                                                   0.8
         label='perfect performance')
                                                 true positive rate
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
```

```
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.legend(loc="lower right")
```

```
plt.tight layout()
# plt.savefig('images/06 10.png', dpi=300)
plt.show()
```



Scoring Metrics for Multiclass Classification

- Scikit-learn implements micro and macro averaging methods to extend the previous scoring metrics to multi class problems via One-versus-All (OvA) classification
- The micro-average of the precision score
 - Calculated from individual TPs, TPNs, FPs, and FNs $PRE_{micro} = \frac{TP_1 + \dots + TP_k}{TP_1^{1} + \dots + TP_k^{k} + FP_1^{1} + \dots + FP_k^{k}}$
- The macro-average of the precision score
 - Calculated as the average scores of different systems

$$PRE_{macro} = \frac{PRE_1 + \dots + PRE_k}{PRE + \cdot k} + \frac{PRE_k}{k}$$

pre_scorer = make_scorer(score_func=precision_score,

```
pos_label=1,
greater_is_better=True,
average='micro')
```

Laboratory for

Dealing with Class Imbalance

Class Imbalance

- Samples from one class or multiple classes are over-represented in a dataset
 - A quite common problem
- For breast cancer dataset with 90% healthy patients
 - If achieve 90% accuracy on the test dataset by just predicting the majority class, without supervised learning, the model does not learn anything from dataset features

Focus on other metrics than accuracy

Class Imbalance Examples

- For breast cancer, the priority might be to identify the majority of patients with malignant cancer patients to recommend an additional screening
 - Recall should be the metric of choice
- In spam filtering, where we don't want to label emails as spam if the system is not very certain
 - Precision might be a more appropriate metric

Strategies for Dealing with Class Imbalance

- No universally best solutions
- Possbile solutions
 - Assign a large penalty to wrong predictions on minority class during model fitting
 - Set the class_weight parameter to class_weight='balanced'
 - Upsampling the minority class
 - Use **resample** function
 - Downsampling the majority class
 - Use **resample** function
 - Generation of synthetic training samples

Resample Example

print('Number of class 1 samples after:', X_upsampled.shape[0])

Number of class 1 samples before: 40 Number of class 1 samples after: 357

```
X_bal = np.vstack((X[y == 0], X_upsampled))
y_bal = np.hstack((y[y == 0], y_upsampled))
```

```
y_pred = np.zeros(y_bal.shape[0])
np.mean(y_pred == y_bal) * 100
```

Hsi-Pin Ma