

EE3700 Introduction to Machine Learning

Building Good Training Sets -Data Preprocessing

Hsi-Pin Ma 馬席彬

http://lms.nthu.edu.tw/course/40724 Department of Electrical Engineering National Tsing Hua University

Outline

- Dealing with Missing Data
- Handling with Categorical Data
- Partitioning a Dataset into a Separate Training and Test Sets
- Feature Scaling: Bring Different Features onto the Same Scale
- Feature Selection: Selecting Meaningful Features

Dealing with Missing Data

Reliable Compating Compating Values in Tabular Data

```
import pandas as pd
from io import StringIO
import sys
csv data = \
'''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0.
# If you are using Python 2.7, you need
# to convert the string to unicode:
if (sys.version info < (3, 0)):</pre>
    csv data = unicode(csv data)
df = pd.read csv(StringIO(csv data))
df
```

	Α	В	С	D
0	1.0	2.0	3.0	4.0
1	5.0	6.0	NaN	8.0
2	10.0	11.0	12.0	NaN

Hsi-Pin Ma

In [3]: df.isnull() Out[3]: Α В С D 0 False False False False 1 False False True False 2 False False False True In [4]: df.isnull().sum() Out[4]: A 0 В 0 С 1 1 D dtype: int64 In [5]: # access the underlying NumPy array *# via the `values` attribute* df.values Out[5]: array([[1., 2., 3., 4.], [5., 6., nan, 8.],

[10., 11., 12., nan]])

Laboratory for Reliable ^{Computing}Eliminating Instances or Features with **Missing Values** • The easiest way to deal with missing data is to remove. Use **dropna** method В С D Α 2.0 3.0 4.0 0 1.0 1 5.0 6.0 NaN 8.0 # remove rows that contain missing values # only drop rows where all columns are NaN 2 10.0 11.0 12.0 NaN df.dropna(axis=0) df.dropna(how='all') В С D С D **0** 1.0 2.0 3.0 4.0 2.0 3.0 4.0 1.0 8.0 5.0 6.0 NaN *#* remove columns that contain missing values 10.0 11.0 12.0 NaN 2 df.dropna(axis=1) # drop rows that have less than 3 real values Α В df.dropna(thresh=4) 2.0 1.0 D 5.0 6.0 **0** 1.0 2.0 3.0 4.0 **2** 10.0 11.0 *#* remove columns that contain missing values # only drop rows where NaN appear in specific columns (here: 'C') df.dropna(axis=1) df.dropna(subset=['C']) Α В Α В С D 2.0 1.0 3.0 1.0 2.0 4.0 5.0 6.0 10.0 11.0 12.0 NaN Hsi-Pin Ma **2** 10.0 11.0

Imputing (Interpolating) Missing Values

• Use **Imputer** class for mean imputation

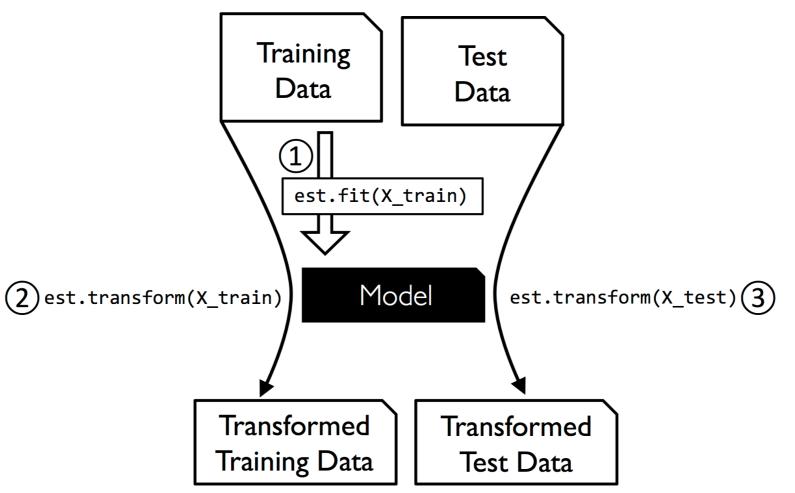
- Replace missing value with the mean value of the entire feature column

```
# impute missing values via the column mean
from sklearn.preprocessing import Imputer
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr = imr.fit(df.values)
imputed_data = imr.transform(df.values)
imputed_data
```

	Α	В	С	D
0	1.0	2.0	3.0	4.0
1	5.0	6.0	NaN	8.0
2	10.0	11.0	12.0	NaN

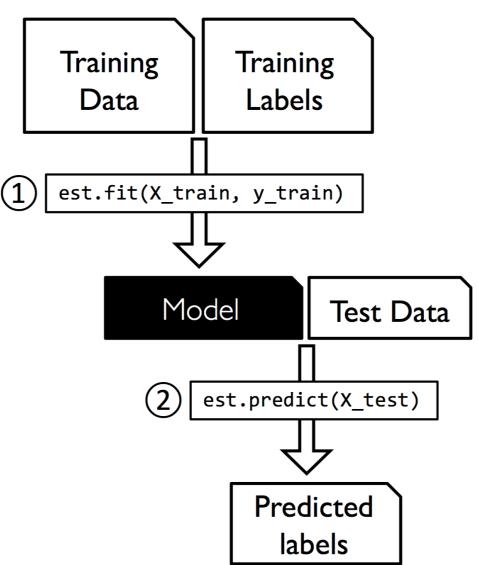
Transformer API in Scikit-learn

- The imputer class belongs to transformer class in scikit-learn
- The fit and transform are two essential methods for transformer class



Estimator API in Scikit-learn

- Various classifiers in scikit-learn belongs to estimator class
- fit and predict are two essential methods of the estimator class
- The **estimator** class also have a **transform** method



Handling Categorical Data

Nominal and Ordinal Features

 Ordinal features can be understood as categorical values that can be sorted or ordered, but nominal features are not.

		color	size	price	classlabel
	0 g		Μ	10.1	class1
	1	red	L	13.5	class2
	2	blue	XL	15.3	class1
nomi	ina	Í	ordir	nal	numerica

Hsi-Pin Ma

Mapping Ordinal Features

- We usually use *dictionary mapping* to map values of an ordinal feature to integers
- We can use *reverse-dictionary mapping* to transform the integer values back to the original string values of an ordinal feature

```
df
```

	color	size	price	classlabel
0	green	1	10.1	class1
1	red	2	13.5	class2
2	blue	3	15.3	class1

```
inv_size_mapping = {v: k for k, v in size_mapping.items()}
df['size'].map(inv_size_mapping)
0 M
1 L
2 XL
```

```
Name: size, dtype: object
```


Encoding Class Labels (1/3)

- Many ML libraries require that class labels are encoded as integers
- In scikit-learn, most classifiers convert classes to integers internally
- This can be done by creating a mapping dictionary

```
import numpy as np
# create a mapping dict
# to convert class labels from strings to integers
class_mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
class_mapping
```

```
{'class1': 0, 'class2': 1}
```

```
# to convert class labels from strings to integers
df['classlabel'] = df['classlabel'].map(class_mapping)
df
```

color size price classlat	bel
---------------------------	-----

0	green	1	10.1	0
1	red	2	13.5	1
2	blue	3	15.3	0

Hsi-Pin Ma

Encoding Class Labels (2/3)

• Define a reverse-mapping dictionary can map the converted class labels back to the original string representation

reverse the class label mapping inv_class_mapping = {v: k for k, v in class_mapping.items()} df['classlabel'] = df['classlabel'].map(inv_class_mapping) df

	color	size	price	classlabel
0	green	1	10.1	class1
1	red	2	13.5	class2
2	blue	3	15.3	class1

Encoding Class Labels (3/3)

• In scikit-learn, the **preprocessing** module has a **LabelEncoder** class which directly implements the conversion

from sklearn.preprocessing import LabelEncoder

```
# Label encoding with sklearn's LabelEncoder
```

```
class_le = LabelEncoder()
```

```
y =_class_le.fit_transform(df['classlabel'].values)
```

У

```
array([0, 1, 0])
```

```
# reverse mapping
```

```
class_le.inverse_transform(y)
```

array(['class1', 'class2', 'class1'], dtype=object)

Performing One-Hot Encoding on Nominal Features (1/3)

• Performing label conversion to integers directly for nominal features does not make any reasonable sense since the values of a nominal feature *do not have* any *intrinsic order*

```
X = df[['color', 'size', 'price']].values
color_le = LabelEncoder()
X[:, 0] = color_le.fit_transform(X[:, 0])
X
array([[1, 1, 10.1],
       [2, 2, 13.5],
```

```
[0, 3, 15.3]], dtype=object)
```


Performing One-Hot Encoding on Nominal Features (2/3)

Instead, one-hot encoding is a common technique for this problem

- To create a new dummy feature for each value possible value in the nominal feature column
- If there are three possible values *red*, *blue*, *green* of the color feature which is nominal, we create three new dummy feature *color_red*, *color_blue*, *color_green*, and binary values are assigned to these new dummy values
- If an instance has blue color value, the values of the three dummy features will be *color_red=0*, *color_blue=1*, *color_green=0*

Laboratory for **Performing One-Hot Encoding on** Nominal Features (3/3)

<pre>ohe = OneHotEncoder(categorical_features=[0]) ohe.fit_transform(X).toarray()</pre>								
array([[0.,	1.,	0.,	1.,	10.1],			
[0.,	0.,	1.,	2.,	13.5],			
[1.,	0.,	0.,	3.,	15.3]])			

from sklearn.preprocessing import OneHotEncoder

return dense array so that we can skip *#* the toarray step

Reliable

Computing

```
ohe = OneHotEncoder(categorical features=[0], sparse=False)
ohe.fit transform(X)
```

array([[0.	,	1.,	0.,	1.,	10.1],
[0.	,	0.,	1.,	2.,	13.5],
[1.	,	0.,	0.,	3.,	15.3]])

one-hot encoding via pandas

pd.get dummies(df[['price', 'color', 'size']])

	price	size	color_blue	color_green	color_red
0	10.1	1	0	1	0
1	13.5	2	0	0	1
2	15.3	3	1	0	0

multicollinearity guard in get dummies

pd.get_dummies(df[['price', 'color', 'size']], drop_first=True)

	price	size	color_green	color_red
0	10.1	1	1	0
1	13.5	2	0	1
2	15.3	3	0	0

multicollinearity guard for the OneHotEncoder

ohe = OneHotEncoder(categorical features=[0]) ohe.fit transform(X).toarray()[:, 1:]

array([[1., 0., 1., 10.1], [0., 1., 2., 13.5], [0., 0., 3., 15.3]])

Partition a Dataset into a Separate Training and Test Sets

Wine Dataset

• 178 wine instances with 13 features

```
print('Class labels', np.unique(df_wine['Class label']))
df_wine.head()
```

```
Class labels [1 2 3]
```

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyan
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1

Wine Dataset

- Extract feature matrix *X* and the class label vector *y*, both as NumPy array, from *df_wine*
- Split the data into separate training and test datasets (7:3) by scikit-learn's **train_test_split** function from **model_selection** module
- The stratification is specified by *y*

Feature Scaling Bring Different Features onto the Same Scale

Normalization $r^{(0)}$

- Rescale values in a feature column to a range of [0,1]
- A special case of min-max scaling $x_{norm}^{(i)} = \frac{x^{(i)} x_{min}}{x_{max} x_{min}}$
 - $\begin{array}{c} x_{\min} \text{ and } x_{\max} \text{ are the minimum and maximum value of the } ith \\ \text{feature column} \\ x \end{array} \xrightarrow{x^{(i)}} x$
- Useful when we need values in a bounded interval

```
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
```

()

aboratory for

omputina

()

Standardization

- Rescale values in a feature column to take the form of a standard normal distribution
 - -Gaussian with *zero mean* and *unit variance*

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

from sklearn.preprocessing import StandardScaler

```
stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X test std = stdsc.transform(X test)
```

L

Feature Selection Selecting Meaningful Features

Select Meaningful Features

- The common reason for overfitting is that our model is too complex for the giving training dataset
- Common solutions to reduce generalization error
 - Collect more training data
 - Choose a simpler model with few parameters
 - Introduce a penalty for complexity via regularization
 - Reduce the dimensionality of the data

L1 and L2 Regularization

• L2 regularization

$$L2: \left\| \boldsymbol{w} \right\|_{2}^{2} = \sum_{j=1}^{m} w_{j}^{2}$$

• L1 regularization

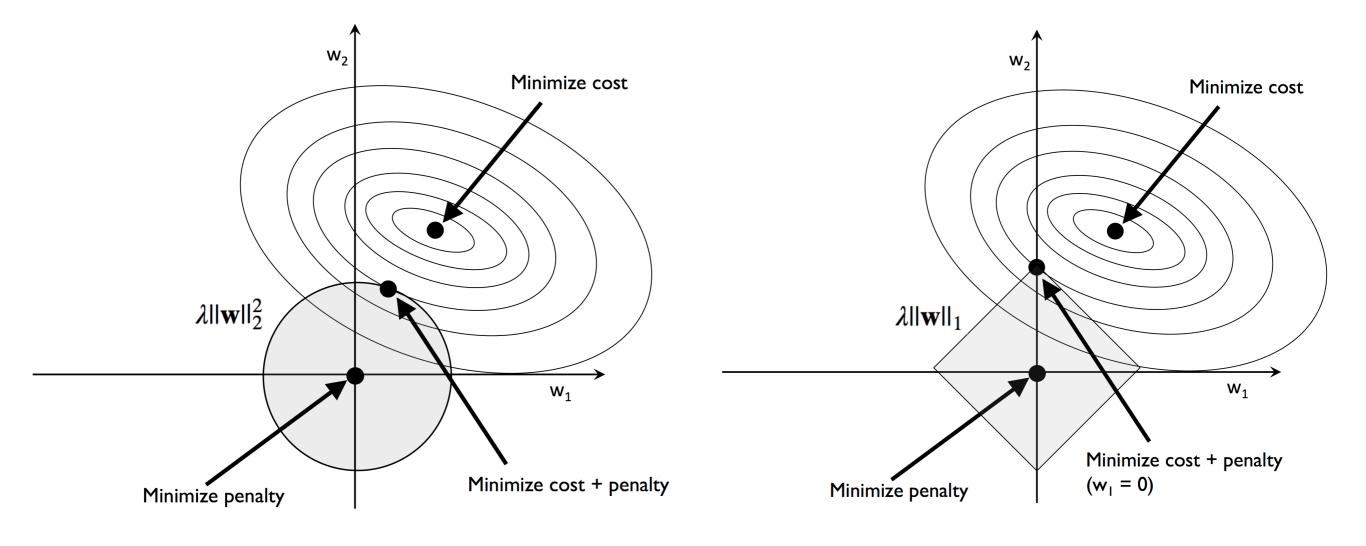
$$L1: \left\| \boldsymbol{w} \right\|_{1} = \sum_{j=h}^{m} \left| w_{j} \right|$$

- L1 yields sparse feature vectors; most feature weights will be zero
- -Useful for high-dimensional datasets with irrelevant features
- Can be viewed as a technique for feature selection

Geometric Interpretation of L2, L1 Regularization

• Regularization penalty and cost pull in opposite directions

– Regularization wants the weights to be at (0,0), i.e., prefers a simpler model, and decreases the dependence of the model on training data



L2 Regularization

L1 Regularization

Scikit-lean with L1 Regularization

• For regularized models in scikit-learn that supports L1 regularization, we can set the *penalty* parameter to *l1* to obtain a sparse solution

```
from sklearn.linear_model import LogisticRegression
LogisticRegression(penalty='l1')
```

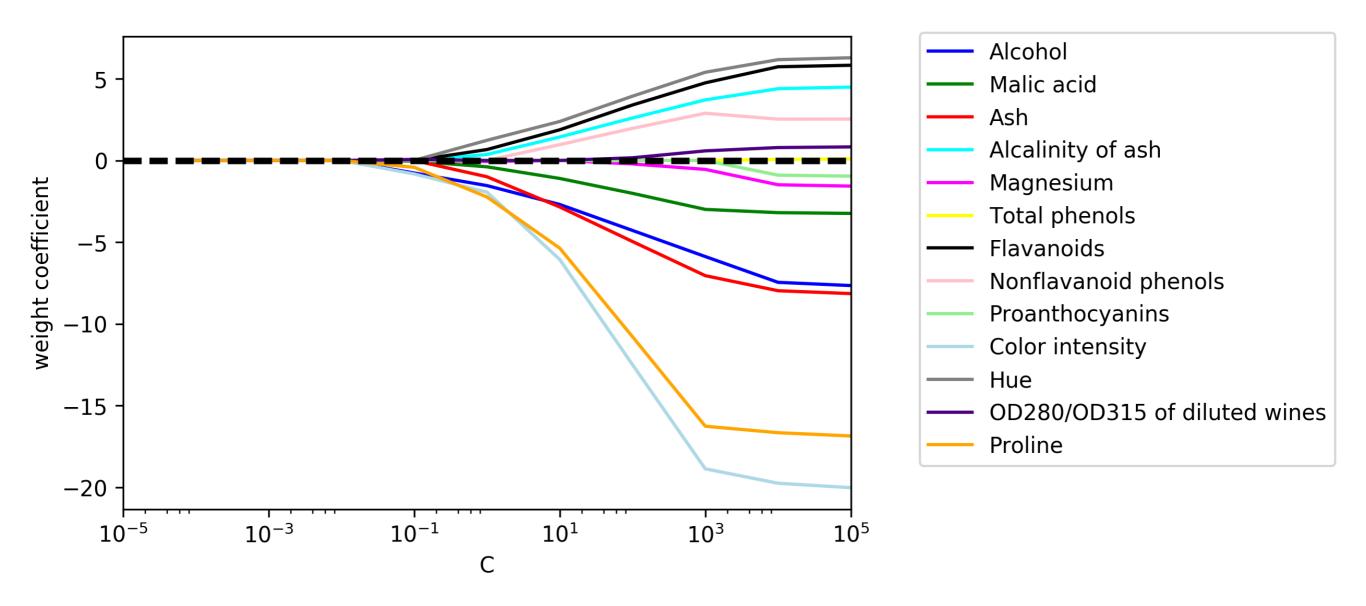
Apply to the standardized Wine data

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty='11', C=1.0)
lr.fit(X_train_std, y_train)
print('Training accuracy:', lr.score(X_train_std, y_train))
print('Test accuracy:', lr.score(X_test_std, y_test))
```

```
Training accuracy: 1.0
```

```
Hsi-Pin Test accuracy: 1.0
```


L1 Regularization on Wine Data



Dimensionality Reduction of Data

• Two main categories of dimensionality reduction

- -Feature selection
 - •Selecting a subset of important features from the original features
- -Feature extraction
 - Deriving new features from the original features by creating a mapping from the original feature space \mathbb{R}^m to a feature space \mathbb{R}^d of lower dimension

Sequential Feature Selection Algorithms

- A family of greedy search algorithms that are used to eliminate *unimportant* features from the original features
- Dimensionality reduction of data aims to improve computational efficiency and reduce the generalization error of model by removing irrelevant features or noise
- Useful for learning algorithms which do not support regularization

Reliable Computing Sequential Backward Selection (SBS) Algorithm

Implementation of SBS

- Initialize the algorithm with k=d, where d is the dimensionality of the full feature space X_d
- Determine the feature x- that maximizes the criterion: x-argmax J(X_k -x), where $x \in X_k$
- -Remove the feature x-from the feature set $X_{k-1}=X_k-x$; k=k-1
- Terminate if k equals the number of desired features; otherwise, go to step 2.

Sequential Feature Selection (SBS) (1/3)

```
from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.metrics import accuracy score
from sklearn.model selection import train test split
class SBS():
    def <u>init</u> (self, estimator, k_features, scoring=accuracy_score,
                 test size=0.25, random state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k features = k features
        self.test_size = test_size
        self.random state = random state
```

Take Reliable Sequential Feature Selection (SBS) (2/3)

```
def fit(self, X, y):
   X train, X test, y train, y test = \
        train test split(X, y, test size=self.test size,
                         random state=self.random state)
    dim = X train.shape[1]
    self.indices = tuple(range(dim))
    self.subsets = [self.indices ]
    score = self. calc score(X train, y train,
                             X test, y test, self.indices )
    self.scores = [score]
   while dim > self.k_features:
        scores = []
        subsets = []
        for p in combinations(self.indices , r=dim - 1):
            score = self. calc score(X train, y train,
                                     X test, y test, p)
            scores.append(score)
            subsets.append(p)
        best = np.argmax(scores)
        self.indices_ = subsets[best]
        self.subsets .append(self.indices )
        dim -= 1
        self.scores_.append(scores[best])
    self.k_score_ = self.scores_[-1]
```

return self

Sequential Feature Selection (SBS) (3/3)

```
def transform(self, X):
    return X[:, self.indices_]

def _calc_score(self, X_train, y_train, X_test, y_test, indices):
    self.estimator.fit(X_train[:, indices], y_train)
    y_pred = self.estimator.predict(X_test[:, indices])
    score = self.scoring(y_test, y_pred)
    return score
```


KNN Classifier with SBS

import matplotlib.pyplot as plt

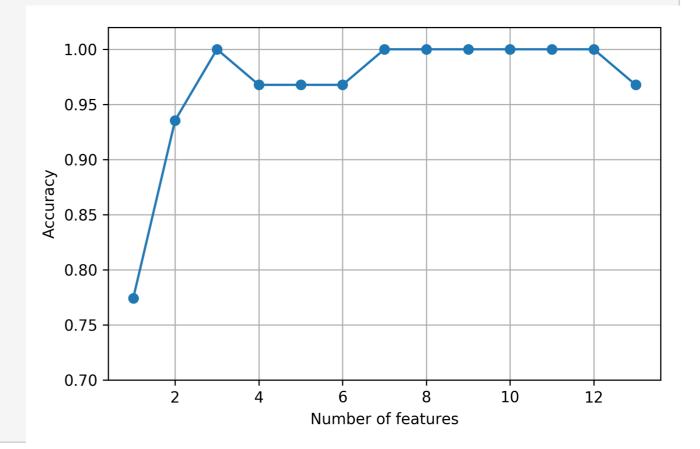
```
from sklearn.neighbors import KNeighborsClassifier
```

```
knn = KNeighborsClassifier(n_neighbors=5)
```

```
# selecting features
```

```
sbs = SBS(knn, k_features=1)
sbs.fit(X train std, y train)
```

```
# plotting performance of feature subsets
k_feat = [len(k) for k in sbs.subsets_]
plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.02])
plt.ylabel('Accuracy')
plt.xlabel('Accuracy')
plt.slabel('Number of features')
plt.grid()
plt.tight_layout()
# plt.savefig('images/04_08.png', dpi=300)
plt.show()
```



Assessing Feature Importance with Random Forest

• Measure

- With *K* binary decision trees in a random forest, the mean decrease impurity of the *i*th feature *x_i* for the random forest is the average of the mean decrease impurity of the *K* trees
- The larger the mean decrease impurity, the more important a feature is.

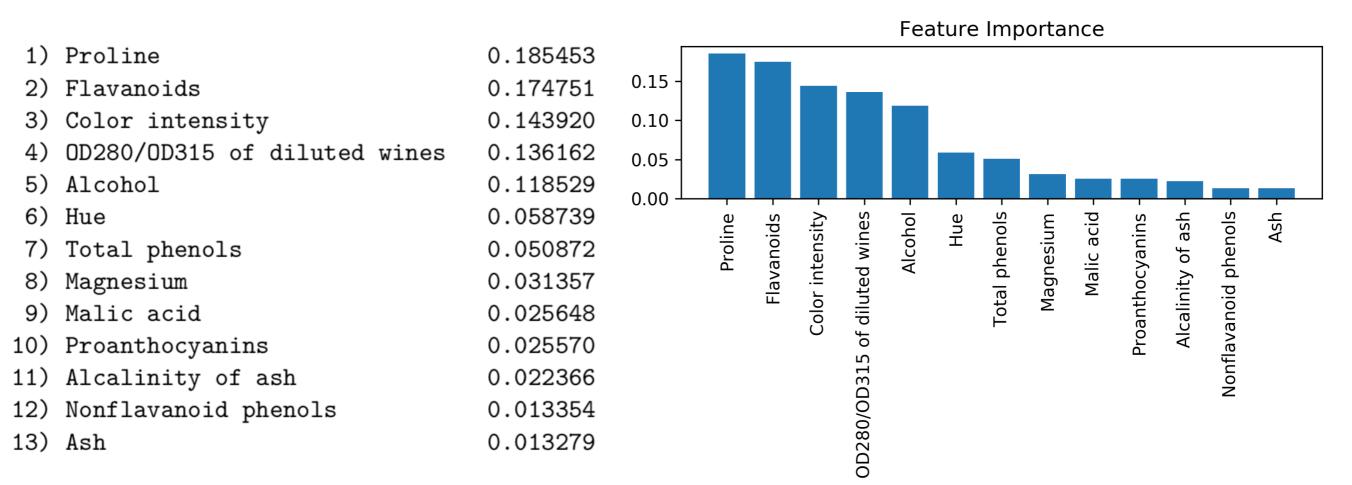
scikit-learn Example

The DecisionTreeClassifier and RandomForestClassifier

classes in scikit-learn's tree and ensemble modules respectively automatically compute the feature importance and store the values in the *feature_importance_* attribute (which is an array)

```
plt.xticks(range(X_train.shape[1]),
                                  feat_labels[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.tight_layout()
#plt.savefig('images/04_09.png', dpi=300)
plt.show()
```


Results



scikit-learn Example

• Scikit-learn also implements a **SelectFromModel** class that selects features based on user-specific threshold after model fitting

```
from sklearn.feature_selection import SelectFromModel
sfm = SelectFromModel(forest, threshold=0.1, prefit=True)
X_selected = sfm.transform(X_train)
print('Number of samples that meet this criterion:',
        X_selected.shape[0])
```

Number of samples that meet this criterion: 124

1) Proline	0.185453
2) Flavanoids	0.174751
3) Color intensity	0.143920
4) OD280/OD315 of diluted wines	0.136162
5) Alcohol	0.118529