
Building Good Training Sets -
Data Preprocessing

Hsi-Pin Ma ⾺席彬

http://lms.nthu.edu.tw/course/40724
Department of Electrical Engineering

National Tsing Hua University

EE3700 Introduction to Machine Learning

http://lms.nthu.edu.tw/course/40724

Hsi-Pin Ma

Outline

•Dealing with Missing Data
•Handling with Categorical Data
•Partitioning a Dataset into a Separate Training

and Test Sets
•Feature Scaling: Bring Different Features onto

the Same Scale
•Feature Selection: Selecting Meaningful

Features

2

Hsi-Pin Ma

Dealing with Missing Data

3

Hsi-Pin Ma

Identifying Missing Values in Tabular Data

4

1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

In [3]: df.isnull()

Out[3]: A B C D
0 False False False False
1 False False True False
2 False False False True

In [4]: df.isnull().sum()

Out[4]: A 0
B 0
C 1
D 1
dtype: int64

In [5]: # access the underlying NumPy array
via the `values` attribute
df.values

Out[5]: array([[1., 2., 3., 4.],
[5., 6., nan, 8.],
[10., 11., 12., nan]])

1.2 Eliminating Instances or Features with Missing Values

In [6]: # remove rows that contain missing values

df.dropna(axis=0)

Out[6]: A B C D
0 1.0 2.0 3.0 4.0

In [7]: # remove columns that contain missing values

df.dropna(axis=1)

Out[7]: A B
0 1.0 2.0
1 5.0 6.0
2 10.0 11.0

In [8]: # only drop rows where all columns are NaN

df.dropna(how='all')

Out[8]: A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

2

Hsi-Pin Ma

Eliminating Instances or Features with
Missing Values

•The easiest way to deal with missing data is to
remove. Use dropna method

5

Hsi-Pin Ma

Imputing (Interpolating) Missing Values

•Use Imputer class for mean imputation
– Replace missing value with the mean value of the entire

feature column

6

Hsi-Pin Ma

Transformer API in Scikit-learn

•The imputer class belongs to transformer
class in scikit-learn

•The fit and transform are two essential
methods for transformer class

7

Hsi-Pin Ma

Estimator API in Scikit-learn
• Various classifiers in scikit-learn belongs to estimator class
• fit and predict are two essential methods of the estimator

class
• The estimator class also have a transform method

8

Hsi-Pin Ma

Handling Categorical Data

9

Hsi-Pin Ma

Nominal and Ordinal Features
•Ordinal features can be understood as categorical

values that can be sorted or ordered, but nominal
features are not.

10nominal ordinal numerical

Hsi-Pin Ma

Mapping Ordinal Features
• We usually use dictionary mapping to map values of

an ordinal feature to integers
• We can use reverse-dictionary mapping to transform

the integer values back to the original string values of
an ordinal feature

11

Hsi-Pin Ma

Encoding Class Labels (1/3)
• Many ML libraries require that class labels are encoded as

integers
• In scikit-learn, most classifiers convert classes to integers

internally
• This can be done by creating a mapping dictionary

12

Hsi-Pin Ma

Encoding Class Labels (2/3)
• Define a reverse-mapping dictionary can map the converted

class labels back to the original string representation

13

Hsi-Pin Ma

Encoding Class Labels (3/3)

•In scikit-learn, the preprocessing module has
a LabelEncoder class which directly
implements the conversion

14

Hsi-Pin Ma

Performing One-Hot Encoding on
Nominal Features (1/3)

• Performing label conversion to integers directly for
nominal features does not make any reasonable sense
since the values of a nominal feature do not have any
intrinsic order

15

Hsi-Pin Ma

Performing One-Hot Encoding on
Nominal Features (2/3)

•Instead, one-hot encoding is a common
technique for this problem
– To create a new dummy feature for each value possible

value in the nominal feature column
– If there are three possible values red, blue, green of the

color feature which is nominal, we create three new
dummy feature color_red, color_blue, color_green, and
binary values are assigned to these new dummy values

– If an instance has blue color value, the values of the three
dummy features will be color_red=0, color_blue=1,
color_green=0

16

Hsi-Pin Ma

Performing One-Hot Encoding on
Nominal Features (3/3)

17

Hsi-Pin Ma

Partition a Dataset into a Separate
Training and Test Sets

18

Hsi-Pin Ma

Wine Dataset
•178 wine instances with 13 features

19

Hsi-Pin Ma

Wine Dataset
• Extract feature matrix X and the class label vector y, both

as NumPy array, from df_wine
• Split the data into separate training and test datasets (7:3)

by scikit-learn’s train_test_split function from
model_selection module

• The stratification is specified by y

20

Hsi-Pin Ma

Feature Scaling
Bring Different Features onto the Same Scale

21

Hsi-Pin Ma

•Rescale values in a feature column to a range of [0,1]
•A special case of min-max scaling

– and are the minimum and maximum value of the ith
feature column

•Useful when we need values in a bounded interval

Normalization

22

Chapter 4

[121]

The importance of feature scaling can be illustrated by a simple example. Let's
assume that we have two features where one feature is measured on a scale from 1
to 10 and the second feature is measured on a scale from 1 to 100,000, respectively.
When we think of the squared error function in Adaline in Chapter 2, Training Simple
0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, it is intuitive to say that the algorithm
will mostly be busy optimizing the weights according to the larger errors in the
second feature. Another example is the k-nearest neighbors (KNN) algorithm with
a Euclidean distance measure; the computed distances between samples will be
dominated by the second feature axis.

Now, there are two common approaches to bring different features onto the same
scale: normalization and standardization. Those terms are often used quite loosely
LQ�GLIIHUHQW�ÀHOGV��DQG�WKH�PHDQLQJ�KDV�WR�EH�GHULYHG�IURP�WKH�FRQWH[W��0RVW�RIWHQ��
normalization refers to the rescaling of the features to a range of [0, 1], which is a
special case of min-max scaling. To normalize our data, we can simply apply the
min-max scaling to each feature column, where the new value ()i

normx of a sample ()ix
can be calculated as follows:

()
()

min

max min

i
i
norm

x xx
x x

−=
−

Here, ()ix is a particular sample, minx is the smallest value in a feature column, and
maxx the largest value.

The min-max scaling procedure is implemented in scikit-learn and can be used as
follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)

Chapter 4

[121]

The importance of feature scaling can be illustrated by a simple example. Let's
assume that we have two features where one feature is measured on a scale from 1
to 10 and the second feature is measured on a scale from 1 to 100,000, respectively.
When we think of the squared error function in Adaline in Chapter 2, Training Simple
0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, it is intuitive to say that the algorithm
will mostly be busy optimizing the weights according to the larger errors in the
second feature. Another example is the k-nearest neighbors (KNN) algorithm with
a Euclidean distance measure; the computed distances between samples will be
dominated by the second feature axis.

Now, there are two common approaches to bring different features onto the same
scale: normalization and standardization. Those terms are often used quite loosely
LQ�GLIIHUHQW�ÀHOGV��DQG�WKH�PHDQLQJ�KDV�WR�EH�GHULYHG�IURP�WKH�FRQWH[W��0RVW�RIWHQ��
normalization refers to the rescaling of the features to a range of [0, 1], which is a
special case of min-max scaling. To normalize our data, we can simply apply the
min-max scaling to each feature column, where the new value ()i

normx of a sample ()ix
can be calculated as follows:

()
()

min

max min

i
i
norm

x xx
x x

−=
−

Here, ()ix is a particular sample, minx is the smallest value in a feature column, and
maxx the largest value.

The min-max scaling procedure is implemented in scikit-learn and can be used as
follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)

Chapter 4

[121]

The importance of feature scaling can be illustrated by a simple example. Let's
assume that we have two features where one feature is measured on a scale from 1
to 10 and the second feature is measured on a scale from 1 to 100,000, respectively.
When we think of the squared error function in Adaline in Chapter 2, Training Simple
0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, it is intuitive to say that the algorithm
will mostly be busy optimizing the weights according to the larger errors in the
second feature. Another example is the k-nearest neighbors (KNN) algorithm with
a Euclidean distance measure; the computed distances between samples will be
dominated by the second feature axis.

Now, there are two common approaches to bring different features onto the same
scale: normalization and standardization. Those terms are often used quite loosely
LQ�GLIIHUHQW�ÀHOGV��DQG�WKH�PHDQLQJ�KDV�WR�EH�GHULYHG�IURP�WKH�FRQWH[W��0RVW�RIWHQ��
normalization refers to the rescaling of the features to a range of [0, 1], which is a
special case of min-max scaling. To normalize our data, we can simply apply the
min-max scaling to each feature column, where the new value ()i

normx of a sample ()ix
can be calculated as follows:

()
()

min

max min

i
i
norm

x xx
x x

−=
−

Here, ()ix is a particular sample, minx is the smallest value in a feature column, and
maxx the largest value.

The min-max scaling procedure is implemented in scikit-learn and can be used as
follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)

Hsi-Pin Ma

Standardization
•Rescale values in a feature column to take the

form of a standard normal distribution
– Gaussian with zero mean and unit variance

23

Building Good Training Sets – Data Preprocessing

[122]

Although normalization via min-max scaling is a commonly used technique that
is useful when we need values in a bounded interval, standardization can be more
practical for many machine learning algorithms, especially for optimization algorithms
such as gradient descent. The reason is that many linear models, such as the logistic
regression and SVM that we remember from Chapter 3, A Tour of Machine Learning
&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, initialize the weights to 0 or small random values close
to 0. Using standardization, we center the feature columns at mean 0 with standard
deviation 1 so that the feature columns takes the form of a normal distribution, which
makes it easier to learn the weights. Furthermore, standardization maintains useful
information about outliers and makes the algorithm less sensitive to them in contrast
to min-max scaling, which scales the data to a limited range of values.

The procedure for standardization can be expressed by the following equation:

()
()i

i x
std

x

xx µ
σ
−=

Here, xµ is the sample mean of a particular feature column and xσ is the
corresponding standard deviation.

The following table illustrates the difference between the two commonly used
feature scaling techniques, standardization and normalization, on a simple sample
dataset consisting of numbers 0 to 5:

,QSXW Standardized Min-max normalized
0.0 -1.46385 0.0
1.0 -0.87831 0.2
2.0 -0.29277 0.4
3.0 0.29277 0.6
4.0 0.87831 0.8
5.0 1.46385 1.0

<RX�FDQ�SHUIRUP�WKH�VWDQGDUGL]DWLRQ�DQG�QRUPDOL]DWLRQ�VKRZQ�LQ�WKH�WDEOH�PDQXDOO\�
by executing the following code examples:

>>> ex = np.array([0, 1, 2, 3, 4, 5])
>>> print('standardized:', (ex - ex.mean()) / ex.std())
standardized: [-1.46385011 -0.87831007 -0.29277002 0.29277002
0.87831007 1.46385011]
>>> print('normalized:', (ex - ex.min()) / (ex.max() - ex.min()))
normalized: [0. 0.2 0.4 0.6 0.8 1.]

Hsi-Pin Ma

Feature Selection
Selecting Meaningful Features

24

Hsi-Pin Ma

Select Meaningful Features

•The common reason for overfitting is that our
model is too complex for the giving training
dataset

•Common solutions to reduce generalization error
– Collect more training data
– Choose a simpler model with few parameters
– Introduce a penalty for complexity via regularization
– Reduce the dimensionality of the data

25

Hsi-Pin Ma

L1 and L2 Regularization

•L2 regularization

•L1 regularization

– L1 yields sparse feature vectors; most feature weights
will be zero

– Useful for high-dimensional datasets with irrelevant
features

– Can be viewed as a technique for feature selection

26

Building Good Training Sets – Data Preprocessing

[124]

/��DQG�/��UHJXODUL]DWLRQ�DV�SHQDOWLHV�DJDLQVW�
model complexity
We recall from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ,
that L2 regularization is one approach to reduce the complexity of a model by
SHQDOL]LQJ�ODUJH�LQGLYLGXDO�ZHLJKWV��ZKHUH�ZH�GHÀQHG�WKH�/��QRUP�RI�RXU�ZHLJKW�
vector w as follows:

2 2
2

1
2 :

m

j
j

L w
=

=∑w

Another approach to reduce the model complexity is the related L1 regularization:

1
1

1:
m

j
j

L w
=

=∑w

Here, we simply replaced the square of the weights by the sum of the absolute
values of the weights. In contrast to L2 regularization, L1 regularization usually
yields sparse feature vectors; most feature weights will be zero. Sparsity can be
useful in practice if we have a high-dimensional dataset with many features that are
irrelevant, especially cases where we have more irrelevant dimensions than samples.
In this sense, L1 regularization can be understood as a technique for feature selection.

$�JHRPHWULF�LQWHUSUHWDWLRQ�RI�/��UHJXODUL]DWLRQ
As mentioned in the previous section, L2 regularization adds a penalty term to
the cost function that effectively results in less extreme weight values compared
to a model trained with an unregularized cost function. To better understand how
L1 regularization encourages sparsity, let's take a step back and take a look at a
geometric interpretation of regularization. Let us plot the contours of a convex cost
IXQFWLRQ�IRU�WZR�ZHLJKW�FRHIÀFLHQWV� 1w and 2w . Here, we will consider the Sum of
Squared Errors (SSE) cost function that we used for Adaline in Chapter 2, Training
6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, since it is spherical and easier to
draw than the cost function of logistic regression; however, the same concepts apply
WR�WKH�ODWWHU��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�FRPELQDWLRQ�RI�ZHLJKW�FRHIÀFLHQWV�
WKDW�PLQLPL]H�WKH�FRVW�IXQFWLRQ�IRU�WKH�WUDLQLQJ�GDWD��DV�VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�
(the point in the center of the ellipses):

Building Good Training Sets – Data Preprocessing

[124]

/��DQG�/��UHJXODUL]DWLRQ�DV�SHQDOWLHV�DJDLQVW�
model complexity
We recall from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ,
that L2 regularization is one approach to reduce the complexity of a model by
SHQDOL]LQJ�ODUJH�LQGLYLGXDO�ZHLJKWV��ZKHUH�ZH�GHÀQHG�WKH�/��QRUP�RI�RXU�ZHLJKW�
vector w as follows:

2 2
2

1
2 :

m

j
j

L w
=

=∑w

Another approach to reduce the model complexity is the related L1 regularization:

1
1

1:
m

j
j

L w
=

=∑w

Here, we simply replaced the square of the weights by the sum of the absolute
values of the weights. In contrast to L2 regularization, L1 regularization usually
yields sparse feature vectors; most feature weights will be zero. Sparsity can be
useful in practice if we have a high-dimensional dataset with many features that are
irrelevant, especially cases where we have more irrelevant dimensions than samples.
In this sense, L1 regularization can be understood as a technique for feature selection.

$�JHRPHWULF�LQWHUSUHWDWLRQ�RI�/��UHJXODUL]DWLRQ
As mentioned in the previous section, L2 regularization adds a penalty term to
the cost function that effectively results in less extreme weight values compared
to a model trained with an unregularized cost function. To better understand how
L1 regularization encourages sparsity, let's take a step back and take a look at a
geometric interpretation of regularization. Let us plot the contours of a convex cost
IXQFWLRQ�IRU�WZR�ZHLJKW�FRHIÀFLHQWV� 1w and 2w . Here, we will consider the Sum of
Squared Errors (SSE) cost function that we used for Adaline in Chapter 2, Training
6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, since it is spherical and easier to
draw than the cost function of logistic regression; however, the same concepts apply
WR�WKH�ODWWHU��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�FRPELQDWLRQ�RI�ZHLJKW�FRHIÀFLHQWV�
WKDW�PLQLPL]H�WKH�FRVW�IXQFWLRQ�IRU�WKH�WUDLQLQJ�GDWD��DV�VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�
(the point in the center of the ellipses):

Hsi-Pin Ma

• Regularization penalty and cost pull in opposite directions
– Regularization wants the weights to be at (0,0), i.e., prefers a simpler

model, and decreases the dependence of the model on training data

Geometric Interpretation of
L2, L1 Regularization

27
L2 Regularization L1 Regularization

Hsi-Pin Ma

Scikit-lean with L1 Regularization
•For regularized models in scikit-learn that supports

L1 regularization, we can set the penalty parameter
to l1 to obtain a sparse solution

•Apply to the standardized Wine data

28

Hsi-Pin Ma

L1 Regularization on Wine Data

29

Hsi-Pin Ma

Dimensionality Reduction of Data

•Two main categories of dimensionality
reduction
– Feature selection

•Selecting a subset of important features from the original
features

– Feature extraction
•Deriving new features from the original features by

creating a mapping from the original feature space to a
feature space of lower dimension

30

lr = LogisticRegression(penalty='l1', C=10.**c, random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)

weights = np.array(weights)

for column, color in zip(range(weights.shape[1]), colors):
plt.plot(params, weights[:, column],

label=df_wine.columns[column + 1],
color=color)

plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**(-5), 10**5])
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(loc='upper center',

bbox_to_anchor=(1.38, 1.03),
ncol=1, fancybox=True)

#plt.savefig('images/04_07.png', dpi=300,
bbox_inches='tight', pad_inches=0.2)
plt.show()

5.2 Dimensionality Reduction of Data

5.2.1 Feature selection versus feature extraction

• Feature selection : selecting a subset of important features from the original features.
• Feature extraction : deriving new features from the original features by creating a mapping

from the original feature space Rm to a feature space Rd of lower dimension.

16

lr = LogisticRegression(penalty='l1', C=10.**c, random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)

weights = np.array(weights)

for column, color in zip(range(weights.shape[1]), colors):
plt.plot(params, weights[:, column],

label=df_wine.columns[column + 1],
color=color)

plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**(-5), 10**5])
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(loc='upper center',

bbox_to_anchor=(1.38, 1.03),
ncol=1, fancybox=True)

#plt.savefig('images/04_07.png', dpi=300,
bbox_inches='tight', pad_inches=0.2)
plt.show()

5.2 Dimensionality Reduction of Data

5.2.1 Feature selection versus feature extraction

• Feature selection : selecting a subset of important features from the original features.
• Feature extraction : deriving new features from the original features by creating a mapping

from the original feature space Rm to a feature space Rd of lower dimension.

16

Hsi-Pin Ma

Sequential Feature Selection Algorithms

•A family of greedy search algorithms that are
used to eliminate unimportant features from the
original features

•Dimensionality reduction of data aims to
improve computational efficiency and reduce
the generalization error of model by removing
irrelevant features or noise

•Useful for learning algorithms which do not
support regularization

31

Hsi-Pin Ma

Sequential Backward Selection (SBS)
Algorithm

•Implementation of SBS
– Initialize the algorithm with k=d, where d is the

dimensionality of the full feature space Xd
– Determine the feature x- that maximizes the criterion: x-

=argmax J(Xk-x), where
– Remove the feature x- from the feature set Xk-1=Xk-x-;
k=k-1

– Terminate if k equals the number of desired features;
otherwise, go to step 2.

32

Chapter 4

[131]

The idea behind the SBS algorithm is quite simple: SBS sequentially removes
features from the full feature subset until the new feature subspace contains the
desired number of features. In order to determine which feature is to be removed
DW�HDFK�VWDJH��ZH�QHHG�WR�GHÀQH�WKH�FULWHULRQ�IXQFWLRQ�J that we want to minimize.
The criterion calculated by the criterion function can simply be the difference in
SHUIRUPDQFH�RI�WKH�FODVVLÀHU�EHIRUH�DQG�DIWHU�WKH�UHPRYDO�RI�D�SDUWLFXODU�IHDWXUH��
7KHQ��WKH�IHDWXUH�WR�EH�UHPRYHG�DW�HDFK�VWDJH�FDQ�VLPSO\�EH�GHÀQHG�DV�WKH�IHDWXUH�
that maximizes this criterion; or in more intuitive terms, at each stage we eliminate
the feature that causes the least performance loss after removal. Based on the
SUHFHGLQJ�GHÀQLWLRQ�RI�6%6��ZH�FDQ�RXWOLQH�WKH�DOJRULWKP�LQ�IRXU�VLPSOH�VWHSV�

1. Initialize the algorithm with N G, where d is the dimensionality of the full
feature space dX .

2. Determine the feature x− that maximizes the criterion: ()argmax kJ− = −x X x),
where k∈x X .

3. Remove the feature x− from the feature set: ; 1k -1 k k k−− = −X = X x .
4. Terminate if N equals the number of desired features; otherwise, go to step 2.

<RX�FDQ�ÀQG�D�GHWDLOHG�HYDOXDWLRQ�RI�VHYHUDO�VHTXHQWLDO�IHDWXUH�
algorithms in &RPSDUDWLYH�6WXG\�RI�7HFKQLTXHV�IRU�/DUJH�6FDOH�
)HDWXUH�6HOHFWLRQ,)��)HUUL, P. Pudil, M. Hatef, and J. Kittler, pages
403-413, 1994.

Unfortunately, the SBS algorithm has not been implemented in scikit-learn yet. But
since it is so simple, let us go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

class SBS():
 def __init__(self, estimator, k_features,
 scoring=accuracy_score,
 test_size=0.25, random_state=1):
 self.scoring = scoring
 self.estimator = clone(estimator)
 self.k_features = k_features
 self.test_size = test_size

Hsi-Pin Ma

Sequential Feature Selection (SBS) (1/3)

33

Hsi-Pin Ma

Sequential Feature Selection (SBS) (2/3)

34

Hsi-Pin Ma

Sequential Feature Selection (SBS) (3/3)

35

Hsi-Pin Ma

KNN Classifier with SBS

36

Hsi-Pin Ma

Assessing Feature Importance with
Random Forest

•Measure
– With K binary decision trees in a random forest, the

mean decrease impurity of the ith feature xi for the
random forest is the average of the mean decrease
impurity of the K trees

– The larger the mean decrease impurity, the more
important a feature is.

37

Hsi-Pin Ma

scikit-learn Example
• The DecisionTreeClassifier and RandomForestClassifier

classes in scikit-learn’s tree and ensemble modules
respectively automatically compute the feature importance
and store the values in the feature_importance_ attribute
(which is an array)

38

Hsi-Pin Ma

Results

39

Hsi-Pin Ma

scikit-learn Example
• Scikit-learn also implements a SelectFromModel

class that selects features based on user-specific
threshold after model fitting

40

