

EE3700 Introduction to Machine Learning

Compressing Data via Dimensionality Reduction

Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

- Unsupervised Dimensionality via Principal Component Analysis
- Supervised Data Compression via Linear Discriminant Analysis
- Kernel Principal Component Analysis

X

Feature Extraction

- To combine existing features to produce more useful ones and has the potential to reduce data dimensionality $\mathbb{R}^{d \ k}$
- Transformation from the original feature space \mathbb{R}^d to a new lower dimensional feature space \mathbb{R}^k
 - Functionality of data compression (k < d) $\mathbb{R}^{d k}$
- Not only reduce required data storage space, improve computational efficiency, but also, $z \in \mathbb{R}^{k}$ improve predictive performance by reducing the risk of *curse of dimensionality*, especially with nonregularized learning models

Unsupervised Dimensionality Reduction via Principal Component Analysis

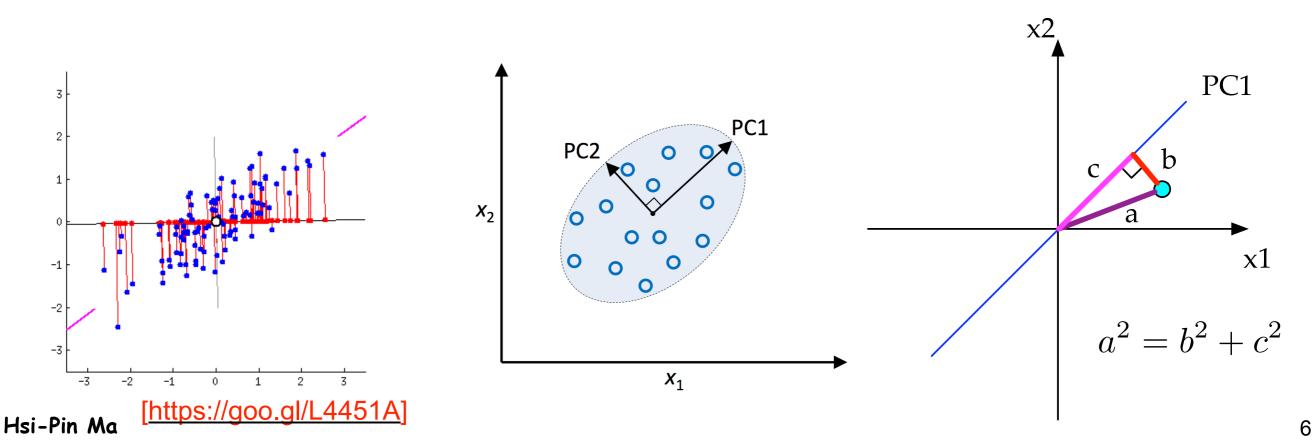
Possible Applications of PCA

- Feature extraction and dimensionality reduction
- Exploratory data analysis such as data visualization
- De-noising of signals in stock market trading
- Analysis of genome data and gene expression level in the field of bioinformatics

Principal Component Analysis

• Find the directions of maximum variance

- Original features x_1 and x_2
- -Principle components: PC1 and PC2
- Since a does not change, to find PC1, minimize distance to the PC1 line (b), or maximize the distance from the projected point to the origin (c)



Principal Component Analysis

- Reduce data from *d*-dimensions to *k*-dimensions
- Project data onto the lower-dimensional space
- Construct a *d* x *k* transformation matrix **W** and map the sample vector x onto a new kdimensional feature space (k < d)
- PCA is sensitive to data scaling, feature standardization is needed

$$\boldsymbol{x} = [x_1, x_2, \dots, x_d], \quad \boldsymbol{x} \in \mathbb{R}^d$$

$$\downarrow xW, W \in \mathbb{R}^{d \times k}$$

$$\mathbf{Z} = [z_1, z_2, \dots, z_k], \quad \mathbf{Z} \in \mathbb{R}^k$$

 $d \times k$

Main Steps in Doing PCA

- **Standardize** the *d*-dimensional dataset **X** to **X**_{std}
- Construct the covariance matrix
- Decompose the covariance matrix into its eigenvectors and eigenvalues
- Sort the eigenvalues by decreasing order to rank the corresponding eigenvectors
- Select *k* eigenvectors which correspond to the *k* largest eigenvalues, where *k* is the dimensionality of the new feature subspace ($k \le d$).
- Construct a projection matrix **W** from the top *k* eigenvectors
- Transform the *d*-dimensional input dataset **X** using the projection matrix **W** to obtain the new *k*-dimensional feature subspace

Covariance Matrix

- The symmetric *d* x *d*-dimensional (*d*: dataset dimension) covariance matrix Σ stores the *pairwise covariance* between the different features
- Covariance between two features *x*_j and *x*_k

$$\sigma_{jk} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{j}^{(i)} - \mu_{j} \right) \left(x_{k}^{(i)} - \mu_{k} \right)$$

sample means of feature *j* and k $\Sigma v = \lambda v$

– Sample means are zero if dataset has been standardized λ

Σ

Covariance Matrix

• For three features, covariance matrix looks like

$$\sum = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$$

- The eigenvectors of Σ represent the principle components
- The corresponding eigenvalues represent their magnitude
 - Principle components: the directions of maximum variance $\Sigma v = \lambda v$

$$\Sigma \boldsymbol{v} = \lambda \boldsymbol{v}$$

Extract the Principal Components Step-by-Step

- Standardize the data
- Construct the covariance matrix
- Obtain the eigenvalues and eigenvectors of the covariance matrix
- Sort the eigenvalues by decreasing order to rank the eigenvectors

^{Beliable} Extract the Principal Components Step-by-Step

Load wine dataset

Laboratory for

import pandas as pd

df_wine.head()

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyan
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1

Split training and test, and standardize the dataset

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train_std = sc.fit_transform(X_train)
X_test_std = sc.transform(X_test)
```

Reliable Computing Extract the Principal Components Step-by-Step

Construct the covariance matrix and do eigendecomposition

```
import numpy as np
cov_mat = np.cov(X_train_std.T)
eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
```

```
print('\nEigenvalues \n%s' % eigen_vals)
```

Eigenvalues

[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634
0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835
0.1808613]

^{Reliable} Computing Extract the Principal Components Step-by-Step

- Total and explained variance
- To reduce the dimensionality, only select the subset of eigenvectors (PCs) that contain most of the information (variance)
- variance explained ratios of an eigenvalue λ_j is defined as $\frac{\lambda_j}{\sum_{i=1}^d \lambda_i}$

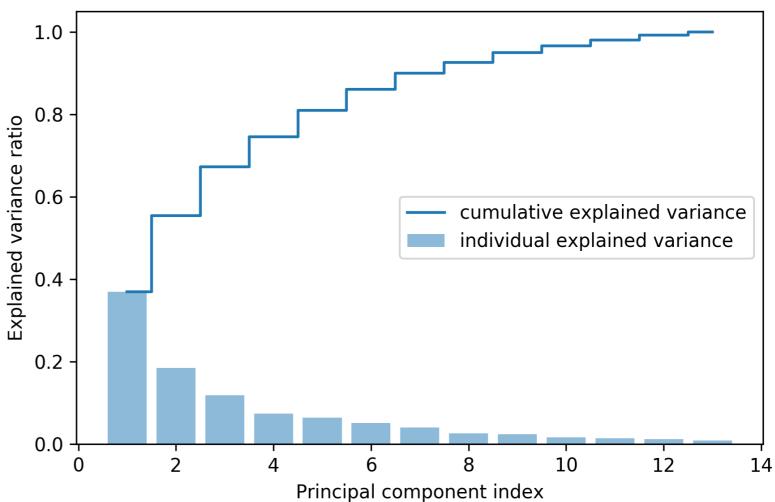
```
tot = sum(eigen_vals)
var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)]
cum_var_exp = np.cumsum(var_exp)
```

Laboratory for

Laboratory for Reliable Computing Extract the Principal Components Step-by-Step

import matplotlib.pyplot as plt

First two principal components explained about 60% of the variance of the data



- Select *k* eigenvectors, which correspond to the largest *k* eigenvalues (*k*: dimensionality of new feature subspace)
- Construct a projection matrix **W** from the "top" *k* eigenvectors
- Transform the d-dimensional input dataset **X** using the projection matrix **W** to obtain the new *k*-dimensional feature subspace

Sort the eigenpairs by decreasing order of eigenvalues

Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k: k[0], reverse=True)

- Collect the two largest to capture about 60% of the variance to form 13x2 projection matrix **W**
 - The number of principal components has to be determined by a trade-off between computational efficiency and the classifier performance

```
Matrix W:
```

```
[[-0.13724218 0.50303478]
[ 0.24724326 0.16487119]
[-0.02545159 0.24456476]
[ 0.20694508 -0.11352904]
[-0.15436582 0.28974518]
[-0.39376952 0.05080104]
[-0.41735106 -0.02287338]
[ 0.30572896 0.09048885]
[-0.30668347 0.00835233]
[ 0.07554066 0.54977581]
[-0.32613263 -0.20716433]
[-0.36861022 -0.24902536]
[-0.29669651 0.38022942]]
```


Feature Transformation x' = xW

• Transform a sample x onto PCA subspace obtaining x' = xW

X_train_std[0].dot(w)

x'

array([2.38299011, 0.45458499])

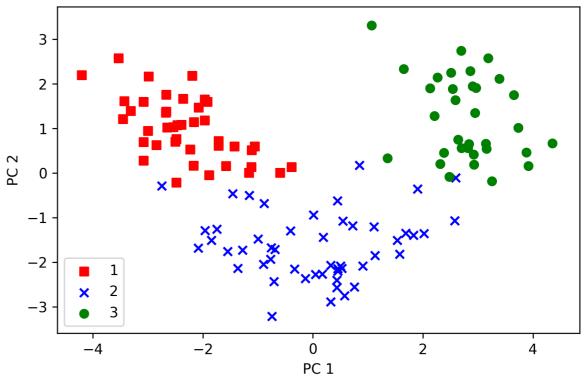
• Transform the entire dataset X' = XW

X_train_pca = X_train_std.dot(w)

Λ - ΛΜ

Visualize the transformed training set

```
colors = ['r', 'b', 'g']
markers = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), colors, markers):
    plt.scatter(X train pca[y train == 1, 0],
                X_train_pca[y_train == 1, 1],
                c=c, label=l, marker=m)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
                                                  PC 2
plt.tight layout()
# plt.savefig('images/05 03.png', dpi=300)
plt.show()
```



Reliable Gomputing Principal Component Analysis in Scikit-learn

In scikit-learn, PCA class in the decomposition module

```
plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center')
plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.show()
```

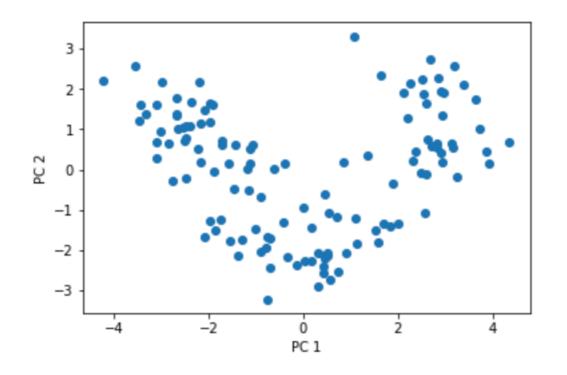
Principal components


```
pca = PCA(n_components=2)
```

```
X_train_pca = pca.fit_transform(X_train_std)
```

```
X_test_pca = pca.transform(X_test_std)
```

```
plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1])
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.show()
```



• Use **PCA** class implemented in scikit-learn

- -One of transformer classes
- First fit the model using training data before transforming both the training and test data using the same model parameters

• Example

- Use PCA class on Wine training dataset
- -Classify the transformed samples via logistic regression
- Visualize the decision regions vi the plot_decision_region function

Training dataset

```
from sklearn.linear_model import LogisticRegression
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train_std)
X_test_pca = pca.transform(X_test_std)
lr = LogisticRegression()
```

```
lr = lr.fit(X_train_pca, y_train)
```

```
plot_decision_regions(X_train_pca, y_train, classifier=lr)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
plt.tight_layout()
# plt.savefig('images/05_04.png', dpi=300)
plt.show()
```

3

-4

-2

0

PC 1

2


```
In [20]: y_pred = lr.predict(X_train_pca)
    print('Misclassified instances for training dataset: %d' % (y_train != y_pred).sum())
```

Misclassified instances for training dataset: 3

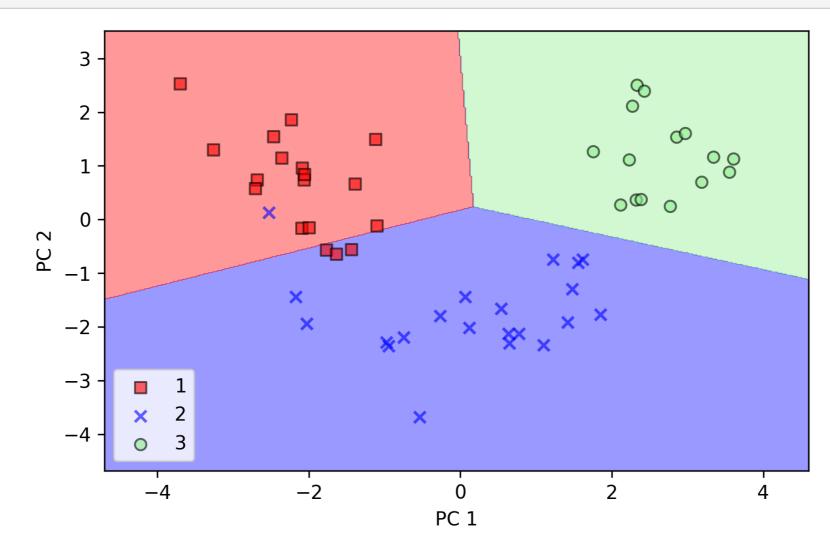
In [21]: from sklearn.metrics import accuracy_score
 print('Accuracy for training dataset: %.2f' % accuracy_score(y_train, y_pred))

Accuracy for training dataset: 0.98

In [22]: print('Accuracy for training dataset: %.2f' % lr.score(X_train_pca, y_train))
Accuracy for training dataset: 0.98

Test dataset

```
plot_decision_regions(X_test_pca, y_test, classifier=lr)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
plt.tight_layout()
# plt.savefig('images/05_05.png', dpi=300)
plt.show()
```



In [25]: print('Accuracy for test dataset: %.2f' % accuracy_score(y_test, y_pred))
Accuracy for test dataset: 0.93

In [26]: print('Accuracy for test dataset: %.2f' % lr.score(X_test_pca, y_test))
Accuracy for test dataset: 0.93

 By initialing the n_components parameter in the PCA class to be None, all PCs will be kept, and the explained variance ratios can be accessed via the explained_variance_ratio_ attribute.

```
pca = PCA(n_components=None)
X_train_pca = pca.fit_transform(X_train_std)
pca.explained_variance_ratio_
array([ 0.36951469, 0.18434927, 0.11815159, 0.07334252, 0.06422108,
```

0.05051724, 0.03954654, 0.02643918, 0.02389319, 0.01629614, 0.01380021, 0.01172226, 0.008206091)

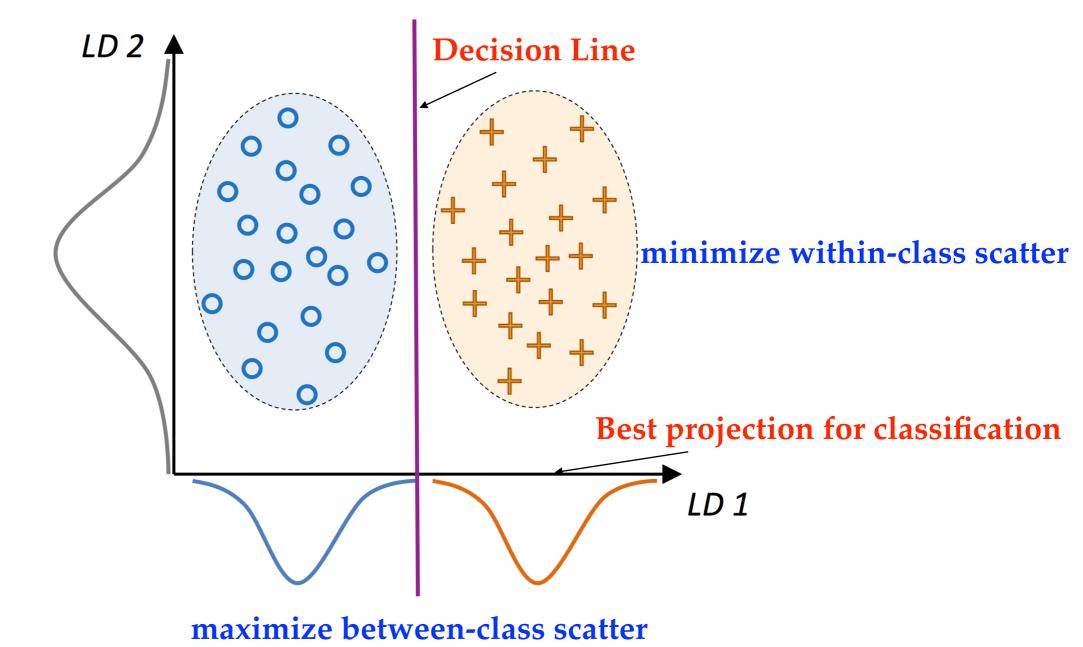
Supervised Data Compression Via Linear Discriminant Analysis

PCA vs. LDA

- Both PCA and LDA are linear transformation techniques for feature extraction
- PCA is unsupervised while LDA is supervised
 - -LDA uses the class label information of instances
- PCA attempts to find the orthogonal component axes of maximum variance in a dataset while LDA is to find the feature subspace that optimizes class separability

Linear Discriminant Analysis

• In the figure, a linear discriminant on the x-axis (LD1) would separate the two classes well.



Main Steps to Perform LDA

- Standardize the *d*-dimensional dataset
- For each class, compute the *d*-dimensional mean vector
- Construct the between-class scatter matrix S_B and the withinclass scatter S_w
- Compute the eigenvectors and corresponding eigenvalues of the matrix $S_w^{-1}S_B$
- Sort the eigenvalues by decreasing order to rank the corresponding eigenvectors
- Choose the k eigenvectors that correspond to the k largest eigenvalues to construct a d x k -dimensional transformation matrix W; the eigenvectors are the columns of this matrix
- Project the samples onto the new feature subspace using **W**.

Inner Workings of LDA

Basic assumption

- The feature vectors of instance from different class are approximately normally distributed with different mean mand variance μ_m

• Class sample mean $m_i = \frac{1}{n_i} \sum_{x \in D}^c x_m$

-Each mean vector
$$\mathbf{m}_i$$
 stores the mean feature values μ_m

with respect to the samples of class *i*

-For Wine dataset

$$\boldsymbol{m}_{i} = \begin{bmatrix} \boldsymbol{\mu}_{i,alcohol} \\ \boldsymbol{\mu}_{i,malic\ acid} \\ \vdots \\ \boldsymbol{\mu}_{i,malic\ acid} \end{bmatrix} \quad i \in \{1,2,3\}$$

Inner Workings of LDA

• mean vectors for each class in Wine dataset

```
np.set_printoptions(precision=4)
```

mean_vecs = []
for label in range(1, 4):
 mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0))
 print('MV %s: %s\n' % (label, mean vecs[label - 1]))

MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516 0.5416 0.2338 0.5897 0.6563 1.2075]

MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946 0.0703 -0.8286 0.3144 0.3608 -0.7253]

MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287 -0.7795 0.9649 -1.209 -1.3622 -0.4013]

i=1^{*i*}Within-class Scatter Matrix

- Individual scatter matrix S_i of each individual **class** i $S_i = \sum_{x \in D_i}^{c} (x - m_i)(x - m_i)^T$ • Within-class scatter matrix S_W S

$$S_W = \sum_{i=1}^{N} S_i$$

```
i-1
d = 13 # number of features
S W = np.zeros((d, d))
for label, mv in zip(range(1, 4), mean vecs):
    class scatter = np.zeros((d, d)) # scatter matrix for each class
    for row in X train std[y train == label]:
        row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors
        class scatter += (row - mv).dot((row - mv).T)
    S W += class scatter
                                                  # sum class scatter matrices
print('Within-class scatter matrix: %sx%s' % (S W.shape[0], S W.shape[1]))
```

Within-class scatter matrix: 13x13

Between-Class Scatter Matrix

• Between-class matrix $S_B = \sum_{i=1}^{n} n_i (m_i - m) (m_i - m)^T$

-m is the overall mean that is computed, including samples from all classes.

```
mean_overall = np.mean(X_train_std, axis=0)
d = 13  # number of features
S_B = np.zeros((d, d))
for i, mean_vec in enumerate(mean_vecs):
    n = X_train[y_train == i + 1, :].shape[0]
    mean_vec = mean_vec.reshape(d, 1)  # make column vector
    mean_overall = mean_overall.reshape(d, 1)  # make column vector
    S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T)
print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1]))
```

```
Between-class scatter matrix: 13x13
```

Computing Selecting Linear Discriminants for the New Feature Space

• Solve the eigenvalue problem of the matrix $S_w^{-1}S_B$

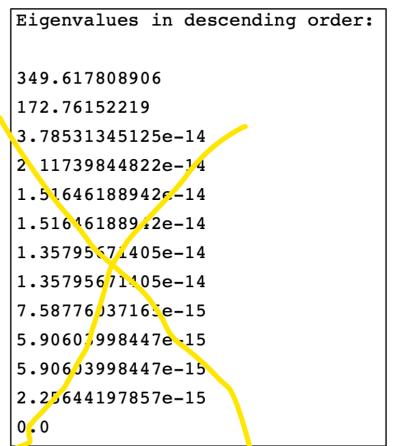
eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

Sort eigenvectors in descending order of eigenvalues

# Make a list of (eigenvalue, eigenvector) tuples	Eigenvalues in descending order:
<pre>eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i])</pre>	349.617808906
<pre>for i in range(len(eigen_vals))]</pre>	172.76152219
	3.78531345125e-14
# Sort the (eigenvalue, eigenvector) tuples from high to low eigen pairs = sorted(eigen pairs, key=lambda k: k[0], reverse=True)	2.11739844822e-14
	1.51646188942e-14
	1.51646188942e-14
<pre>print('Eigenvalues in descending order:\n') for eigen_val in eigen_pairs:</pre>	1.35795671405e-14
	1.35795671405e-14
	7.58776037165e-15
	5.90603998447e-15
	5.90603998447e-15
	2.25644197857e-15
<pre>print(eigen_val[0])</pre>	0.0

Reliable Computing Selecting Linear Discriminants for the New Feature Space

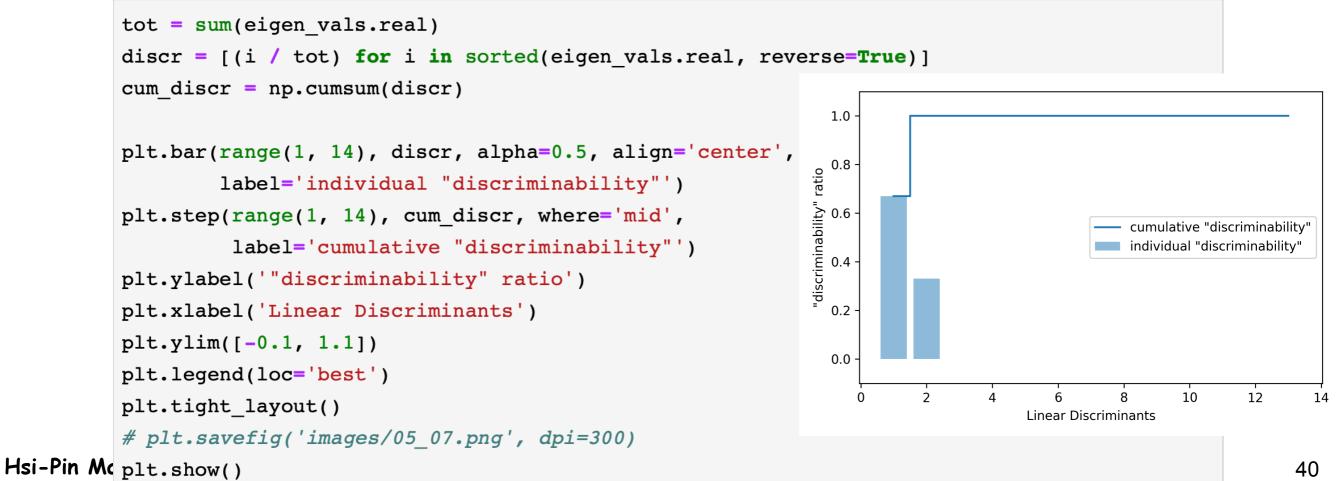
- In LDA, the number of linear discriminants is at most *c*-1 (*c*: number of class labels)
 - $-\mathbf{S}_{B}$ is the sum of *c* matrices with rank 1 or less.
- Indeed only two nonzero eigenvalues
 - -eigenvalues 3-13 are not exactly zero due to floatingpoint arithmetic in NumPy.



Reflation Computing Selecting Linear Discriminants for the New Feature Space

Discriminability of a linear discriminant

- To measure how much the class-discriminatory information is captured by the linear discriminants (the eigenvectors)
- Ratio of its corresponding eigenvalues to the sum of all eigenvalues



Reflation Computing Selecting Linear Discriminants for the New Feature Space

Stack the two most discriminative eigenvector columns to create the transformation matrix W

```
Matrix W:
```

```
\begin{bmatrix} [-0.1481 - 0.4092] \\ [ 0.0908 - 0.1577] \\ [ -0.0168 - 0.3537] \\ [ 0.1484 0.3223] \\ [ -0.0163 - 0.0817] \\ [ 0.1913 0.0842] \\ [ -0.7338 0.2823] \\ [ -0.7538 0.2823] \\ [ -0.075 - 0.0102] \\ [ 0.0018 0.0907] \\ [ 0.294 - 0.2152] \\ [ -0.0328 0.2747] \\ [ -0.3547 - 0.0124] \\ [ -0.3915 - 0.5958] \end{bmatrix}
```


Projecting Samples onto the New Feature Space

• Transformation of training set X' = XW

```
X train lda = X train std.dot(w)
 colors = ['r', 'b', 'g']
 markers = ['s', 'x', 'o']
 for l, c, m in zip(np.unique(y train), colors, markers):
     plt.scatter(X train lda[y train == 1, 0],
                   X_train_lda[y_train == 1, 1] * (-1),
                   c=c, label=l, marker=m)
 plt.xlabel('LD 1')
                                                    1
 plt.ylabel('LD 2')
                                                    0
 plt.legend(loc='lower right')
                                                  LD 2
 plt.tight_layout()
                                                    ^{-1}
 # plt.savefig('images/05 08.png', dpi=300)
                                                              X
 plt.show()
                                                   -2
                                                                                             1
                                                                                            2
                                                                                           ×
                                                                                             3
                                                                         ×
                                                    -3
                                                         -2
                                                                 ^{-1}
                                                                          0
                                                                                  1
Hsi-Pin Ma
```

42

LD 1

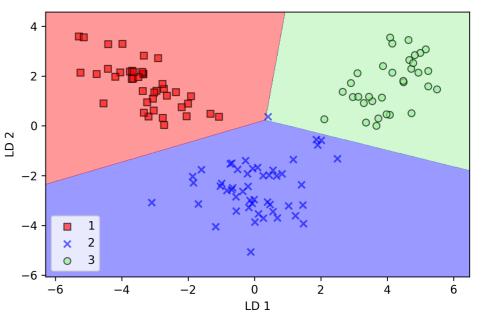
LDA via Scikit-learn

In scikit-learn, LDA is implemented in the discriminant_analysis module as the LinearDiscriminantAnalysis class

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

```
lda = LDA(n_components=2)
X_train_lda = lda.fit_transform(X_train_std, y_train)
```

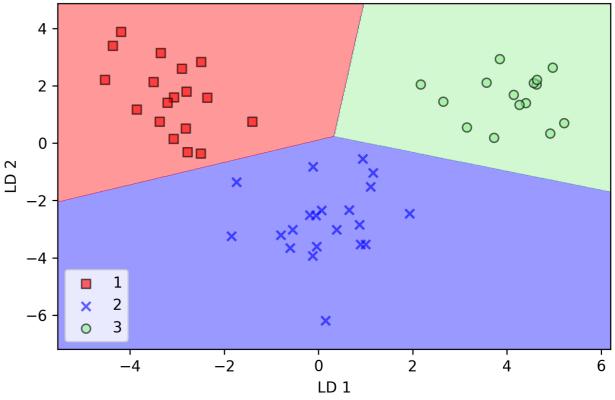
```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr = lr.fit(X_train_lda, y_train)
plot_decision_regions(X_train_lda, y_train, classifier=lr)
plt.xlabel('LD 1')
plt.ylabel('LD 2')
plt.legend(loc='lower left')
plt.tight_layout()
# plt.savefig('images/05_09.png', dpi=300)
plt.show()
```



LDA via Scikit-learn

Apply test dataset

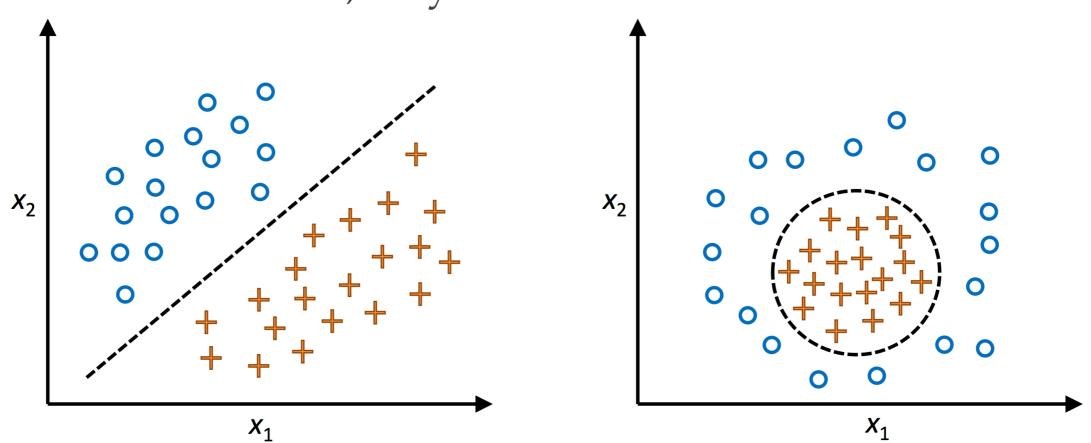
```
X_test_lda = lda.transform(X_test_std)
plot_decision_regions(X_test_lda, y_test, classifier=lr)
plt.xlabel('LD 1')
plt.ylabel('LD 2')
plt.legend(loc='lower left')
plt.tight_layout()
# plt.savefig('images/05_10.png', dpi=300)
plt.show()
```



Kernel Principal Component Analysis

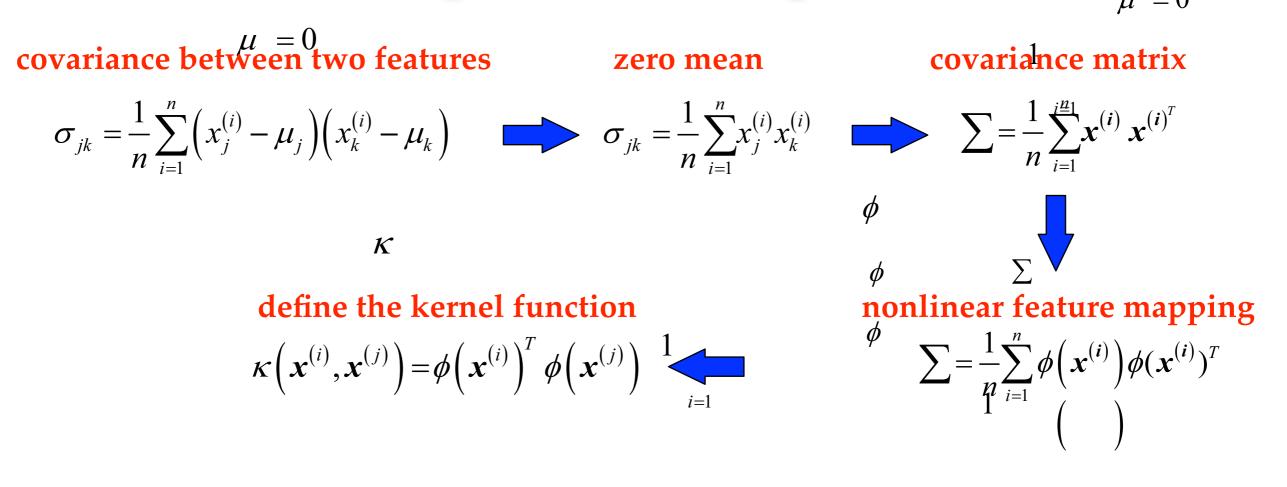
Nonlinear Dimension Reduction

- When linear separation is infeasible in the original feature space, a nonlinear transformation from the original feature space to a higher (possible infinite) dimensional feature space is desired
 - Linear transformation techniques for dimensionality reduction, such as PCA or LDA, may not be the best.



 $\mu = 0$

• Using kernel trick, we can compute the 1 () similarity between two high-dimension feature vectors in the original feature space $\mu = 0$



 ϕ

Laboratory for

Computing

 $\Sigma \boldsymbol{v} = \lambda \boldsymbol{v}$

47

Ħ Laboratory for Computina Most Commonly Used Kernels θ
 Polynomial kernel κ () (η $\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \stackrel{P}{=} (\mathbf{x}^{(i)T} \mathbf{x}^{(j)} + \theta)^{p}$ • Hyperbolic tangent (signoid) kernel $\kappa(x^{(i)}, x^{(j)}) = \tanh(\eta x^{(i)T} x^{(j)} + \theta) \kappa$

• Radial Basis Function (RBF) or Gaussian kernel

$$\kappa \begin{pmatrix} \kappa \\ \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \end{pmatrix} = \exp \left(-\frac{\left\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \right\|^{2}}{2\sigma^{2}} \right) \qquad \kappa \int (\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp \left(-\gamma \left\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \right\|^{2} \right) \\ \kappa \qquad 1 \qquad 1 \qquad \gamma = \frac{1}{2\sigma} \\ \text{Hsi-Pin } M_{\text{K}} \begin{pmatrix} \kappa \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \end{pmatrix} \end{pmatrix} \qquad \frac{1}{2\sigma} \qquad \gamma = \frac{1}{2\sigma}$$

48

Reliable Computing (Steps to Implement an RBF Kernel PCA

- Compute the kernel (similarity) matrix **K**
- $\boldsymbol{K} = \begin{bmatrix} \kappa \left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)} \right) & \kappa \left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)} \right) & \cdots & \kappa \left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(n)} \right) \\ \kappa \left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(1)} \right) & \left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(2)} \right) & \cdots & \kappa \left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(n)} \right) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa \left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(1)} \right) & \kappa \left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(2)} \right) & \cdots & \kappa \left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(n)} \right) \end{bmatrix} \\ \kappa \left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(i)} \right) = \exp \left(-\gamma \left\| \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)} \right\|^{2} \right)$
 - Center the kernel matrix *K* using () ()

$$\boldsymbol{K}' = \boldsymbol{K} - \boldsymbol{1}_{\boldsymbol{n}} \boldsymbol{K} - \boldsymbol{K} \boldsymbol{1}_{\boldsymbol{n}} + \boldsymbol{1}_{\boldsymbol{n}} \boldsymbol{K} \boldsymbol{1}_{\boldsymbol{n}}$$

-1_n is an nxn-dimensional matrix with all values 1/n
 N×n
 • Collect the top k eigenvectors of the centered
 ^{n×n} kernel matrixⁿ based on their corresponding
 eigenvalues, ranked by decreasing magnitude

Refiable Refiable Refiable Refiable

```
from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np
```

```
def rbf_kernel_pca(X, gamma, n_components):
```

```
. . .
```

```
RBF kernel PCA implementation.
```

Parameters

```
X: {NumPy ndarray}, shape = [n_samples, n_features]
```

gamma: float

Tuning parameter of the RBF kernel

```
n_components: int
   Number of principal components to return
```

Returns

11 11 11

```
X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
Projected dataset
```

```
Hsi-Pin Ma
```

```
Tensor tory for
Beliable
Con Retive BF Kernel PCA Implementation in Python
```

```
# Calculate pairwise squared Euclidean distances
# in the MxN dimensional dataset.
sq dists = pdist(X, 'sqeuclidean')
```

Convert pairwise distances into a square matrix.
mat sq dists = squareform(sq dists)

```
# Compute the symmetric kernel matrix.
K = exp(-gamma * mat sq dists)
```

```
# Center the kernel matrix.
N = K.shape[0]
one_n = np.ones((N, N)) / N
K = K - one n.dot(K) - K.dot(one n) + one n.dot(K).dot(one n)
```

```
# Obtaining eigenpairs from the centered kernel matrix
# scipy.linalg.eigh returns them in ascending order
eigvals, eigvecs = eigh(K)
eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1]
```

have to tune gamma in advance

Separating Half-moon Shapes

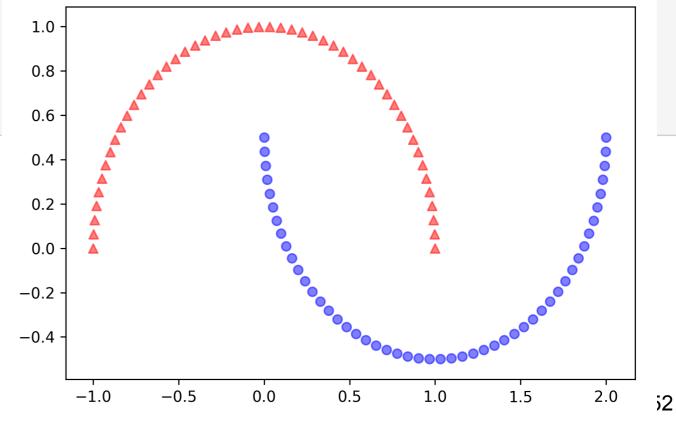
Create a 2D dataset of 100 samples representing two half-moon shapes (for binary classification)

import matplotlib.pyplot as plt
from sklearn.datasets import make moons

```
X, y = make_moons(n_samples=100, random_state=123)
```

plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5)
plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5)

plt.tight_layout()
plt.savefig('images/05_12.png', dpi=300)
plt.show()



```
Laboratory for
      Reliable
                      Separating Half-moon Shapes
      Computing

    Try standard PCA

 from sklearn.decomposition import PCA
 scikit pca = PCA(n components=2)
 X spca = scikit pca.fit transform(X)
 fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3))
 ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1],
               color='red', marker='^', alpha=0.5)
 ax[0].scatter(X spca[y == 1, 0], X spca[y == 1, 1],
               color='blue', marker='o', alpha=0.5)
 ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02,
               color='red', marker='^', alpha=0.5)
 ax[1].scatter(X spca[y == 1, 0], np.zeros((50, 1)) - 0.02,
               color='blue', marker='o', alpha=0.5)
                                                0.75
 ax[0].set xlabel('PC1')
                                                0.50
 ax[0].set ylabel('PC2')
 ax[1].set ylim([-1, 1])
                                                0.25
 ax[1].set yticks([])
                                             2C2
                                                0.00
 ax[1].set xlabel('PC1')
                                               -0.25
 plt.tight layout()
                                               -0.50
 # plt.savefig('images/05 13.png', dpi=300)
                                               -0.75 -
 plt.show()
                                                                0
                                                       -1
                                                                        1
                                                               PC1
Hsi-rin Ma
```

Cannot separate with a linear classifier

 $^{-1}$

0

PC1

1

```
Laboratory for
     Reliable
                  Separating Half-moon Shapes
     Computing

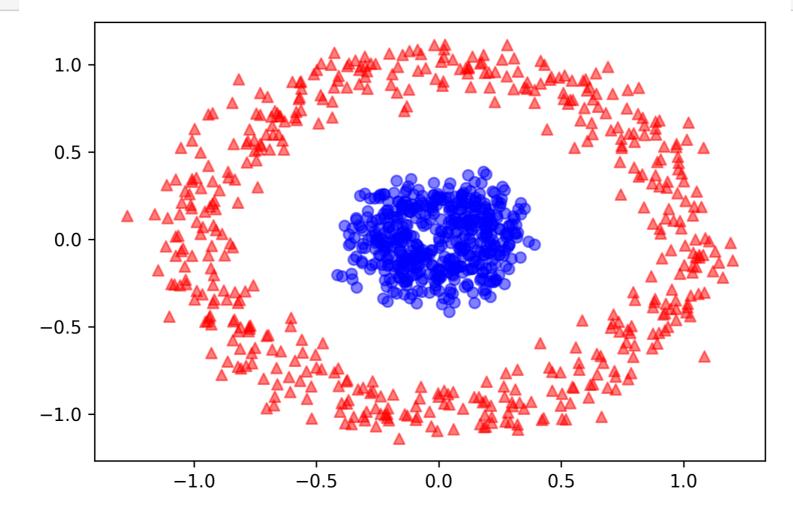
    Try RBF-kernel PCA

X kpca = rbf kernel pca(X, gamma=15, n components=2)
fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
ax[0].scatter(X kpca[y=0, 0], X kpca[y=0, 1],
            color='red', marker='^', alpha=0.5)
ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],
            color='blue', marker='o', alpha=0.5)
ax[1].scatter(X kpca[y==0, 0], np.zeros((50,1))+0.02,
            color='red', marker='^', alpha=0.5)
ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02,
            color='blue', marker='o', alpha=0.5)
ax[0].set xlabel('PC1')
ax[0].set ylabel('PC2')
                                              0.15
ax[1].set_ylim([-1, 1])
                                              0.10
ax[1].set yticks([])
                                              0.05
                                            °C2
ax[1].set xlabel('PC1')
                                              0.00
                                             -0.05
plt.tight layout()
                                             -0.10
# plt.savefig('images/05 14.png', dpi=300)
                                             -0.15
                                                     -0.1
                                                            0.0
                                                                             -0.1
                                                                                     0.0
                                                                                           0.1
                                                                   0.1
plt.show()
                                                            PC1
                                                                                    PC1
 . ....
```

54

Separating Concentric Circles

```
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2)
plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5)
plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5)
plt.tight_layout()
# plt.savefig('images/05_15.png', dpi=300)
plt.show()
```



Laboratory for

Reliable

Computing

```
Laboratory for
                  Separating Concentric Circles
    Somputina

    Standard PCA

scikit pca = PCA(n components=2)
X spca = scikit pca.fit transform(X)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3))
ax[0].scatter(X spca[y == 0, 0], X spca[y == 0, 1],
              color='red', marker='^', alpha=0.5)
ax[0].scatter(X spca[y == 1, 0], X spca[y == 1, 1],
              color='blue', marker='o', alpha=0.5)
ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02,
              color='red', marker='^', alpha=0.5)
ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02,
              color='blue', marker='o', alpha=0.5)
ax[0].set xlabel('PC1')
ax[0].set ylabel('PC2')
ax[1].set ylim([-1, 1])
                                                1.0
ax[1].set yticks([])
                                                0.5
ax[1].set xlabel('PC1')
                                             PC2
                                                0.0
                                               -0.5
plt.tight layout()
                                               -1.0
# plt.savefig('images/05 16.png', dpi=300)
                                                    -1.0
                                                        -0.5
                                                            0.0
                                                                0.5
                                                                    1.0
                                                                           -1.0 -0.5
                                                                                   0.0
                                                                                       0.5
plt.show()
                                                            PC1
                                                                                   PC1
```

-

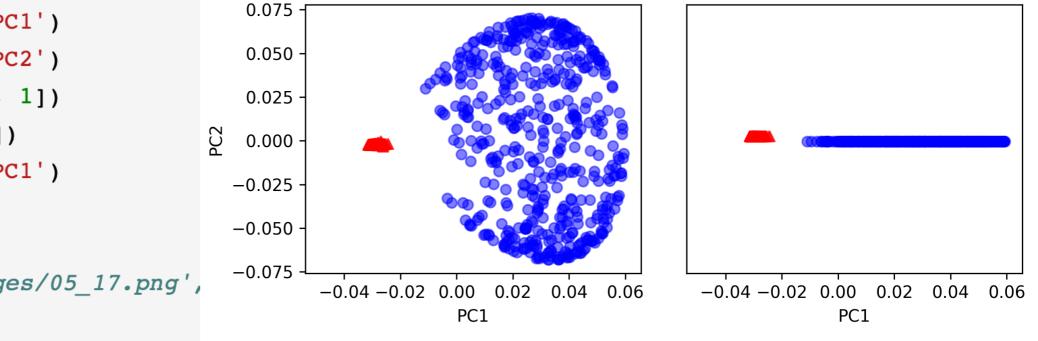
56

1.0

```
Laboratory for
    Reliable
                 Separating Concentric Circles
     Computing

    RBF-kernel PCA

X kpca = rbf kernel pca(X, gamma=15, n components=2)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3))
ax[0].scatter(X kpca[y == 0, 0], X kpca[y == 0, 1],
             color='red', marker='^', alpha=0.5)
ax[0].scatter(X kpca[y == 1, 0], X kpca[y == 1, 1],
             color='blue', marker='o', alpha=0.5)
ax[1].scatter(X kpca[y == 0, 0], np.zeros((500, 1)) + 0.02,
             color='red', marker='^', alpha=0.5)
ax[1].scatter(X kpca[y == 1, 0], np.zeros((500, 1)) - 0.02,
             color='blue', marker='o', alpha=0.5)
```



```
ax[0].set_xlabel('PC1')
ax[0].set_ylabel('PC2')
ax[1].set_ylim([-1, 1])
ax[1].set_yticks([])
ax[1].set_xlabel('PC1')
```

```
plt.tight_layout()
# plt.savefig('images/05_17.png',
plt.show()
```


$\phi()$ Projecting New Data Points

- For kernel-PCA, we obtain an eigenvector *a* of the centered kernel matrix (not the covariance matrix)
 a are samples that are already projected onto the principal
 - component axis $v. \phi()$ $\sum ()\phi() ()$
 - -For new data sample x', the projection computes $\phi(x')^T v$

$$\phi(\mathbf{x'})^T \mathbf{v} = \sum_i a^{(i)} \kappa(\mathbf{x'}, \mathbf{x}^{(i)})$$

- Kernel PCA is a memory-based method, because we need original training set $x^{(i)}$ each time to project new samples - Have to normalize the eigenvector a by its eigenvalue $Ka = \lambda a$

```
Laboratory for
         Modified rbf_kernel_pca Function
Reliable
Computing
     from scipy.spatial.distance import pdist, squareform
     from scipy import exp
     from scipy.linalg import eigh
     import numpy as np
     def rbf_kernel_pca(X, gamma, n_components):
         .....
        RBF kernel PCA implementation.
         Parameters
           _____
        X: {NumPy ndarray}, shape = [n samples, n features]
        gamma: float
          Tuning parameter of the RBF kernel
        n components: int
          Number of principal components to return
         Returns
         _____
         X pc: {NumPy ndarray}, shape = [n samples, k features]
           Projected dataset
          lambdas: list
           Eigenvalues
```

Hsi-Pin Ma

```
Take Taboratory for
Reliable
Computing Modified rbf_kernel_pca Function
```

```
# Calculate pairwise squared Euclidean distances
# in the MxN dimensional dataset.
sq_dists = pdist(X, 'sqeuclidean')
```

```
# Convert pairwise distances into a square matrix.
mat sq dists = squareform(sq dists)
```

```
# Compute the symmetric kernel matrix.
```

```
K = exp(-gamma * mat_sq_dists)
```

```
# Center the kernel matrix.
N = K.shape[0]
one_n = np.ones((N, N)) / N
K = K - one n.dot(K) - K.dot(one n) + one n.dot(K).dot(one n)
```

```
# Obtaining eigenpairs from the centered kernel matrix
# scipy.linalg.eigh returns them in ascending order
eigvals, eigvecs = eigh(K)
eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1]
```

# Collect	the top k eigenvectors (projected samples)	
alphas =	<pre>np.column_stack((eigvecs[:, i]</pre>	
	<pre>for i in range(n_components)))</pre>	
<i>#</i> Collect the corresponding eigenvalues		
lambdas	[eigvals[i] for i in range(n_components)]	

Hsi-Pin A return alphas, lambdas

Half-moon Dataset Example

• A new half-moon dataset and project onto 1D subspace

X, y = make_moons(n_samples=100, random_state=123)

alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1)

Assume the 26th point is a new data x' and project it onto new subspace

```
x_new = X[25]
x_new
```

```
array([ 1.8713, 0.0093])
```

```
x_proj = alphas[25] # original projection
```

x_proj

Laboratory for

Reliable Computing

```
array([ 0.0788])
```

```
def project_x(x_new, X, gamma, alphas, lambdas):
    pair_dist = np.array([np.sum((x_new - row)**2) for row in X])
    k = np.exp(-gamma * pair_dist)
    return k.dot(alphas / lambdas)

# projection of the "new" datapoint
x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas)
x_reproj
```


Half-moon Dataset Example

-0.005

-0.010

-0.015

-0.15

-0.10

-0.05

0.00

0.05

Visualize the projection

```
plt.scatter(alphas[y == 0, 0], np.zeros((50)),
            color='red', marker='^', alpha=0.5)
plt.scatter(alphas[y == 1, 0], np.zeros((50)),
             color='blue', marker='o', alpha=0.5)
plt.scatter(x proj, 0, color='black',
             label='original projection of point X[25]', marker='^', s=100)
plt.scatter(x_reproj, 0, color='green',
             label='remapped point X[25]', marker='x', s=500)
plt.legend(scatterpoints=1)
                                                 0.015
                                                                            original projection of point X[25]
                                                                            remapped point X[25]
plt.tight layout()
                                                 0.010
# plt.savefig('images/05 18.png', dpi=300)
plt.show()
                                                 0.005
                                                 0.000
```

0.15

0.10

Kernel PCA in Scikit-learn

-0.4

-0.4

-0.2

-0.1

0.0

PC1

0.1

0.2

-0.3

A kernel PCA class in the sklearn decomposition submodule

```
from sklearn.decomposition import KernelPCA
```

```
X, y = make_moons(n_samples=100, random_state=123)
scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15)
X_skernpca = scikit_kpca.fit_transform(X)
```

```
plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1],
             color='red', marker='^', alpha=0.5)
plt.scatter(X skernpca[y == 1, 0], X skernpca[y == 1, 1],
             color='blue', marker='o', alpha=0.5)
                                                        0.4
                                                        0.3
plt.xlabel('PC1')
                                                        0.2
plt.ylabel('PC2')
                                                        0.1
                                                      C2
                                                        0.0
plt.tight layout()
# plt.savefig('images/05_19.png', dpi=300)
                                                       -0.1
                                                       -0.2
plt.show()
                                                        -0.3
```

Hsi-Pin Ma

0.3

0.4