
Compressing Data via
Dimensionality Reduction

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline

•Unsupervised Dimensionality via Principal
Component Analysis

•Supervised Data Compression via Linear
Discriminant Analysis

•Kernel Principal Component Analysis

2

Hsi-Pin Ma

Feature Extraction
•To combine existing features to produce more

useful ones and has the potential to reduce data
dimensionality

•Transformation from the original feature space
to a new lower dimensional feature space
– Functionality of data compression (k<d)

•Not only reduce required data storage space,
improve computational efficiency, but also
improve predictive performance by reducing the
risk of curse of dimensionality, especially with non-
regularized learning models

3

Chapter 5

[143]

,Q�WKH�SUHFHGLQJ�ÀJXUH�� 1x and 2x are the original feature axes, and PC1 and PC2 are
the principal components.

If we use PCA for dimensionality reduction, we construct a d k× –dimensional
transformation matrix W that allows us to map a sample vector x onto a new
N–dimensional feature subspace that has fewer dimensions than the original d–
dimensional feature space:

[]1 2, , , , dx x x= … ∈ dx x R

, ×↓ ∈Rd kxW W

[]1 2, , , , kz z z= … ∈z z Rk

As a result of transforming the original d-dimensional data onto this new
N-dimensional subspace (typically N << d���WKH�ÀUVW�SULQFLSDO�FRPSRQHQW�ZLOO�KDYH�
the largest possible variance, and all consequent principal components will have
the largest variance given the constraint that these components are uncorrelated
(orthogonal) to the other principal components—even if the input features are
correlated, the resulting principal components will be mutually orthogonal
(uncorrelated). Note that the PCA directions are highly sensitive to data scaling, and
we need to standardize the features prior to PCA if the features were measured on
different scales and we want to assign equal importance to all features.

Chapter 5

[143]

,Q�WKH�SUHFHGLQJ�ÀJXUH�� 1x and 2x are the original feature axes, and PC1 and PC2 are
the principal components.

If we use PCA for dimensionality reduction, we construct a d k× –dimensional
transformation matrix W that allows us to map a sample vector x onto a new
N–dimensional feature subspace that has fewer dimensions than the original d–
dimensional feature space:

[]1 2, , , , dx x x= … ∈ dx x R

, ×↓ ∈Rd kxW W

[]1 2, , , , kz z z= … ∈z z Rk

As a result of transforming the original d-dimensional data onto this new
N-dimensional subspace (typically N << d���WKH�ÀUVW�SULQFLSDO�FRPSRQHQW�ZLOO�KDYH�
the largest possible variance, and all consequent principal components will have
the largest variance given the constraint that these components are uncorrelated
(orthogonal) to the other principal components—even if the input features are
correlated, the resulting principal components will be mutually orthogonal
(uncorrelated). Note that the PCA directions are highly sensitive to data scaling, and
we need to standardize the features prior to PCA if the features were measured on
different scales and we want to assign equal importance to all features.

當feature數量太多 會有overfitting的問題

Hsi-Pin Ma

Unsupervised Dimensionality Reduction
via Principal Component Analysis

4

Hsi-Pin Ma

Possible Applications of PCA

•Feature extraction and dimensionality reduction
•Exploratory data analysis such as data

visualization
•De-noising of signals in stock market trading
•Analysis of genome data and gene expression

level in the field of bioinformatics

5

Hsi-Pin Ma

Principal Component Analysis
•Find the directions of maximum variance

– Original features x1 and x2

– Principle components: PC1 and PC2
– Since a does not change, to find PC1, minimize distance

to the PC1 line (b), or maximize the distance from the
projected point to the origin (c)

6

PC1

x1

x2

a

bc

a2 = b2 + c2
<latexit sha1_base64="33VV+fx2s4RvA9LyoUgvZaWLw6Q=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIsgCGW3CHoRil48VrAfsN2WbJptQ7PJkswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0U1tY3NreK26Wd3b39g/LhUcuoVFPWpEoo3QmJYYJL1gQOgnUSzUgcCtYOx3czv/3EtOFKPsIkYUFMhpJHnBKwkk96tZuwV7ugvVq/XHGr7hx4lXg5qaAcjX75qztQNI2ZBCqIMb7nJhBkRAOngk1L3dSwhNAxGTLfUkliZoJsfvIUn1llgCOlbUnAc/X3REZiYyZxaDtjAiOz7M3E/zw/heg6yLhMUmCSLhZFqcCg8Ox/POCaURATSwjV3N6K6YhoQsGmVLIheMsvr5JWreq5Ve/hslK/zeMoohN0is6Rh65QHd2jBmoiihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AJzPkCY=</latexit><latexit sha1_base64="33VV+fx2s4RvA9LyoUgvZaWLw6Q=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIsgCGW3CHoRil48VrAfsN2WbJptQ7PJkswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0U1tY3NreK26Wd3b39g/LhUcuoVFPWpEoo3QmJYYJL1gQOgnUSzUgcCtYOx3czv/3EtOFKPsIkYUFMhpJHnBKwkk96tZuwV7ugvVq/XHGr7hx4lXg5qaAcjX75qztQNI2ZBCqIMb7nJhBkRAOngk1L3dSwhNAxGTLfUkliZoJsfvIUn1llgCOlbUnAc/X3REZiYyZxaDtjAiOz7M3E/zw/heg6yLhMUmCSLhZFqcCg8Ox/POCaURATSwjV3N6K6YhoQsGmVLIheMsvr5JWreq5Ve/hslK/zeMoohN0is6Rh65QHd2jBmoiihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AJzPkCY=</latexit><latexit sha1_base64="33VV+fx2s4RvA9LyoUgvZaWLw6Q=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIsgCGW3CHoRil48VrAfsN2WbJptQ7PJkswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0U1tY3NreK26Wd3b39g/LhUcuoVFPWpEoo3QmJYYJL1gQOgnUSzUgcCtYOx3czv/3EtOFKPsIkYUFMhpJHnBKwkk96tZuwV7ugvVq/XHGr7hx4lXg5qaAcjX75qztQNI2ZBCqIMb7nJhBkRAOngk1L3dSwhNAxGTLfUkliZoJsfvIUn1llgCOlbUnAc/X3REZiYyZxaDtjAiOz7M3E/zw/heg6yLhMUmCSLhZFqcCg8Ox/POCaURATSwjV3N6K6YhoQsGmVLIheMsvr5JWreq5Ve/hslK/zeMoohN0is6Rh65QHd2jBmoiihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AJzPkCY=</latexit><latexit sha1_base64="33VV+fx2s4RvA9LyoUgvZaWLw6Q=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIsgCGW3CHoRil48VrAfsN2WbJptQ7PJkswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0U1tY3NreK26Wd3b39g/LhUcuoVFPWpEoo3QmJYYJL1gQOgnUSzUgcCtYOx3czv/3EtOFKPsIkYUFMhpJHnBKwkk96tZuwV7ugvVq/XHGr7hx4lXg5qaAcjX75qztQNI2ZBCqIMb7nJhBkRAOngk1L3dSwhNAxGTLfUkliZoJsfvIUn1llgCOlbUnAc/X3REZiYyZxaDtjAiOz7M3E/zw/heg6yLhMUmCSLhZFqcCg8Ox/POCaURATSwjV3N6K6YhoQsGmVLIheMsvr5JWreq5Ve/hslK/zeMoohN0is6Rh65QHd2jBmoiihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+AJzPkCY=</latexit>

[https://goo.gl/L4451A]

https://goo.gl/L4451A

Hsi-Pin Ma

Principal Component Analysis
•Reduce data from d-dimensions to k-dimensions
•Project data onto the lower-dimensional space
•Construct a d x k transformation matrix W and

map the sample vector x onto a new k-
dimensional feature space (k < d)

•PCA is sensitive to data scaling, feature
standardization is needed

7

Chapter 5

[143]

,Q�WKH�SUHFHGLQJ�ÀJXUH�� 1x and 2x are the original feature axes, and PC1 and PC2 are
the principal components.

If we use PCA for dimensionality reduction, we construct a d k× –dimensional
transformation matrix W that allows us to map a sample vector x onto a new
N–dimensional feature subspace that has fewer dimensions than the original d–
dimensional feature space:

[]1 2, , , , dx x x= … ∈ dx x R

, ×↓ ∈Rd kxW W

[]1 2, , , , kz z z= … ∈z z Rk

As a result of transforming the original d-dimensional data onto this new
N-dimensional subspace (typically N << d���WKH�ÀUVW�SULQFLSDO�FRPSRQHQW�ZLOO�KDYH�
the largest possible variance, and all consequent principal components will have
the largest variance given the constraint that these components are uncorrelated
(orthogonal) to the other principal components—even if the input features are
correlated, the resulting principal components will be mutually orthogonal
(uncorrelated). Note that the PCA directions are highly sensitive to data scaling, and
we need to standardize the features prior to PCA if the features were measured on
different scales and we want to assign equal importance to all features.

Hsi-Pin Ma

Main Steps in Doing PCA
• Standardize the d-dimensional dataset X to Xstd
• Construct the covariance matrix
• Decompose the covariance matrix into its eigenvectors and

eigenvalues
• Sort the eigenvalues by decreasing order to rank the

corresponding eigenvectors
• Select k eigenvectors which correspond to the k largest

eigenvalues, where k is the dimensionality of the new feature
subspace

• Construct a projection matrix W from the top k eigenvectors
• Transform the d-dimensional input dataset X using the projection

matrix W to obtain the new k-dimensional feature subspace

8

Compressing Data via Dimensionality Reduction

[144]

Before looking at the PCA algorithm for dimensionality reduction in more detail,
let's summarize the approach in a few simple steps:

1. Standardize the d-dimensional dataset.
2. Construct the covariance matrix.
3. Decompose the covariance matrix into its eigenvectors and eigenvalues.
4. Sort the eigenvalues by decreasing order to rank the corresponding

eigenvectors.
5. Select N eigenvectors which correspond to the N largest eigenvalues, where N

is the dimensionality of the new feature subspace (k d≤).
6. Construct a projection matrix W from the "top" N eigenvectors.
7. Transform the d-dimensional input dataset X using the projection matrix W

to obtain the new N-dimensional feature subspace.

In the following sections, we will perform a PCA step by step, using Python as a
learning exercise. Then, we will see how to perform a PCA more conveniently using
scikit-learn.

Extracting the principal components step by
step
In this subsection, we ZLOO�WDFNOH�WKH�ÀUVW�IRXU�VWHSV�RI�D�3&$�

1. Standardizing the data.
2. Constructing the covariance matrix.
3. Obtaining the eigenvalues and eigenvectors of the covariance matrix.
4. Sorting the eigenvalues by decreasing order to rank the eigenvectors.

First, we will start by loading the Wine dataset that we have been working with in
Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/'
 'machine-learning-databases/wine/wine.data',
 header=None)

移到原點去做

重要度

k: 0~1

Hsi-Pin Ma

Covariance Matrix

•The symmetric d x d-dimensional (d: dataset
dimension) covariance matrix stores the
pairwise covariance between the different features

•Covariance between two features xj and xk

– Sample means are zero if dataset has been standardized

9

Chapter 5

[145]

<RX�FDQ�ÀQG�D�FRS\�RI�WKH�:LQH�GDWDVHW��DQG�DOO�RWKHU�GDWDVHWV�XVHG�
in this book) in the code bundle of this book, which you can use if
\RX�DUH�ZRUNLQJ�RIÁLQH�RU�WKH�8&,�VHUYHU�DW�https://archive.
ics.uci.edu/ml/machine-learning-databases/wine/
wine.data is temporarily unavailable. For instance, to load the Wine
dataset from a local directory, you can replace the following line:

df = pd.read_csv('https://archive.ics.uci.edu/ml/'

 'machine-learning-databases/wine/wine.data',
 header=None)

Replace it with this:
df = pd.read_csv('your/local/path/to/wine.data',
 header=None)

Next, we will process the Wine data into separate training and test sets—using 70
percent and 30 percent of the data, respectively—and standardize it to unit variance:

>>> from sklearn.model_selection import train_test_split
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
>>> train_test_split(X, y, test_size=0.3,
... stratify=y,
... random_state=0)
>>> # standardize the features
>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.transform(X_test)

After completing the mandatory preprocessing by executing the preceding code,
let's advance to the second step: constructing the covariance matrix. The symmetric
d d× -dimensional covariance matrix, where d is the number of dimensions in the
dataset, stores the pairwise covariances between the different features. For example,
the covariance between two features jx and kx on the population level can be
calculated via the following equation:

()() ()()
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑

sample means of feature j and k

Compressing Data via Dimensionality Reduction

[�����]

Here, jµ and kµ are the sample means of features j and N, respectively. Note that the
sample means are zero if we standardized the dataset. A positive covariance between
two features indicates that the features increase or decrease together, whereas a
negative covariance indicates that the features vary in opposite directions. For
example, the covariance matrix of three features can then be written as follows (note
that ∑ stands for the Greek uppercase letter sigma, which is not to be confused with
the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

 
 =  
  

∑

The eigenvectors of the covariance matrix represent the principal components (the
GLUHFWLRQV�RI�PD[LPXP�YDULDQFH���ZKHUHDV�WKH�FRUUHVSRQGLQJ�HLJHQYDOXHV�ZLOO�GHÀQH�
their magnitude. In the case of the Wine dataset, we would obtain 13 eigenvectors
and eigenvalues from the 13 x 13-dimensional covariance matrix.

Now, for our third step, let's obtain the eigenpairs of the covariance matrix. As we
remember from our introductory linear algebra classes, an eigenvector v�VDWLVÀHV�WKH�
following condition:

λΣ =v v

Here, λ is a scalar: the eigenvalue. Since the manual computation of eigenvectors and
eigenvalues is a somewhat tedious and elaborate task, we will use the linalg.eig
function from NumPy to obtain the eigenpairs of the Wine covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues
[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161
0.6620634 0.51828472 0.34650377 0.3131368 0.10754642
0.21357215 0.15362835 0.1808613]

Using the numpy.cov function, we computed the covariance matrix of the
standardized training dataset. Using the linalg.eig function, we performed
the eigendecomposition, which yielded a vector (eigen_vals) consisting of
13 eigenvalues and the corresponding eigenvectors stored as columns in a
13 x 13-dimensional matrix (eigen_vecs).

Hsi-Pin Ma

Covariance Matrix
•For three features, covariance matrix looks like

•The eigenvectors of represent the principle
components

•The corresponding eigenvalues represent their
magnitude
– Principle components: the directions of maximum

variance
10

Compressing Data via Dimensionality Reduction

[�����]

Here, jµ and kµ are the sample means of features j and N, respectively. Note that the
sample means are zero if we standardized the dataset. A positive covariance between
two features indicates that the features increase or decrease together, whereas a
negative covariance indicates that the features vary in opposite directions. For
example, the covariance matrix of three features can then be written as follows (note
that ∑ stands for the Greek uppercase letter sigma, which is not to be confused with
the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

 
 =  
  

∑

The eigenvectors of the covariance matrix represent the principal components (the
GLUHFWLRQV�RI�PD[LPXP�YDULDQFH���ZKHUHDV�WKH�FRUUHVSRQGLQJ�HLJHQYDOXHV�ZLOO�GHÀQH�
their magnitude. In the case of the Wine dataset, we would obtain 13 eigenvectors
and eigenvalues from the 13 x 13-dimensional covariance matrix.

Now, for our third step, let's obtain the eigenpairs of the covariance matrix. As we
remember from our introductory linear algebra classes, an eigenvector v�VDWLVÀHV�WKH�
following condition:

λΣ =v v

Here, λ is a scalar: the eigenvalue. Since the manual computation of eigenvectors and
eigenvalues is a somewhat tedious and elaborate task, we will use the linalg.eig
function from NumPy to obtain the eigenpairs of the Wine covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues
[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161
0.6620634 0.51828472 0.34650377 0.3131368 0.10754642
0.21357215 0.15362835 0.1808613]

Using the numpy.cov function, we computed the covariance matrix of the
standardized training dataset. Using the linalg.eig function, we performed
the eigendecomposition, which yielded a vector (eigen_vals) consisting of
13 eigenvalues and the corresponding eigenvectors stored as columns in a
13 x 13-dimensional matrix (eigen_vecs).

Compressing Data via Dimensionality Reduction

[�����]

Here, jµ and kµ are the sample means of features j and N, respectively. Note that the
sample means are zero if we standardized the dataset. A positive covariance between
two features indicates that the features increase or decrease together, whereas a
negative covariance indicates that the features vary in opposite directions. For
example, the covariance matrix of three features can then be written as follows (note
that ∑ stands for the Greek uppercase letter sigma, which is not to be confused with
the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

 
 =  
  

∑

The eigenvectors of the covariance matrix represent the principal components (the
GLUHFWLRQV�RI�PD[LPXP�YDULDQFH���ZKHUHDV�WKH�FRUUHVSRQGLQJ�HLJHQYDOXHV�ZLOO�GHÀQH�
their magnitude. In the case of the Wine dataset, we would obtain 13 eigenvectors
and eigenvalues from the 13 x 13-dimensional covariance matrix.

Now, for our third step, let's obtain the eigenpairs of the covariance matrix. As we
remember from our introductory linear algebra classes, an eigenvector v�VDWLVÀHV�WKH�
following condition:

λΣ =v v

Here, λ is a scalar: the eigenvalue. Since the manual computation of eigenvectors and
eigenvalues is a somewhat tedious and elaborate task, we will use the linalg.eig
function from NumPy to obtain the eigenpairs of the Wine covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues
[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161
0.6620634 0.51828472 0.34650377 0.3131368 0.10754642
0.21357215 0.15362835 0.1808613]

Using the numpy.cov function, we computed the covariance matrix of the
standardized training dataset. Using the linalg.eig function, we performed
the eigendecomposition, which yielded a vector (eigen_vals) consisting of
13 eigenvalues and the corresponding eigenvectors stored as columns in a
13 x 13-dimensional matrix (eigen_vecs).

Hsi-Pin Ma

Extract the Principal Components Step-by-Step

•Standardize the data
•Construct the covariance matrix
•Obtain the eigenvalues and eigenvectors of the

covariance matrix
•Sort the eigenvalues by decreasing order to

rank the eigenvectors

11

Hsi-Pin Ma

Extract the Principal Components Step-by-Step

12

Load wine dataset

Hsi-Pin Ma

Extract the Principal Components Step-by-Step

•Split training and test, and standardize the
dataset

13

Hsi-Pin Ma

Extract the Principal Components Step-by-Step

•Construct the covariance matrix and do
eigendecomposition

14

Hsi-Pin Ma

Extract the Principal Components Step-by-Step

•Total and explained variance
•To reduce the dimensionality, only select the

subset of eigenvectors (PCs) that contain most
of the information (variance)

•variance explained ratios of an eigenvalue is
defined as

15

Chapter 5

[�����]

The numpy.linalg.eig function was designed to operate on both
symmetric and non-symmetric square matrices. However, you may
ÀQG�WKDW�LW�UHWXUQV�FRPSOH[�HLJHQYDOXHV�LQ�FHUWDLQ�FDVHV�
A related function, numpy.linalg.eigh, has been implemented to
decompose Hermetian matrices, which is a numerically more stable
approach to work with symmetric matrices such as the covariance
matrix; numpy.linalg.eigh always returns real eigenvalues.

Total and explained variance
Since we want to reduce the dimensionality of our dataset by compressing it onto
a new feature subspace, we only select the subset of the eigenvectors (principal
FRPSRQHQWV��WKDW�FRQWDLQV�PRVW�RI�WKH�LQIRUPDWLRQ��YDULDQFH���7KH�HLJHQYDOXHV�GHÀQH�
the magnitude of the eigenvectors, so we have to sort the eigenvalues by decreasing
magnitude; we are interested in the top N eigenvectors based on the values of
their corresponding eigenvalues. But before we collect those N most informative
eigenvectors, let us plot the variance explained ratios of the eigenvalues. The variance
explained ratio of an eigenvalue jλ is simply the fraction of an eigenvalue jλ and
the total sum of the eigenvalues:

1

j
d

jj

λ

λ
=∑

Using the NumPy cumsum function, we can then calculate the cumulative sum of
explained variances, which we will then plot via Matplotlib's step function:

>>> tot = sum(eigen_vals)
>>> var_exp = [(i / tot) for i in
... sorted(eigen_vals, reverse=True)]
>>> cum_var_exp = np.cumsum(var_exp)
>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1,14), var_exp, alpha=0.5, align='center',
... label='individual explained variance')
>>> plt.step(range(1,14), cum_var_exp, where='mid',
... label='cumulative explained variance')
>>> plt.ylabel('Explained variance ratio')
>>> plt.xlabel('Principal component index')
>>> plt.legend(loc='best')
>>> plt.show()

Chapter 5

[�����]

The numpy.linalg.eig function was designed to operate on both
symmetric and non-symmetric square matrices. However, you may
ÀQG�WKDW�LW�UHWXUQV�FRPSOH[�HLJHQYDOXHV�LQ�FHUWDLQ�FDVHV�
A related function, numpy.linalg.eigh, has been implemented to
decompose Hermetian matrices, which is a numerically more stable
approach to work with symmetric matrices such as the covariance
matrix; numpy.linalg.eigh always returns real eigenvalues.

Total and explained variance
Since we want to reduce the dimensionality of our dataset by compressing it onto
a new feature subspace, we only select the subset of the eigenvectors (principal
FRPSRQHQWV��WKDW�FRQWDLQV�PRVW�RI�WKH�LQIRUPDWLRQ��YDULDQFH���7KH�HLJHQYDOXHV�GHÀQH�
the magnitude of the eigenvectors, so we have to sort the eigenvalues by decreasing
magnitude; we are interested in the top N eigenvectors based on the values of
their corresponding eigenvalues. But before we collect those N most informative
eigenvectors, let us plot the variance explained ratios of the eigenvalues. The variance
explained ratio of an eigenvalue jλ is simply the fraction of an eigenvalue jλ and
the total sum of the eigenvalues:

1

j
d

jj

λ

λ
=∑

Using the NumPy cumsum function, we can then calculate the cumulative sum of
explained variances, which we will then plot via Matplotlib's step function:

>>> tot = sum(eigen_vals)
>>> var_exp = [(i / tot) for i in
... sorted(eigen_vals, reverse=True)]
>>> cum_var_exp = np.cumsum(var_exp)
>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1,14), var_exp, alpha=0.5, align='center',
... label='individual explained variance')
>>> plt.step(range(1,14), cum_var_exp, where='mid',
... label='cumulative explained variance')
>>> plt.ylabel('Explained variance ratio')
>>> plt.xlabel('Principal component index')
>>> plt.legend(loc='best')
>>> plt.show()

Hsi-Pin Ma

Extract the Principal Components Step-by-Step

16

First two principal
components explained about
60% of the variance of the data

Hsi-Pin Ma

Feature Transformation

•Select k eigenvectors, which correspond to the
largest k eigenvalues (k: dimensionality of new
feature subspace)

•Construct a projection matrix W from the “top”
k eigenvectors

•Transform the d-dimensional input dataset X
using the projection matrix W to obtain the new
k-dimensional feature subspace

17

Hsi-Pin Ma

Feature Transformation

•Sort the eigenpairs by decreasing order of
eigenvalues

18

Hsi-Pin Ma

Feature Transformation
•Collect the two largest to capture about 60% of

the variance to form 13x2 projection matrix W
– The number of principal components has to be

determined by a trade-off between computational
efficiency and the classifier performance

19

Hsi-Pin Ma

Feature Transformation

•Transform a sample x onto PCA subspace
obtaining x’

•Transform the entire dataset X’

20

Compressing Data via Dimensionality Reduction

[150]

Depending on which version of NumPy and LAPACK you are using, you
PD\�REWDLQ�WKH�PDWUL[�:�ZLWK�LWV�VLJQV�ÁLSSHG��3OHDVH�QRWH�WKDW�WKLV�LV�QRW�
an issue; if v is an eigenvector of a matrix ∑ , we have:

λΣ =v v

Here λ is our eigenvalue, and -λ is also an eigenvector that has the
same eigenvalue, since:

() ()λ λ∑⋅ − = − ∑ = − = ⋅ −v v v v

Using the projection matrix, we can now transform a sample x (represented as a
1 x 13-dimensional row vector) onto the PCA subspace (the principal components
one and two) obtaining ′x , now a two-dimensional sample vector consisting of two
new features:

′x = xW

>>> X_train_std[0].dot(w)
array([2.38299011, 0.45458499])

Similarly, we can transform the entire 124 x 13-dimensional training dataset onto the
two principal components by calculating the matrix dot product:

′X = XW

>>> X_train_pca = X_train_std.dot(w)

Lastly, let us visualize the transformed Wine training set, now stored as an
124 x 2-dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_pca[y_train==l, 0],
... X_train_pca[y_train==l, 1],
... c=c, label=l, marker=m)
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

Compressing Data via Dimensionality Reduction

[150]

Depending on which version of NumPy and LAPACK you are using, you
PD\�REWDLQ�WKH�PDWUL[�:�ZLWK�LWV�VLJQV�ÁLSSHG��3OHDVH�QRWH�WKDW�WKLV�LV�QRW�
an issue; if v is an eigenvector of a matrix ∑ , we have:

λΣ =v v

Here λ is our eigenvalue, and -λ is also an eigenvector that has the
same eigenvalue, since:

() ()λ λ∑⋅ − = − ∑ = − = ⋅ −v v v v

Using the projection matrix, we can now transform a sample x (represented as a
1 x 13-dimensional row vector) onto the PCA subspace (the principal components
one and two) obtaining ′x , now a two-dimensional sample vector consisting of two
new features:

′x = xW

>>> X_train_std[0].dot(w)
array([2.38299011, 0.45458499])

Similarly, we can transform the entire 124 x 13-dimensional training dataset onto the
two principal components by calculating the matrix dot product:

′X = XW

>>> X_train_pca = X_train_std.dot(w)

Lastly, let us visualize the transformed Wine training set, now stored as an
124 x 2-dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_pca[y_train==l, 0],
... X_train_pca[y_train==l, 1],
... c=c, label=l, marker=m)
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

Hsi-Pin Ma

Feature Transformation

•Visualize the transformed training set

21

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn
•In scikit-learn, PCA class in the decomposition

module
•

22

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn

23

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn

•Use PCA class implemented in scikit-learn
– One of transformer classes
– First fit the model using training data before

transforming both the training and test data using the
same model parameters

•Example
– Use PCA class on Wine training dataset
– Classify the transformed samples via logistic regression
– Visualize the decision regions vi the

plot_decision_region function

24

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn

25

Training dataset

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn

26

In [20]: y_pred = lr.predict(X_train_pca)
print('Misclassified instances for training dataset: %d' % (y_train != y_pred).sum())

Misclassified instances for training dataset: 3

In [21]: from sklearn.metrics import accuracy_score
print('Accuracy for training dataset: %.2f' % accuracy_score(y_train, y_pred))

Accuracy for training dataset: 0.98

In [22]: print('Accuracy for training dataset: %.2f' % lr.score(X_train_pca, y_train))

Accuracy for training dataset: 0.98

In [23]: plot_decision_regions(X_test_pca, y_test, classifier=lr)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
plt.tight_layout()
plt.savefig('images/05_05.png', dpi=300)
plt.show()

18

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn

27

Test dataset

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn

28

In [24]: y_pred = lr.predict(X_test_pca)
print('Misclassified instances for test dataset: %d' % (y_test != y_pred).sum())

Misclassified instances for test dataset: 4

In [25]: print('Accuracy for test dataset: %.2f' % accuracy_score(y_test, y_pred))

Accuracy for test dataset: 0.93

In [26]: print('Accuracy for test dataset: %.2f' % lr.score(X_test_pca, y_test))

Accuracy for test dataset: 0.93

By initializing the n-components parameter in the PCA class to be None, all principal
components will be kept and the explained variance ratios can be accessed via the ex-
plained_variance_ratio_ attribe.

In [27]: pca = PCA(n_components=None)
X_train_pca = pca.fit_transform(X_train_std)
pca.explained_variance_ratio_

Out[27]: array([0.36951469, 0.18434927, 0.11815159, 0.07334252, 0.06422108,
0.05051724, 0.03954654, 0.02643918, 0.02389319, 0.01629614,
0.01380021, 0.01172226, 0.00820609])

6 Kernel Principal Component Analysis

When linear separation is infeasible in the original feature space, a nonlinear transformation from
the original feature space to a higher (possibly infinite) dimensional feature space is desired.

In [28]: Image(filename='images/05_11.png', width=500)

Out[28]:

19

Hsi-Pin Ma

Principal Component Analysis in Scikit-learn
•By initialing the n_components parameter in the

PCA class to be None, all PCs will be kept, and
the explained variance ratios can be accessed
via the explained_variance_ratio_ attribute.

29

Hsi-Pin Ma

Supervised Data Compression Via
Linear Discriminant Analysis

30

Hsi-Pin Ma

PCA vs. LDA

•Both PCA and LDA are linear transformation
techniques for feature extraction

•PCA is unsupervised while LDA is supervised
– LDA uses the class label information of instances

•PCA attempts to find the orthogonal component
axes of maximum variance in a dataset while
LDA is to find the feature subspace that
optimizes class separability

31

Hsi-Pin Ma

Linear Discriminant Analysis
•In the figure, a linear discriminant on the x-axis

(LD1) would separate the two classes well.

32

Decision Line

Best projection for classification

minimize within-class scatter

maximize between-class scatter

Hsi-Pin Ma

Main Steps to Perform LDA
• Standardize the d-dimensional dataset
• For each class, compute the d-dimensional mean vector
• Construct the between-class scatter matrix SB and the within-

class scatter Sw

• Compute the eigenvectors and corresponding eigenvalues of
the matrix

• Sort the eigenvalues by decreasing order to rank the
corresponding eigenvectors

• Choose the k eigenvectors that correspond to the k largest
eigenvalues to construct a d x k -dimensional transformation
matrix W; the eigenvectors are the columns of this matrix

• Project the samples onto the new feature subspace using W.

33

Chapter 5

[�����]

4. Compute the eigenvectors and corresponding eigenvalues of the matrix
1
w B
−S S .

5. Sort the eigenvalues by decreasing order to rank the corresponding

eigenvectors.

6. Choose the N eigenvectors that correspond to the N largest eigenvalues to

construct a d k× -dimensional transformation matrix W; the eigenvectors are

the columns of this matrix.

7. Project the samples onto the new feature subspace using the transformation

matrix W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing

matrices into eigenvalues and eigenvectors, which will form the new lower-

dimensional feature space. However, as mentioned before, LDA takes class label

information into account, which is represented in the form of the mean vectors

computed in step 2. In the following sections, we will discuss these seven steps in

more detail, accompanied by illustrative code implementations.

Computing the scatter matrices
Since we already standardized the features of the Wine dataset in the PCA section

DW�WKH�EHJLQQLQJ�RI�WKLV�FKDSWHU��ZH�FDQ�VNLS�WKH�ÀUVW�VWHS�DQG�SURFHHG�ZLWK�WKH�
calculation of the mean vectors, which we will use to construct the within-class

scatter matrix and between-class scatter matrix, respectively. Each mean vector im

stores the mean feature value mµ with respect to the samples of class i:

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

,

,

,

 1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

 
 
 = ∈ 
 
  

!m

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):

Hsi-Pin Ma

Inner Workings of LDA
•Basic assumption

– The feature vectors of instance from different class are
approximately normally distributed with different mean
and variance

•Class sample mean
– Each mean vector mi stores the mean feature values

with respect to the samples of class i
– For Wine dataset

34

Chapter 5

[�����]

4. Compute the eigenvectors and corresponding eigenvalues of the matrix
1
w B
−S S .

5. Sort the eigenvalues by decreasing order to rank the corresponding

eigenvectors.

6. Choose the N eigenvectors that correspond to the N largest eigenvalues to

construct a d k× -dimensional transformation matrix W; the eigenvectors are

the columns of this matrix.

7. Project the samples onto the new feature subspace using the transformation

matrix W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing

matrices into eigenvalues and eigenvectors, which will form the new lower-

dimensional feature space. However, as mentioned before, LDA takes class label

information into account, which is represented in the form of the mean vectors

computed in step 2. In the following sections, we will discuss these seven steps in

more detail, accompanied by illustrative code implementations.

Computing the scatter matrices
Since we already standardized the features of the Wine dataset in the PCA section

DW�WKH�EHJLQQLQJ�RI�WKLV�FKDSWHU��ZH�FDQ�VNLS�WKH�ÀUVW�VWHS�DQG�SURFHHG�ZLWK�WKH�
calculation of the mean vectors, which we will use to construct the within-class

scatter matrix and between-class scatter matrix, respectively. Each mean vector im

stores the mean feature value mµ with respect to the samples of class i:

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

,

,

,

 1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

 
 
 = ∈ 
 
  

!m

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):

Chapter 5

[�����]

4. Compute the eigenvectors and corresponding eigenvalues of the matrix
1
w B
−S S .

5. Sort the eigenvalues by decreasing order to rank the corresponding

eigenvectors.

6. Choose the N eigenvectors that correspond to the N largest eigenvalues to

construct a d k× -dimensional transformation matrix W; the eigenvectors are

the columns of this matrix.

7. Project the samples onto the new feature subspace using the transformation

matrix W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing

matrices into eigenvalues and eigenvectors, which will form the new lower-

dimensional feature space. However, as mentioned before, LDA takes class label

information into account, which is represented in the form of the mean vectors

computed in step 2. In the following sections, we will discuss these seven steps in

more detail, accompanied by illustrative code implementations.

Computing the scatter matrices
Since we already standardized the features of the Wine dataset in the PCA section

DW�WKH�EHJLQQLQJ�RI�WKLV�FKDSWHU��ZH�FDQ�VNLS�WKH�ÀUVW�VWHS�DQG�SURFHHG�ZLWK�WKH�
calculation of the mean vectors, which we will use to construct the within-class

scatter matrix and between-class scatter matrix, respectively. Each mean vector im

stores the mean feature value mµ with respect to the samples of class i:

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

,

,

,

 1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

 
 
 = ∈ 
 
  

!m

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):

Chapter 5

[�����]

4. Compute the eigenvectors and corresponding eigenvalues of the matrix
1
w B
−S S .

5. Sort the eigenvalues by decreasing order to rank the corresponding

eigenvectors.

6. Choose the N eigenvectors that correspond to the N largest eigenvalues to

construct a d k× -dimensional transformation matrix W; the eigenvectors are

the columns of this matrix.

7. Project the samples onto the new feature subspace using the transformation

matrix W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing

matrices into eigenvalues and eigenvectors, which will form the new lower-

dimensional feature space. However, as mentioned before, LDA takes class label

information into account, which is represented in the form of the mean vectors

computed in step 2. In the following sections, we will discuss these seven steps in

more detail, accompanied by illustrative code implementations.

Computing the scatter matrices
Since we already standardized the features of the Wine dataset in the PCA section

DW�WKH�EHJLQQLQJ�RI�WKLV�FKDSWHU��ZH�FDQ�VNLS�WKH�ÀUVW�VWHS�DQG�SURFHHG�ZLWK�WKH�
calculation of the mean vectors, which we will use to construct the within-class

scatter matrix and between-class scatter matrix, respectively. Each mean vector im

stores the mean feature value mµ with respect to the samples of class i:

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

,

,

,

 1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

 
 
 = ∈ 
 
  

!m

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):

Hsi-Pin Ma

Inner Workings of LDA

•mean vectors for each class in Wine dataset

35

先找出mean的值

Hsi-Pin Ma

Within-class Scatter Matrix
•Individual scatter matrix of each individual

class i
•Within-class scatter matrix

36

Compressing Data via Dimensionality Reduction

[158]

... mean_vecs.append(np.mean(

... X_train_std[y_train==label], axis=0))

... print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516
0.5416 0.2338 0.5897 0.6563 1.2075]

MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946
0.0703 -0.8286 0.3144 0.3608 -0.7253]

MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287
-0.7795 0.9649 -1.209 -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS of each
individual class i:

()()
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.zeros((d, d))
>>> for row in X_train_std[y_train == label]:
... row, mv = row.reshape(d, 1), mv.reshape(d, 1)
... class_scatter += (row - mv).dot((row - mv).T)
... S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s' % (
... S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if we
print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s'
... % np.bincount(y_train)[1:])
Class label distribution: [41 50 33]

Compressing Data via Dimensionality Reduction

[158]

... mean_vecs.append(np.mean(

... X_train_std[y_train==label], axis=0))

... print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516
0.5416 0.2338 0.5897 0.6563 1.2075]

MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946
0.0703 -0.8286 0.3144 0.3608 -0.7253]

MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287
-0.7795 0.9649 -1.209 -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS of each
individual class i:

()()
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.zeros((d, d))
>>> for row in X_train_std[y_train == label]:
... row, mv = row.reshape(d, 1), mv.reshape(d, 1)
... class_scatter += (row - mv).dot((row - mv).T)
... S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s' % (
... S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if we
print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s'
... % np.bincount(y_train)[1:])
Class label distribution: [41 50 33]

Compressing Data via Dimensionality Reduction

[158]

... mean_vecs.append(np.mean(

... X_train_std[y_train==label], axis=0))

... print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516
0.5416 0.2338 0.5897 0.6563 1.2075]

MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946
0.0703 -0.8286 0.3144 0.3608 -0.7253]

MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287
-0.7795 0.9649 -1.209 -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS of each
individual class i:

()()
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.zeros((d, d))
>>> for row in X_train_std[y_train == label]:
... row, mv = row.reshape(d, 1), mv.reshape(d, 1)
... class_scatter += (row - mv).dot((row - mv).T)
... S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s' % (
... S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if we
print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s'
... % np.bincount(y_train)[1:])
Class label distribution: [41 50 33]

Compressing Data via Dimensionality Reduction

[158]

... mean_vecs.append(np.mean(

... X_train_std[y_train==label], axis=0))

... print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516
0.5416 0.2338 0.5897 0.6563 1.2075]

MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946
0.0703 -0.8286 0.3144 0.3608 -0.7253]

MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287
-0.7795 0.9649 -1.209 -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS of each
individual class i:

()()
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.zeros((d, d))
>>> for row in X_train_std[y_train == label]:
... row, mv = row.reshape(d, 1), mv.reshape(d, 1)
... class_scatter += (row - mv).dot((row - mv).T)
... S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s' % (
... S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if we
print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s'
... % np.bincount(y_train)[1:])
Class label distribution: [41 50 33]

sigma ij 合併在一起

跟上面算coherance 不一樣
coherance是sigma ij 一個一個值算

Hsi-Pin Ma

Between-Class Scatter Matrix
•Between-class matrix

–m is the overall mean that is computed, including
samples from all classes.

37

Chapter 5

[159]

Thus, we want to scale the individual scatter matrices iS before we sum them
up as scatter matrix WS . When we divide the scatter matrices by the number of
class-samples in , we can see that computing the scatter matrix is in fact the same as
computing the covariance matrix i∑ —the covariance matrix is a normalized version
of the scatter matrix:

()()1 1

i

c
T

i W i i
Di in n ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.cov(X_train_std[y_train==label].T)
... S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s'
... % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we computed the scaled within-class scatter matrix (or covariance matrix), we
can move on to the next step and compute the between-class scatter matrix BS :

()()
1

T
i i i

i
n

=

= − −∑
c

BS m m m m

Here, m is the overall mean that is computed, including samples from all classes:

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i, mean_vec in enumerate(mean_vecs):
... n = X_train[y_train == i + 1, :].shape[0]
... mean_vec = mean_vec.reshape(d, 1) # make column vector
... mean_overall = mean_overall.reshape(d, 1)
... S_B += n * (mean_vec - mean_overall).dot(
... (mean_vec - mean_overall).T)
>>> print('Between-class scatter matrix: %sx%s' % (
... S_B.shape[0], S_B.shape[1]))

Hsi-Pin Ma

Selecting Linear Discriminants for the
New Feature Space

•Solve the eigenvalue problem of the matrix

•Sort eigenvectors in descending order of
eigenvalues

38

Compressing Data via Dimensionality Reduction

[�����]

Selecting linear discriminants for the new
feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However,
instead of performing the eigendecomposition on the covariance matrix, we solve the
generalized eigenvalue problem of the matrix 1

w B
−S S :

>>> eigen_vals, eigen_vecs =\
... np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in descending
order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i])
... for i in range(len(eigen_vals))]
>>> eigen_pairs = sorted(eigen_pairs,
... key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in descending order:\n')
>>> for eigen_val in eigen_pairs:
... print(eigen_val[0])

Eigenvalues in descending order:

349.617808906
172.76152219
3.78531345125e-14
2.11739844822e-14
1.51646188942e-14
1.51646188942e-14
1.35795671405e-14
1.35795671405e-14
7.58776037165e-15
5.90603998447e-15
5.90603998447e-15
2.25644197857e-15
0.0

In LDA, the number of linear discriminants is at most Fï�, where c is the number
of class labels, since the in-between scatter matrix BS is the sum of c matrices with
rank 1 or less. We can indeed see that we only have two nonzero eigenvalues (the
HLJHQYDOXHV������DUH�QRW�H[DFWO\�]HUR��EXW�WKLV�LV�GXH�WR�WKH�ÁRDWLQJ�SRLQW�DULWKPHWLF�
in NumPy).

Hsi-Pin Ma

Selecting Linear Discriminants for the
New Feature Space

•In LDA, the number of linear discriminants is at
most c-1 (c: number of class labels)
– SB is the sum of c matrices with rank 1 or less.

•Indeed only two nonzero eigenvalues
– eigenvalues 3-13 are not exactly zero due to floating-

point arithmetic in NumPy.

39

Hsi-Pin Ma

Selecting Linear Discriminants for the
New Feature Space

•Discriminability of a linear discriminant
– To measure how much the class-discriminatory information

is captured by the linear discriminants (the eigenvectors)
– Ratio of its corresponding eigenvalues to the sum of all

eigenvalues

40

Hsi-Pin Ma

Selecting Linear Discriminants for the
New Feature Space

•Stack the two most discriminative eigenvector
columns to create the transformation matrix W

41

Hsi-Pin Ma

Projecting Samples onto the
New Feature Space

•Transformation of training set

42

Compressing Data via Dimensionality Reduction

[�����]

Let's now stack the two most discriminative eigenvector columns to create the
transformation matrix W:

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
... eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
 [[-0.1481 -0.4092]
 [0.0908 -0.1577]
 [-0.0168 -0.3537]
 [0.1484 0.3223]
 [-0.0163 -0.0817]
 [0.1913 0.0842]
 [-0.7338 0.2823]
 [-0.075 -0.0102]
 [0.0018 0.0907]
 [0.294 -0.2152]
 [-0.0328 0.2747]
 [-0.3547 -0.0124]
 [-0.3915 -0.5958]]

Projecting samples onto the new feature
space
Using the transformation matrix W that we created in the previous subsection, we
can now transform the training dataset by multiplying the matrices:

′X = XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_lda[y_train==l, 0],
... X_train_lda[y_train==l, 1] * (-1),
... c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower right')
>>> plt.show()

Hsi-Pin Ma

LDA via Scikit-learn
•In scikit-learn, LDA is implemented in the
discriminant_analysis module as the
LinearDiscriminantAnalysis class

43

Hsi-Pin Ma

LDA via Scikit-learn

44

•Apply test dataset

Hsi-Pin Ma

Kernel Principal Component Analysis

45

Hsi-Pin Ma

Nonlinear Dimension Reduction

• When linear separation is infeasible in the original feature
space, a nonlinear transformation from the original feature
space to a higher (possible infinite) dimensional feature space
is desired
– Linear transformation techniques for dimensionality reduction,

such as PCA or LDA, may not be the best.

46

Hsi-Pin Ma

Kernel Trick
•Using kernel trick, we can compute the

similarity between two high-dimension feature
vectors in the original feature space

47

Chapter 5

[�����]

We can think of φ as a function that creates nonlinear combinations of the original
features to map the original d-dimensional dataset onto a larger, N-dimensional
feature space. For example, if we had a feature vector d∈Rx (x is a column vector
consisting of d features) with two dimensions ()2d = , a potential mapping onto a
3D-space could be:

[]1 2 , Tx x=x

φ↓

2 2
1 1 2 2 , 2 ,

T
x x x x =  z

In other words, we perform a nonlinear mapping via kernel PCA that transforms
the data onto a higher-dimensional space. We then use standard PCA in this
higher-dimensional space to project the data back onto a lower-dimensional space
ZKHUH�WKH�VDPSOHV�FDQ�EH�VHSDUDWHG�E\�D�OLQHDU�FODVVLÀHU��XQGHU�WKH�FRQGLWLRQ�WKDW�
the samples can be separated by density in the input space). However, one downside
of this approach is that it is computationally very expensive, and this is where we
use the kernel trick. Using the kernel trick, we can compute the similarity between
two high-dimension feature vectors in the original feature space.

Before we proceed with more details about the kernel trick to tackle this
computationally expensive problem, let us think back to the standard PCA approach
that we implemented at the beginning of this chapter. We computed the covariance
between two features N and j as follows:

()() ()()
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑

Compressing Data via Dimensionality Reduction

[�����]

Since the standardizing of features centers them at mean zero, for instance, 0jµ =

and 0kµ = , we can simplify this equation as follows:

() ()

1

1 n
i i

jk j k
i
x x

n
σ

=

= ∑

Note that the preceding equation refers to the covariance between two features; now,

let us write the general equation to calculate the covariance matrix ∑ :

() ()

1

1
Tn

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (Kernel principal component analysis,
%��6FKRONRSI, A. Smola, and K.R. Muller, pages 583-588, 1997) so that we can replace

the dot products between samples in the original feature space with the nonlinear

feature combinations via φ :

()() ()

1
()1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix,

we have to solve the following equation:

λΣ =v v

()() ()()
1

1
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

()() ()() () ()()
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

covariance between two features zero mean

Compressing Data via Dimensionality Reduction

[�����]

Since the standardizing of features centers them at mean zero, for instance, 0jµ =

and 0kµ = , we can simplify this equation as follows:

() ()

1

1 n
i i

jk j k
i
x x

n
σ

=

= ∑

Note that the preceding equation refers to the covariance between two features; now,

let us write the general equation to calculate the covariance matrix ∑ :

() ()

1

1
Tn

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (Kernel principal component analysis,
%��6FKRONRSI, A. Smola, and K.R. Muller, pages 583-588, 1997) so that we can replace

the dot products between samples in the original feature space with the nonlinear

feature combinations via φ :

()() ()

1
()1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix,

we have to solve the following equation:

λΣ =v v

()() ()()
1

1
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

()() ()() () ()()
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

covariance matrix

Compressing Data via Dimensionality Reduction

[�����]

Since the standardizing of features centers them at mean zero, for instance, 0jµ =

and 0kµ = , we can simplify this equation as follows:

() ()

1

1 n
i i

jk j k
i
x x

n
σ

=

= ∑

Note that the preceding equation refers to the covariance between two features; now,

let us write the general equation to calculate the covariance matrix ∑ :

() ()

1

1
Tn

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (Kernel principal component analysis,
%��6FKRONRSI, A. Smola, and K.R. Muller, pages 583-588, 1997) so that we can replace

the dot products between samples in the original feature space with the nonlinear

feature combinations via φ :

()() ()

1
()1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix,

we have to solve the following equation:

λΣ =v v

()() ()()
1

1
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

()() ()() () ()()
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

nonlinear feature mapping

Compressing Data via Dimensionality Reduction

[�����]

As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under φ
explicitly by using a kernel function κ so that we don't need to calculate the
eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

() ()() () ()(),
pi j i T jκ θ= +x x x x

Here, θ is the threshold and p is the power that has to be specified by the
user.

�� The hyperbolic tangent (sigmoid) kernel:

() ()() () ()(), tanh i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

() ()()
() () 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable
1

2
γ

σ
= :

() ()() () ()()2
, expi j i jκ γ= − −x x x x

define the kernel function

Hsi-Pin Ma

Most Commonly Used Kernels

•Polynomial kernel

•Hyperbolic tangent (sigmoid) kernel

•Radial Basis Function (RBF) or Gaussian kernel

48

Compressing Data via Dimensionality Reduction

[�����]

As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under φ
explicitly by using a kernel function κ so that we don't need to calculate the
eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

() ()() () ()(),
pi j i T jκ θ= +x x x x

Here, θ is the threshold and p is the power that has to be specified by the
user.

�� The hyperbolic tangent (sigmoid) kernel:

() ()() () ()(), tanh i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

() ()()
() () 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable
1

2
γ

σ
= :

() ()() () ()()2
, expi j i jκ γ= − −x x x x

Compressing Data via Dimensionality Reduction

[�����]

As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under φ
explicitly by using a kernel function κ so that we don't need to calculate the
eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

() ()() () ()(),
pi j i T jκ θ= +x x x x

Here, θ is the threshold and p is the power that has to be specified by the
user.

�� The hyperbolic tangent (sigmoid) kernel:

() ()() () ()(), tanh i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

() ()()
() () 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable
1

2
γ

σ
= :

() ()() () ()()2
, expi j i jκ γ= − −x x x x

Compressing Data via Dimensionality Reduction

[�����]

As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under φ
explicitly by using a kernel function κ so that we don't need to calculate the
eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

() ()() () ()(),
pi j i T jκ θ= +x x x x

Here, θ is the threshold and p is the power that has to be specified by the
user.

�� The hyperbolic tangent (sigmoid) kernel:

() ()() () ()(), tanh i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

() ()()
() () 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable
1

2
γ

σ
= :

() ()() () ()()2
, expi j i jκ γ= − −x x x x

Compressing Data via Dimensionality Reduction

[�����]

As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under φ
explicitly by using a kernel function κ so that we don't need to calculate the
eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

() ()() () ()(),
pi j i T jκ θ= +x x x x

Here, θ is the threshold and p is the power that has to be specified by the
user.

�� The hyperbolic tangent (sigmoid) kernel:

() ()() () ()(), tanh i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

() ()()
() () 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable
1

2
γ

σ
= :

() ()() () ()()2
, expi j i jκ γ= − −x x x x

Compressing Data via Dimensionality Reduction

[�����]

As we recall from the 6ROYLQJ�QRQOLQHDU�SUREOHPV�XVLQJ�D�NHUQHO�690 section in
Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under φ
explicitly by using a kernel function κ so that we don't need to calculate the
eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jκ φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

�� The polynomial kernel:

() ()() () ()(),
pi j i T jκ θ= +x x x x

Here, θ is the threshold and p is the power that has to be specified by the
user.

�� The hyperbolic tangent (sigmoid) kernel:

() ()() () ()(), tanh i j i T jκ η θ= +x x x x

�� The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

() ()()
() () 2

2, exp
2

i j
i jκ

σ

 − = −   

x x
x x

It is often written in the following form, introducing the variable
1

2
γ

σ
= :

() ()() () ()()2
, expi j i jκ γ= − −x x x x

Hsi-Pin Ma

Three Steps to Implement an RBF Kernel PCA
•Compute the kernel (similarity) matrix K

•Center the kernel matrix K using

– 1n is an nxn-dimensional matrix with all values 1/n

•Collect the top k eigenvectors of the centered
kernel matrix based on their corresponding
eigenvalues, ranked by decreasing magnitude

49

Chapter 5

[�����]

7R�VXPPDUL]H�ZKDW�ZH�KDYH�OHDUQHG�VR�IDU��ZH�FDQ�GHÀQH�WKH�IROORZLQJ�WKUHH�VWHSV�
to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate
the following:

() ()() () ()()2
, expi j i jκ γ= − −x x x x

We do this for each pair of samples:

() ()() () ()() () ()()
() ()() () ()() () ()()

() ()() () ()() () ()()

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , , n

n

n

n n n

κ κ κ

κ κ

κ κ κ

 
 
 
 =
 
 
 
 

!

!

" " # "

!

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pairwise similarities would be 100 x 100-dimensional.

2. We center the kernel matrix K using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n is an n n× -dimensional matrix (the same dimensions as the kernel

matrix) where all values are equal to
1
n

.

3. We collect the top k eigenvectors of the centered kernel matrix based on their
corresponding eigenvalues, which are ranked by decreasing magnitude. In
contrast to standard PCA, the eigenvectors are not the principal component
axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the
second step. We previously assumed that we are working with standardized data,
where all features have mean zero when we formulated the covariance matrix and
replaced the dot-products with the nonlinear feature combinations via φ . Thus, the
centering of the kernel matrix in the second step becomes necessary, since we do not
compute the new feature space explicitly so that we cannot guarantee that the new
feature space is also centered at zero.

Chapter 5

[�����]

7R�VXPPDUL]H�ZKDW�ZH�KDYH�OHDUQHG�VR�IDU��ZH�FDQ�GHÀQH�WKH�IROORZLQJ�WKUHH�VWHSV�
to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate
the following:

() ()() () ()()2
, expi j i jκ γ= − −x x x x

We do this for each pair of samples:

() ()() () ()() () ()()
() ()() () ()() () ()()

() ()() () ()() () ()()

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , , n

n

n

n n n

κ κ κ

κ κ

κ κ κ

 
 
 
 =
 
 
 
 

!

!

" " # "

!

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pairwise similarities would be 100 x 100-dimensional.

2. We center the kernel matrix K using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n is an n n× -dimensional matrix (the same dimensions as the kernel

matrix) where all values are equal to
1
n

.

3. We collect the top k eigenvectors of the centered kernel matrix based on their
corresponding eigenvalues, which are ranked by decreasing magnitude. In
contrast to standard PCA, the eigenvectors are not the principal component
axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the
second step. We previously assumed that we are working with standardized data,
where all features have mean zero when we formulated the covariance matrix and
replaced the dot-products with the nonlinear feature combinations via φ . Thus, the
centering of the kernel matrix in the second step becomes necessary, since we do not
compute the new feature space explicitly so that we cannot guarantee that the new
feature space is also centered at zero.

Chapter 5

[�����]

7R�VXPPDUL]H�ZKDW�ZH�KDYH�OHDUQHG�VR�IDU��ZH�FDQ�GHÀQH�WKH�IROORZLQJ�WKUHH�VWHSV�
to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate
the following:

() ()() () ()()2
, expi j i jκ γ= − −x x x x

We do this for each pair of samples:

() ()() () ()() () ()()
() ()() () ()() () ()()

() ()() () ()() () ()()

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , , n

n

n

n n n

κ κ κ

κ κ

κ κ κ

 
 
 
 =
 
 
 
 

!

!

" " # "

!

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pairwise similarities would be 100 x 100-dimensional.

2. We center the kernel matrix K using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n is an n n× -dimensional matrix (the same dimensions as the kernel

matrix) where all values are equal to
1
n

.

3. We collect the top k eigenvectors of the centered kernel matrix based on their
corresponding eigenvalues, which are ranked by decreasing magnitude. In
contrast to standard PCA, the eigenvectors are not the principal component
axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the
second step. We previously assumed that we are working with standardized data,
where all features have mean zero when we formulated the covariance matrix and
replaced the dot-products with the nonlinear feature combinations via φ . Thus, the
centering of the kernel matrix in the second step becomes necessary, since we do not
compute the new feature space explicitly so that we cannot guarantee that the new
feature space is also centered at zero.

Hsi-Pin Ma

RBF Kernel PCA Implementation in Python

50

Hsi-Pin Ma

RBF Kernel PCA Implementation in Python

51

have to tune gamma in advance

Hsi-Pin Ma

Separating Half-moon Shapes
•Create a 2D dataset of 100 samples representing

two half-moon shapes (for binary classification)

52

Hsi-Pin Ma

Separating Half-moon Shapes
•Try standard PCA

53

Cannot separate with a linear classifier

Hsi-Pin Ma

Separating Half-moon Shapes
•Try RBF-kernel PCA

54

Hsi-Pin Ma

Separating Concentric Circles

55

Hsi-Pin Ma

Separating Concentric Circles
•Standard PCA

56

Hsi-Pin Ma

Separating Concentric Circles
•RBF-kernel PCA

57

Hsi-Pin Ma

•For kernel-PCA, we obtain an eigenvector a of the
centered kernel matrix (not the covariance matrix)
– a are samples that are already projected onto the principal

component axis v.
– For new data sample x’, the projection computes

– Kernel PCA is a memory-based method, because we need
original training set x(i) each time to project new samples

– Have to normalize the eigenvector a by its eigenvalue

Projecting New Data Points

58

Chapter 5

[�����]

Again, the RBF kernel PCA projected the data onto a new subspace where the two
classes become linearly separable:

Projecting new data points
In the two previous example applications of kernel PCA, the half-moon shapes
and the concentric circles, we projected a single dataset onto a new feature. In
real applications, however, we may have more than one dataset that we want to
transform, for example, training and test data, and typically also new samples we
will collect after the model building and evaluation. In this section, you will learn
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter,
we project data by calculating the dot product between a transformation matrix and
the input samples; the columns of the projection matrix are the top k eigenvectors (v)
that we obtained from the covariance matrix.

Now, the question is how we can transfer this concept to kernel PCA. If we think
back to the idea behind kernel PCA, we remember that we obtained an eigenvector
(a) of the centered kernel matrix (not the covariance matrix), which means that those
are the samples that are already projected onto the principal component axis v. Thus,
if we want to project a new sample ′x onto this principal component axis, we'd need
to compute the following:

()Tφ x' v

Compressing Data via Dimensionality Reduction

[180]

Fortunately, we can use the kernel trick so that we don't have to calculate the

projection ()Tφ x' v explicitly. However, it is worth noting that kernel PCA, in
contrast to standard PCA, is a memory-based method, which means that we have
to re-use the original training set each time to project new samples. We have to
calculate the pairwise RBF kernel (similarity) between each ith sample in the training
dataset and the new sample ′x :

() () () ()()T Ti i

i
aφ φ φ∑x' v = x' x

() ()()i i

i
a κ∑= x', x

Here, the eigenvectors a and eigenvalues λ of the kernel matrix K satisfy the
following condition in the equation:

λ=Ka a

After calculating the similarity between the new samples and the samples in the
training set, we have to normalize the eigenvector a by its eigenvalue. Thus, let us
modify the rbf_kernel_pca function that we implemented earlier so that it also
returns the eigenvalues of the kernel matrix:

from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np

def rbf_kernel_pca(X, gamma, n_components):
 """
 RBF kernel PCA implementation.

 Parameters

 X: {NumPy ndarray}, shape = [n_samples, n_features]

 gamma: float
 Tuning parameter of the RBF kernel

 n_components: int

Chapter 5

[�����]

Again, the RBF kernel PCA projected the data onto a new subspace where the two
classes become linearly separable:

Projecting new data points
In the two previous example applications of kernel PCA, the half-moon shapes
and the concentric circles, we projected a single dataset onto a new feature. In
real applications, however, we may have more than one dataset that we want to
transform, for example, training and test data, and typically also new samples we
will collect after the model building and evaluation. In this section, you will learn
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter,
we project data by calculating the dot product between a transformation matrix and
the input samples; the columns of the projection matrix are the top k eigenvectors (v)
that we obtained from the covariance matrix.

Now, the question is how we can transfer this concept to kernel PCA. If we think
back to the idea behind kernel PCA, we remember that we obtained an eigenvector
(a) of the centered kernel matrix (not the covariance matrix), which means that those
are the samples that are already projected onto the principal component axis v. Thus,
if we want to project a new sample ′x onto this principal component axis, we'd need
to compute the following:

()Tφ x' v

Hsi-Pin Ma

Modified rbf_kernel_pca Function

59

Hsi-Pin Ma

Modified rbf_kernel_pca Function

60

Hsi-Pin Ma

Half-moon Dataset Example
• A new half-moon dataset and project onto 1D subspace

• Assume the 26th point is a new data x’ and project it
onto new subspace

61

Hsi-Pin Ma

Half-moon Dataset Example
•Visualize the projection

62

Hsi-Pin Ma

Kernel PCA in Scikit-learn
•A kernel PCA class in the sklearn decomposition

submodule

63

