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Outline

•Unsupervised Dimensionality via Principal 
Component Analysis

•Supervised Data Compression via Linear 
Discriminant Analysis

•Kernel Principal Component Analysis
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Feature Extraction
•To combine existing features to produce more 

useful ones and has the potential to reduce data 
dimensionality

•Transformation from the original feature space  
to a new lower dimensional feature space
– Functionality of data compression (k<d)

•Not only reduce required data storage space, 
improve computational efficiency, but also 
improve predictive performance by reducing the 
risk of curse of dimensionality, especially with non-
regularized learning models
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,Q�WKH�SUHFHGLQJ�ÀJXUH�� 1x  and 2x  are the original feature axes, and PC1 and PC2 are 
the principal components.

If we use PCA for dimensionality reduction, we construct a d k× –dimensional 
transformation matrix W that allows us to map a sample vector x onto a new 
N–dimensional feature subspace that has fewer dimensions than the original d–
dimensional feature space:

[ ]1 2, , , , dx x x= … ∈ dx x  R

,  ×↓ ∈Rd kxW W

[ ]1 2, , , , kz z z= … ∈z z Rk  

As a result of transforming the original d-dimensional data onto this new 
N-dimensional subspace (typically N << d���WKH�ÀUVW�SULQFLSDO�FRPSRQHQW�ZLOO�KDYH�
the largest possible variance, and all consequent principal components will have 
the largest variance given the constraint that these components are uncorrelated 
(orthogonal) to the other principal components—even if the input features are 
correlated, the resulting principal components will be mutually orthogonal 
(uncorrelated). Note that the PCA directions are highly sensitive to data scaling, and 
we need to standardize the features prior to PCA if the features were measured on 
different scales and we want to assign equal importance to all features.

Chapter 5

[ 143 ]

,Q�WKH�SUHFHGLQJ�ÀJXUH�� 1x  and 2x  are the original feature axes, and PC1 and PC2 are 
the principal components.

If we use PCA for dimensionality reduction, we construct a d k× –dimensional 
transformation matrix W that allows us to map a sample vector x onto a new 
N–dimensional feature subspace that has fewer dimensions than the original d–
dimensional feature space:

[ ]1 2, , , , dx x x= … ∈ dx x  R

,  ×↓ ∈Rd kxW W

[ ]1 2, , , , kz z z= … ∈z z Rk  

As a result of transforming the original d-dimensional data onto this new 
N-dimensional subspace (typically N << d���WKH�ÀUVW�SULQFLSDO�FRPSRQHQW�ZLOO�KDYH�
the largest possible variance, and all consequent principal components will have 
the largest variance given the constraint that these components are uncorrelated 
(orthogonal) to the other principal components—even if the input features are 
correlated, the resulting principal components will be mutually orthogonal 
(uncorrelated). Note that the PCA directions are highly sensitive to data scaling, and 
we need to standardize the features prior to PCA if the features were measured on 
different scales and we want to assign equal importance to all features.

當feature數量太多 會有overfitting的問題
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Unsupervised Dimensionality Reduction 
via Principal Component Analysis
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Possible Applications of PCA

•Feature extraction and dimensionality reduction
•Exploratory data analysis such as data 

visualization
•De-noising of signals in stock market trading
•Analysis of genome data and gene expression 

level in the field of bioinformatics
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Principal Component Analysis
•Find the directions of maximum variance

– Original features x1 and x2

– Principle components: PC1 and PC2
– Since a does not change, to find PC1, minimize distance 

to the PC1 line (b), or maximize the distance from the 
projected point to the origin (c)
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Principal Component Analysis
•Reduce data from d-dimensions to k-dimensions
•Project data onto the lower-dimensional space
•Construct a d x k transformation matrix W and 

map the sample vector x onto a new k-
dimensional feature space (k < d)

•PCA is sensitive to data scaling, feature 
standardization is needed
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Main Steps in Doing PCA
• Standardize the d-dimensional dataset X to Xstd 
• Construct the covariance matrix
• Decompose the covariance matrix into its eigenvectors and 

eigenvalues
• Sort the eigenvalues by decreasing order to rank the 

corresponding eigenvectors
• Select k eigenvectors which correspond to the k largest 

eigenvalues, where k is the dimensionality of the new feature 
subspace

• Construct a projection matrix W from the top k eigenvectors
• Transform the d-dimensional input dataset X using the projection 

matrix W to obtain the new k-dimensional feature subspace
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Before looking at the PCA algorithm for dimensionality reduction in more detail, 
let's summarize the approach in a few simple steps:

1. Standardize the d-dimensional dataset.
2. Construct the covariance matrix.
3. Decompose the covariance matrix into its eigenvectors and eigenvalues.
4. Sort the eigenvalues by decreasing order to rank the corresponding 

eigenvectors.
5. Select N eigenvectors which correspond to the N largest eigenvalues, where N 

is the dimensionality of the new feature subspace ( k d≤ ).
6. Construct a projection matrix W from the "top" N eigenvectors.
7. Transform the d-dimensional input dataset X using the projection matrix W 

to obtain the new N-dimensional feature subspace.

In the following sections, we will perform a PCA step by step, using Python as a 
learning exercise. Then, we will see how to perform a PCA more conveniently using 
scikit-learn.

Extracting the principal components step by 
step
In this subsection, we ZLOO�WDFNOH�WKH�ÀUVW�IRXU�VWHSV�RI�D�3&$�

1. Standardizing the data.
2. Constructing the covariance matrix.
3. Obtaining the eigenvalues and eigenvectors of the covariance matrix.
4. Sorting the eigenvalues by decreasing order to rank the eigenvectors.

First, we will start by loading the Wine dataset that we have been working with in 
Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/'
                      'machine-learning-databases/wine/wine.data',
                      header=None)

移到原點去做

重要度


k: 0~1



Hsi-Pin Ma

Covariance Matrix

•The symmetric d x d-dimensional (d: dataset 
dimension) covariance matrix     stores the 
pairwise covariance between the different features

•Covariance between two features xj and xk

– Sample means are zero if dataset has been standardized
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<RX�FDQ�ÀQG�D�FRS\�RI�WKH�:LQH�GDWDVHW��DQG�DOO�RWKHU�GDWDVHWV�XVHG�
in this book) in the code bundle of this book, which you can use if 
\RX�DUH�ZRUNLQJ�RIÁLQH�RU�WKH�8&,�VHUYHU�DW�https://archive.
ics.uci.edu/ml/machine-learning-databases/wine/
wine.data is temporarily unavailable. For instance, to load the Wine 
dataset from a local directory, you can replace the following line:

df = pd.read_csv('https://archive.ics.uci.edu/ml/'

        'machine-learning-databases/wine/wine.data',  
         header=None)

Replace it with this:
df = pd.read_csv('your/local/path/to/wine.data',  
                  header=None)

Next, we will process the Wine data into separate training and test sets—using 70 
percent and 30 percent of the data, respectively—and standardize it to unit variance:

>>> from sklearn.model_selection import train_test_split
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
>>>     train_test_split(X, y, test_size=0.3, 
...                      stratify=y,
...                      random_state=0)
>>> # standardize the features
>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.transform(X_test)

After completing the mandatory preprocessing by executing the preceding code, 
let's advance to the second step: constructing the covariance matrix. The symmetric 
d d× -dimensional covariance matrix, where d is the number of dimensions in the 
dataset, stores the pairwise covariances between the different features. For example, 
the covariance between two features jx  and kx  on the population level can be 
calculated via the following equation:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑

sample means of feature j and k
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Here, jµ  and kµ  are the sample means of features j and N, respectively. Note that the 
sample means are zero if we standardized the dataset. A positive covariance between 
two features indicates that the features increase or decrease together, whereas a 
negative covariance indicates that the features vary in opposite directions. For 
example, the covariance matrix of three features can then be written as follows (note 
that ∑  stands for the Greek uppercase letter sigma, which is not to be confused with 
the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

  
σ σ σ
σ σ σ
σ σ σ

 
 =  
  

∑

The eigenvectors of the covariance matrix represent the principal components (the 
GLUHFWLRQV�RI�PD[LPXP�YDULDQFH���ZKHUHDV�WKH�FRUUHVSRQGLQJ�HLJHQYDOXHV�ZLOO�GHÀQH�
their magnitude. In the case of the Wine dataset, we would obtain 13 eigenvectors 
and eigenvalues from the 13 x 13-dimensional covariance matrix.

Now, for our third step, let's obtain the eigenpairs of the covariance matrix. As we 
remember from our introductory linear algebra classes, an eigenvector v�VDWLVÀHV�WKH�
following condition:

λΣ =v v

Here, λ  is a scalar: the eigenvalue. Since the manual computation of eigenvectors and 
eigenvalues is a somewhat tedious and elaborate task, we will use the linalg.eig 
function from NumPy to obtain the eigenpairs of the Wine covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues 
[ 4.84274532  2.41602459  1.54845825  0.96120438  0.84166161  
0.6620634     0.51828472  0.34650377  0.3131368   0.10754642  
0.21357215  0.15362835    0.1808613 ]

Using the numpy.cov function, we computed the covariance matrix of the 
standardized training dataset. Using the linalg.eig function, we performed  
the eigendecomposition, which yielded a vector (eigen_vals) consisting of  
13 eigenvalues and the corresponding eigenvectors stored as columns in a  
13 x 13-dimensional matrix (eigen_vecs).
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Covariance Matrix
•For three features, covariance matrix looks like

•The eigenvectors of      represent the principle 
components

•The corresponding eigenvalues represent their 
magnitude
– Principle components: the directions of maximum 

variance
10
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Extract the Principal Components Step-by-Step

•Standardize the data
•Construct the covariance matrix
•Obtain the eigenvalues and eigenvectors of the 

covariance matrix
•Sort the eigenvalues by decreasing order to 

rank the eigenvectors
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Extract the Principal Components Step-by-Step
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Load wine dataset
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Extract the Principal Components Step-by-Step

•Split training and test, and standardize the 
dataset
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Extract the Principal Components Step-by-Step

•Construct the covariance matrix and do 
eigendecomposition

14
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Extract the Principal Components Step-by-Step

•Total and explained variance
•To reduce the dimensionality, only select the 

subset of eigenvectors (PCs) that contain most 
of the information (variance)

•variance explained ratios of an eigenvalue       is 
defined as

15
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The numpy.linalg.eig function was designed to operate on both 
symmetric and non-symmetric square matrices. However, you may 
ÀQG�WKDW�LW�UHWXUQV�FRPSOH[�HLJHQYDOXHV�LQ�FHUWDLQ�FDVHV�
A related function, numpy.linalg.eigh, has been implemented to 
decompose Hermetian matrices, which is a numerically more stable 
approach to work with symmetric matrices such as the covariance 
matrix; numpy.linalg.eigh always returns real eigenvalues.

Total and explained variance
Since we want to reduce the dimensionality of our dataset by compressing it onto 
a new feature subspace, we only select the subset of the eigenvectors (principal 
FRPSRQHQWV��WKDW�FRQWDLQV�PRVW�RI�WKH�LQIRUPDWLRQ��YDULDQFH���7KH�HLJHQYDOXHV�GHÀQH�
the magnitude of the eigenvectors, so we have to sort the eigenvalues by decreasing 
magnitude; we are interested in the top N eigenvectors based on the values of 
their corresponding eigenvalues. But before we collect those N most informative 
eigenvectors, let us plot the variance explained ratios of the eigenvalues. The variance 
explained ratio of an eigenvalue jλ  is simply the fraction of an eigenvalue jλ  and 
the total sum of the eigenvalues:

1

j
d

jj

λ

λ
=∑

Using the NumPy cumsum function, we can then calculate the cumulative sum of 
explained variances, which we will then plot via Matplotlib's step function:

>>> tot = sum(eigen_vals)
>>> var_exp = [(i / tot) for i in
...            sorted(eigen_vals, reverse=True)]
>>> cum_var_exp = np.cumsum(var_exp)
>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1,14), var_exp, alpha=0.5, align='center',
...         label='individual explained variance')
>>> plt.step(range(1,14), cum_var_exp, where='mid',
...         label='cumulative explained variance')
>>> plt.ylabel('Explained variance ratio')
>>> plt.xlabel('Principal component index')
>>> plt.legend(loc='best')
>>> plt.show()
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Extract the Principal Components Step-by-Step

16

First two principal 
components explained about 
60% of the variance of the data
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Feature Transformation

•Select k eigenvectors, which correspond to the 
largest k eigenvalues (k: dimensionality of new 
feature subspace)

•Construct a projection matrix W from the “top” 
k eigenvectors

•Transform the d-dimensional input dataset X 
using the projection matrix W to obtain the new 
k-dimensional feature subspace 
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Feature Transformation

•Sort the eigenpairs by decreasing order of 
eigenvalues
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Feature Transformation
•Collect the two largest to capture about 60% of 

the variance to form 13x2 projection matrix W
– The number of principal components has to be 

determined by a trade-off between computational 
efficiency and the classifier performance

19
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Feature Transformation

•Transform a sample x onto PCA subspace 
obtaining x’

•Transform the entire dataset X’

20
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Depending on which version of NumPy and LAPACK you are using, you 
PD\�REWDLQ�WKH�PDWUL[�:�ZLWK�LWV�VLJQV�ÁLSSHG��3OHDVH�QRWH�WKDW�WKLV�LV�QRW�
an issue; if v is an eigenvector of a matrix ∑ , we have:

λΣ =v v

Here λ  is our eigenvalue, and -λ  is also an eigenvector that has the 
same eigenvalue, since:

( ) ( )λ λ∑⋅ − = − ∑ = − = ⋅ −v v v v

Using the projection matrix, we can now transform a sample x (represented as a  
1 x 13-dimensional row vector) onto the PCA subspace (the principal components 
one and two) obtaining ′x , now a two-dimensional sample vector consisting of two 
new features:

′x = xW

>>> X_train_std[0].dot(w)
array([ 2.38299011,  0.45458499])

Similarly, we can transform the entire 124 x 13-dimensional training dataset onto the 
two principal components by calculating the matrix dot product:

′X = XW

>>> X_train_pca = X_train_std.dot(w)

Lastly, let us visualize the transformed Wine training set, now stored as an  
124 x 2-dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_pca[y_train==l, 0], 
...                 X_train_pca[y_train==l, 1], 
...                 c=c, label=l, marker=m) 
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.show()
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Feature Transformation

•Visualize the transformed training set

21



Hsi-Pin Ma

Principal Component Analysis in Scikit-learn
•In scikit-learn, PCA class in the decomposition 

module
•

22
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Principal Component Analysis in Scikit-learn
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Principal Component Analysis in Scikit-learn

•Use PCA class implemented in scikit-learn
– One of transformer classes
– First fit the model using training data before 

transforming both the training and test data using the 
same model parameters

•Example
– Use PCA class on Wine training dataset
– Classify the transformed samples via logistic regression
– Visualize the decision regions vi the 

plot_decision_region function

24
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Principal Component Analysis in Scikit-learn

25

Training dataset
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Principal Component Analysis in Scikit-learn

26

In [20]: y_pred = lr.predict(X_train_pca)
print('Misclassified instances for training dataset: %d' % (y_train != y_pred).sum())

Misclassified instances for training dataset: 3

In [21]: from sklearn.metrics import accuracy_score
print('Accuracy for training dataset: %.2f' % accuracy_score(y_train, y_pred))

Accuracy for training dataset: 0.98

In [22]: print('Accuracy for training dataset: %.2f' % lr.score(X_train_pca, y_train))

Accuracy for training dataset: 0.98

In [23]: plot_decision_regions(X_test_pca, y_test, classifier=lr)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
plt.tight_layout()
# plt.savefig('images/05_05.png', dpi=300)
plt.show()

18



Hsi-Pin Ma

Principal Component Analysis in Scikit-learn
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Test dataset
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Principal Component Analysis in Scikit-learn
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In [24]: y_pred = lr.predict(X_test_pca)
print('Misclassified instances for test dataset: %d' % (y_test != y_pred).sum())

Misclassified instances for test dataset: 4

In [25]: print('Accuracy for test dataset: %.2f' % accuracy_score(y_test, y_pred))

Accuracy for test dataset: 0.93

In [26]: print('Accuracy for test dataset: %.2f' % lr.score(X_test_pca, y_test))

Accuracy for test dataset: 0.93

By initializing the n-components parameter in the PCA class to be None, all principal
components will be kept and the explained variance ratios can be accessed via the ex-
plained_variance_ratio_ attribe.

In [27]: pca = PCA(n_components=None)
X_train_pca = pca.fit_transform(X_train_std)
pca.explained_variance_ratio_

Out[27]: array([0.36951469, 0.18434927, 0.11815159, 0.07334252, 0.06422108,
0.05051724, 0.03954654, 0.02643918, 0.02389319, 0.01629614,
0.01380021, 0.01172226, 0.00820609])

6 Kernel Principal Component Analysis

When linear separation is infeasible in the original feature space, a nonlinear transformation from
the original feature space to a higher (possibly infinite) dimensional feature space is desired.

In [28]: Image(filename='images/05_11.png', width=500)

Out[28]:
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Principal Component Analysis in Scikit-learn
•By initialing the n_components parameter in the 

PCA class to be None, all PCs will be kept, and 
the explained variance ratios can be accessed 
via the explained_variance_ratio_ attribute.
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Supervised Data Compression Via 
Linear Discriminant Analysis

30



Hsi-Pin Ma

PCA vs. LDA

•Both PCA and LDA are linear transformation 
techniques for feature extraction

•PCA is unsupervised while LDA is supervised
– LDA uses the class label information of instances

•PCA attempts to find the orthogonal component 
axes of maximum variance in a dataset while 
LDA is to find the feature subspace that 
optimizes class separability

31
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Linear Discriminant Analysis
•In the figure, a linear discriminant on the x-axis 

(LD1) would separate the two classes well.

32

Decision Line

Best projection for classification

minimize within-class scatter

maximize between-class scatter
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Main Steps to Perform LDA
• Standardize the d-dimensional dataset
• For each class, compute the d-dimensional mean vector
• Construct the between-class scatter matrix SB and the within-

class scatter Sw

• Compute the eigenvectors and corresponding eigenvalues of 
the matrix 

• Sort the eigenvalues by decreasing order to rank the 
corresponding eigenvectors

• Choose the k eigenvectors that correspond to the k largest 
eigenvalues to construct a d x k -dimensional transformation 
matrix W; the eigenvectors are the columns of this matrix

• Project the samples onto the new feature subspace using W.

33
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4. Compute the eigenvectors and corresponding eigenvalues of the matrix 
1
w B
−S S .

5. Sort the eigenvalues by decreasing order to rank the corresponding 

eigenvectors.

6. Choose the N eigenvectors that correspond to the N largest eigenvalues to 

construct a d k× -dimensional transformation matrix W; the eigenvectors are 

the columns of this matrix.

7. Project the samples onto the new feature subspace using the transformation 

matrix W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing 

matrices into eigenvalues and eigenvectors, which will form the new lower-

dimensional feature space. However, as mentioned before, LDA takes class label 

information into account, which is represented in the form of the mean vectors 

computed in step 2. In the following sections, we will discuss these seven steps in 

more detail, accompanied by illustrative code implementations.

Computing the scatter matrices
Since we already standardized the features of the Wine dataset in the PCA section 

DW�WKH�EHJLQQLQJ�RI�WKLV�FKDSWHU��ZH�FDQ�VNLS�WKH�ÀUVW�VWHS�DQG�SURFHHG�ZLWK�WKH�
calculation of the mean vectors, which we will use to construct the within-class 

scatter matrix and between-class scatter matrix, respectively. Each mean vector im  

stores the mean feature value mµ  with respect to the samples of class i:

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

, 

,  

, 

      1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

 
 
 = ∈ 
 
  

!m

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):
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Inner Workings of LDA
•Basic assumption

– The feature vectors of instance from different class are 
approximately normally distributed with different mean 
and variance

•Class sample mean
– Each mean vector mi stores the mean feature values     

with respect to the samples of class i
– For Wine dataset
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Inner Workings of LDA

•mean vectors for each class in Wine dataset

35

先找出mean的值
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Within-class Scatter Matrix
•Individual scatter matrix      of each individual 

class i
•Within-class scatter matrix 

36
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...     mean_vecs.append(np.mean(

...                X_train_std[y_train==label], axis=0))

...     print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [ 0.9066 -0.3497  0.3201 -0.7189  0.5056  0.8807  0.9589 -0.5516  
0.5416  0.2338  0.5897  0.6563  1.2075]

MV 2: [-0.8749 -0.2848 -0.3735  0.3157 -0.3848 -0.0433  0.0635 -0.0946  
0.0703 -0.8286  0.3144  0.3608 -0.7253]

MV 3: [ 0.1992  0.866   0.1682  0.4148 -0.0451 -1.0286 -1.2876  0.8287 
-0.7795  0.9649 -1.209  -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS  of each 
individual class i:

( )( )
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
...     class_scatter = np.zeros((d, d))
>>>     for row in X_train_std[y_train == label]:
...         row, mv = row.reshape(d, 1), mv.reshape(d, 1)  
...         class_scatter += (row - mv).dot((row - mv).T)
...     S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s' % (
...       S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices 
is that the class labels in the training set are uniformly distributed. However, if we 
print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s' 
...       % np.bincount(y_train)[1:])
Class label distribution: [41 50 33]
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>>> print('Within-class scatter matrix: %sx%s' % (
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...     print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [ 0.9066 -0.3497  0.3201 -0.7189  0.5056  0.8807  0.9589 -0.5516  
0.5416  0.2338  0.5897  0.6563  1.2075]

MV 2: [-0.8749 -0.2848 -0.3735  0.3157 -0.3848 -0.0433  0.0635 -0.0946  
0.0703 -0.8286  0.3144  0.3608 -0.7253]

MV 3: [ 0.1992  0.866   0.1682  0.4148 -0.0451 -1.0286 -1.2876  0.8287 
-0.7795  0.9649 -1.209  -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix WS :
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=∑S S

This is calculated by summing up the individual scatter matrices iS  of each 
individual class i:
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S x m x m

>>> d = 13 # number of features
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The assumption that we are making when we are computing the scatter matrices 
is that the class labels in the training set are uniformly distributed. However, if we 
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>>> print('Class label distribution: %s' 
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Class label distribution: [41 50 33]

Compressing Data via Dimensionality Reduction

[ 158 ]
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Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS  of each 
individual class i:

( )( )
i

c
T

i i i
D∈

= − −∑
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S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
...     class_scatter = np.zeros((d, d))
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...         row, mv = row.reshape(d, 1), mv.reshape(d, 1)  
...         class_scatter += (row - mv).dot((row - mv).T)
...     S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s' % (
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Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices 
is that the class labels in the training set are uniformly distributed. However, if we 
print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s' 
...       % np.bincount(y_train)[1:])
Class label distribution: [41 50 33]

sigma ij 合併在一起

跟上面算coherance 不一樣
coherance是sigma ij 一個一個值算
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Between-Class Scatter Matrix
•Between-class matrix

–m is the overall mean that is computed, including 
samples from all classes.
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Thus, we want to scale the individual scatter matrices iS  before we sum them  
up as scatter matrix WS . When we divide the scatter matrices by the number of 
class-samples in , we can see that computing the scatter matrix is in fact the same as 
computing the covariance matrix i∑ —the covariance matrix is a normalized version 
of the scatter matrix:

( )( )1 1

i

c
T

i W i i
Di in n ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
...     class_scatter = np.cov(X_train_std[y_train==label].T)
...     S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s' 
...       % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we computed the scaled within-class scatter matrix (or covariance matrix), we 
can move on to the next step and compute the between-class scatter matrix BS :

( )( )
1

T
i i i

i
n

=

= − −∑
c

BS m m m m

Here, m  is the overall mean that is computed, including samples from all classes:

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13  # number of features
>>> S_B = np.zeros((d, d))
>>> for i, mean_vec in enumerate(mean_vecs):
...     n = X_train[y_train == i + 1, :].shape[0]
...     mean_vec = mean_vec.reshape(d, 1)  # make column vector
...     mean_overall = mean_overall.reshape(d, 1) 
...     S_B += n * (mean_vec - mean_overall).dot(
...                (mean_vec - mean_overall).T)
>>> print('Between-class scatter matrix: %sx%s' % (
...                S_B.shape[0], S_B.shape[1]))
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Selecting Linear Discriminants for the 
New Feature Space

•Solve the eigenvalue problem of the matrix

•Sort eigenvectors in descending order of 
eigenvalues 
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Selecting linear discriminants for the new 
feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However, 
instead of performing the eigendecomposition on the covariance matrix, we solve the 
generalized eigenvalue problem of the matrix 1

w B
−S S :

>>> eigen_vals, eigen_vecs =\
...            np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in descending 
order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) 
...              for i in range(len(eigen_vals))]
>>> eigen_pairs = sorted(eigen_pairs, 
...               key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in descending order:\n')
>>> for eigen_val in eigen_pairs:
...     print(eigen_val[0])

Eigenvalues in descending order:

349.617808906
172.76152219
3.78531345125e-14
2.11739844822e-14
1.51646188942e-14
1.51646188942e-14
1.35795671405e-14
1.35795671405e-14
7.58776037165e-15
5.90603998447e-15
5.90603998447e-15
2.25644197857e-15
0.0

In LDA, the number of linear discriminants is at most Fï�, where c is the number 
of class labels, since the in-between scatter matrix BS  is the sum of c matrices with 
rank 1 or less. We can indeed see that we only have two nonzero eigenvalues (the 
HLJHQYDOXHV������DUH�QRW�H[DFWO\�]HUR��EXW�WKLV�LV�GXH�WR�WKH�ÁRDWLQJ�SRLQW�DULWKPHWLF�
in NumPy).
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Selecting Linear Discriminants for the 
New Feature Space

•In LDA, the number of linear discriminants is at 
most c-1 (c: number of class labels) 
– SB is the sum of c matrices with rank 1 or less.

•Indeed only two nonzero eigenvalues 
– eigenvalues 3-13 are not exactly zero due to floating-

point arithmetic in NumPy.
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Selecting Linear Discriminants for the 
New Feature Space

•Discriminability of a linear discriminant 
– To measure how much the class-discriminatory information 

is captured by the linear discriminants (the eigenvectors)
– Ratio of its corresponding eigenvalues to the sum of all 

eigenvalues

40
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Selecting Linear Discriminants for the 
New Feature Space

•Stack the two most discriminative eigenvector 
columns to create the transformation matrix W

41
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Projecting Samples onto the 
New Feature Space

•Transformation of training set 

42
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Let's now stack the two most discriminative eigenvector columns to create the 
transformation matrix W:

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
...                eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
 [[-0.1481 -0.4092]
 [ 0.0908 -0.1577]
 [-0.0168 -0.3537]
 [ 0.1484  0.3223]
 [-0.0163 -0.0817]
 [ 0.1913  0.0842]
 [-0.7338  0.2823]
 [-0.075  -0.0102]
 [ 0.0018  0.0907]
 [ 0.294  -0.2152]
 [-0.0328  0.2747]
 [-0.3547 -0.0124]
 [-0.3915 -0.5958]]

Projecting samples onto the new feature 
space
Using the transformation matrix W that we created in the previous subsection, we 
can now transform the training dataset by multiplying the matrices:

′X = XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_lda[y_train==l, 0], 
...                 X_train_lda[y_train==l, 1] * (-1), 
...                 c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower right')
>>> plt.show()
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LDA via Scikit-learn
•In scikit-learn, LDA is implemented in the 
discriminant_analysis module as the 
LinearDiscriminantAnalysis class
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LDA via Scikit-learn

44

•Apply test dataset
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Kernel Principal Component Analysis 
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Nonlinear Dimension Reduction

• When linear separation is infeasible in the original feature 
space, a nonlinear transformation from the original feature 
space to a higher (possible infinite) dimensional feature space 
is desired
– Linear transformation techniques for dimensionality reduction, 

such as PCA or LDA, may not be the best.
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Kernel Trick
•Using kernel trick, we can compute the 

similarity between two high-dimension feature 
vectors in the original feature space

47

Chapter 5

[�����]

We can think of φ  as a function that creates nonlinear combinations of the original 
features to map the original d-dimensional dataset onto a larger, N-dimensional 
feature space. For example, if we had a feature vector  d∈Rx  (x is a column vector 
consisting of d features) with two dimensions ( )2d = , a potential mapping onto a 
3D-space could be:

[ ]1 2 ,  Tx x=x

φ↓

2 2
1 1 2 2 , 2 , 

T
x x x x =  z

In other words, we perform a nonlinear mapping via kernel PCA that transforms  
the data onto a higher-dimensional space. We then use standard PCA in this  
higher-dimensional space to project the data back onto a lower-dimensional space 
ZKHUH�WKH�VDPSOHV�FDQ�EH�VHSDUDWHG�E\�D�OLQHDU�FODVVLÀHU��XQGHU�WKH�FRQGLWLRQ�WKDW�
the samples can be separated by density in the input space). However, one downside 
of this approach is that it is computationally very expensive, and this is where we 
use the kernel trick. Using the kernel trick, we can compute the similarity between 
two high-dimension feature vectors in the original feature space.

Before we proceed with more details about the kernel trick to tackle this 
computationally expensive problem, let us think back to the standard PCA approach 
that we implemented at the beginning of this chapter. We computed the covariance 
between two features N and j as follows:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑
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Since the standardizing of features centers them at mean zero, for instance, 0jµ =  

and 0kµ = , we can simplify this equation as follows:

( ) ( )

1

1 n
i i

jk j k
i
x x

n
σ

=

= ∑

Note that the preceding equation refers to the covariance between two features; now, 

let us write the general equation to calculate the covariance matrix ∑ :

( ) ( )

1

1  
Tn

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (Kernel principal component analysis, 
%��6FKRONRSI, A. Smola, and K.R. Muller, pages 583-588, 1997) so that we can replace 

the dot products between samples in the original feature space with the nonlinear 

feature combinations via φ :

( )( ) ( )

1
( )1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix, 

we have to solve the following equation:

λΣ =v v

( )( ) ( )( )
1

1  
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

( )( ) ( )( ) ( ) ( )( )
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

covariance between two features zero mean
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and 0kµ = , we can simplify this equation as follows:
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n

in
φ φ

=
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we have to solve the following equation:

λΣ =v v

( )( ) ( )( )
1

1  
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

( )( ) ( )( ) ( ) ( )( )
1 1

1 1 i i
n nT i i
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φ φ φ
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covariance matrix
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Since the standardizing of features centers them at mean zero, for instance, 0jµ =  

and 0kµ = , we can simplify this equation as follows:
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the dot products between samples in the original feature space with the nonlinear 

feature combinations via φ :
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To obtain the eigenvectors—the principal components—from this covariance matrix, 

we have to solve the following equation:
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φ φ φ
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nonlinear feature mapping
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As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in  
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel 
trick to avoid calculating the pairwise dot products of the samples x under φ  
explicitly by using a kernel function κ  so that we don't need to calculate the 
eigenvectors explicitly:

( ) ( )( ) ( )( ) ( )( ),  
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected 
onto the respective components, rather than constructing a transformation matrix  
as in the standard PCA approach. Basically, the kernel function (or simply kernel) 
can be understood as a function that calculates a dot product between two  
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

( ) ( )( ) ( ) ( )( ),  
pi j i T jκ θ= +x x x x

Here, θ  is the threshold and p  is the power that has to be specified by the 
user.

�� The hyperbolic tangent (sigmoid) kernel:

( ) ( )( ) ( ) ( )( ), tanh  i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in 
the following examples in the next subsection:

( ) ( )( )
( ) ( ) 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable 
1

2
γ

σ
= :

( ) ( )( ) ( ) ( )( )2
, expi j i jκ γ= − −x x x x

define the kernel function
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Most Commonly Used Kernels

•Polynomial kernel

•Hyperbolic tangent (sigmoid) kernel

•Radial Basis Function (RBF) or Gaussian kernel
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Three Steps to Implement an RBF Kernel PCA
•Compute the kernel (similarity) matrix K

•Center the kernel matrix K using

– 1n is an nxn-dimensional matrix with all values 1/n

•Collect the top k eigenvectors of the centered 
kernel matrix based on their corresponding 
eigenvalues, ranked by decreasing magnitude
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7R�VXPPDUL]H�ZKDW�ZH�KDYH�OHDUQHG�VR�IDU��ZH�FDQ�GHÀQH�WKH�IROORZLQJ�WKUHH�VWHSV�
to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate  
the following:

( ) ( )( ) ( ) ( )( )2
, expi j i jκ γ= − −x x x x

We do this for each pair of samples:

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 2 1

2 1 2 2 2

1 2

, , , 

, , , 

, , , n

n

n

n n n

κ κ κ

κ κ

κ κ κ

 
 
 
 =
 
 
 
 

!

!

" " # "

!

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric 
kernel matrix of the pairwise similarities would be 100 x 100-dimensional.

2. We center the kernel matrix K using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n  is an n n× -dimensional matrix (the same dimensions as the kernel 

matrix) where all values are equal to 
1
n

.

3. We collect the top k eigenvectors of the centered kernel matrix based on their 
corresponding eigenvalues, which are ranked by decreasing magnitude. In 
contrast to standard PCA, the eigenvectors are not the principal component 
axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the 
second step. We previously assumed that we are working with standardized data, 
where all features have mean zero when we formulated the covariance matrix and 
replaced the dot-products with the nonlinear feature combinations via φ . Thus, the 
centering of the kernel matrix in the second step becomes necessary, since we do not 
compute the new feature space explicitly so that we cannot guarantee that the new 
feature space is also centered at zero.
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axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the 
second step. We previously assumed that we are working with standardized data, 
where all features have mean zero when we formulated the covariance matrix and 
replaced the dot-products with the nonlinear feature combinations via φ . Thus, the 
centering of the kernel matrix in the second step becomes necessary, since we do not 
compute the new feature space explicitly so that we cannot guarantee that the new 
feature space is also centered at zero.
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to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate  
the following:
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For example, if our dataset contains 100 training samples, the symmetric 
kernel matrix of the pairwise similarities would be 100 x 100-dimensional.

2. We center the kernel matrix K using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n  is an n n× -dimensional matrix (the same dimensions as the kernel 

matrix) where all values are equal to 
1
n

.

3. We collect the top k eigenvectors of the centered kernel matrix based on their 
corresponding eigenvalues, which are ranked by decreasing magnitude. In 
contrast to standard PCA, the eigenvectors are not the principal component 
axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the 
second step. We previously assumed that we are working with standardized data, 
where all features have mean zero when we formulated the covariance matrix and 
replaced the dot-products with the nonlinear feature combinations via φ . Thus, the 
centering of the kernel matrix in the second step becomes necessary, since we do not 
compute the new feature space explicitly so that we cannot guarantee that the new 
feature space is also centered at zero.
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RBF Kernel PCA Implementation in Python
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RBF Kernel PCA Implementation in Python
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Separating Half-moon Shapes
•Create a 2D dataset of 100 samples representing 

two half-moon shapes (for binary classification)
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Separating Half-moon Shapes
•Try standard PCA
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Cannot separate with a linear classifier
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Separating Half-moon Shapes
•Try RBF-kernel PCA
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Separating Concentric Circles
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Separating Concentric Circles
•Standard PCA
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Separating Concentric Circles
•RBF-kernel PCA
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•For kernel-PCA, we obtain an eigenvector a of the 
centered kernel matrix (not the covariance matrix)
– a are samples that are already projected onto the principal 

component axis v.
– For new data sample x’, the projection computes

– Kernel PCA is a memory-based method, because we need 
original training set x(i) each time to project new samples

– Have to normalize the eigenvector a by its eigenvalue

Projecting New Data Points

58
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Again, the RBF kernel PCA projected the data onto a new subspace where the two 
classes become linearly separable:

Projecting new data points
In the two previous example applications of kernel PCA, the half-moon shapes 
and the concentric circles, we projected a single dataset onto a new feature. In 
real applications, however, we may have more than one dataset that we want to 
transform, for example, training and test data, and typically also new samples we 
will collect after the model building and evaluation. In this section, you will learn 
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter, 
we project data by calculating the dot product between a transformation matrix and 
the input samples; the columns of the projection matrix are the top k eigenvectors (v) 
that we obtained from the covariance matrix.

Now, the question is how we can transfer this concept to kernel PCA. If we think 
back to the idea behind kernel PCA, we remember that we obtained an eigenvector 
(a) of the centered kernel matrix (not the covariance matrix), which means that those 
are the samples that are already projected onto the principal component axis v. Thus, 
if we want to project a new sample ′x  onto this principal component axis, we'd need 
to compute the following:

( )Tφ x' v

Compressing Data via Dimensionality Reduction

[ 180 ]

Fortunately, we can use the kernel trick so that we don't have to calculate the 

projection ( )Tφ x' v  explicitly. However, it is worth noting that kernel PCA, in 
contrast to standard PCA, is a memory-based method, which means that we have 
to re-use the original training set each time to project new samples. We have to 
calculate the pairwise RBF kernel (similarity) between each ith sample in the training 
dataset and the new sample ′x :

( ) ( ) ( ) ( )( )T Ti i

i
aφ φ φ∑x' v = x' x

( ) ( )( )i i

i
a κ∑= x', x

Here, the eigenvectors a and eigenvalues λ  of the kernel matrix K satisfy the 
following condition in the equation:

λ=Ka a

After calculating the similarity between the new samples and the samples in the 
training set, we have to normalize the eigenvector a by its eigenvalue. Thus, let us 
modify the rbf_kernel_pca function that we implemented earlier so that it also 
returns the eigenvalues of the kernel matrix:

from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np

def rbf_kernel_pca(X, gamma, n_components):
    """
    RBF kernel PCA implementation.

    Parameters
    ------------
    X: {NumPy ndarray}, shape = [n_samples, n_features]
        
    gamma: float
      Tuning parameter of the RBF kernel
        
    n_components: int
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Again, the RBF kernel PCA projected the data onto a new subspace where the two 
classes become linearly separable:

Projecting new data points
In the two previous example applications of kernel PCA, the half-moon shapes 
and the concentric circles, we projected a single dataset onto a new feature. In 
real applications, however, we may have more than one dataset that we want to 
transform, for example, training and test data, and typically also new samples we 
will collect after the model building and evaluation. In this section, you will learn 
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter, 
we project data by calculating the dot product between a transformation matrix and 
the input samples; the columns of the projection matrix are the top k eigenvectors (v) 
that we obtained from the covariance matrix.

Now, the question is how we can transfer this concept to kernel PCA. If we think 
back to the idea behind kernel PCA, we remember that we obtained an eigenvector 
(a) of the centered kernel matrix (not the covariance matrix), which means that those 
are the samples that are already projected onto the principal component axis v. Thus, 
if we want to project a new sample ′x  onto this principal component axis, we'd need 
to compute the following:

( )Tφ x' v
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Modified rbf_kernel_pca Function
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Modified rbf_kernel_pca Function
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Half-moon Dataset Example
• A new half-moon dataset and project onto 1D subspace

• Assume the 26th point is a new data x’ and project it 
onto new subspace
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Half-moon Dataset Example
•Visualize the projection
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Kernel PCA in Scikit-learn
•A kernel PCA class in the sklearn decomposition 

submodule
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