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Outline

•Dealing with Missing Data
•Handling with Categorical Data
•Partitioning a Dataset into a Separate Training 

and Test Sets
•Feature Scaling: Bring Different Features onto 

the Same Scale
•Feature Selection: Selecting Meaningful 

Features
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Dealing with Missing Data
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Identifying Missing Values in Tabular Data
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1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

In [3]: df.isnull()

Out[3]: A B C D
0 False False False False
1 False False True False
2 False False False True

In [4]: df.isnull().sum()

Out[4]: A 0
B 0
C 1
D 1
dtype: int64

In [5]: # access the underlying NumPy array
# via the `values` attribute
df.values

Out[5]: array([[ 1., 2., 3., 4.],
[ 5., 6., nan, 8.],
[10., 11., 12., nan]])

1.2 Eliminating Instances or Features with Missing Values

In [6]: # remove rows that contain missing values

df.dropna(axis=0)

Out[6]: A B C D
0 1.0 2.0 3.0 4.0

In [7]: # remove columns that contain missing values

df.dropna(axis=1)

Out[7]: A B
0 1.0 2.0
1 5.0 6.0
2 10.0 11.0

In [8]: # only drop rows where all columns are NaN

df.dropna(how='all')

Out[8]: A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN
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Eliminating Instances or Features with 
Missing Values

•The easiest way to deal with missing data is to 
remove. Use dropna method
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Imputing (Interpolating) Missing Values

•Use Imputer class for mean imputation
– Replace missing value with the mean value of the entire 

feature column
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Transformer API in Scikit-learn

•The imputer class belongs to transformer 
class in scikit-learn

•The fit and transform are two essential 
methods for transformer class
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Estimator API in Scikit-learn
• Various classifiers in scikit-learn belongs to estimator class
• fit and predict are two essential methods of the estimator 

class
• The estimator class also have a transform method
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Handling Categorical Data
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Nominal and Ordinal Features
•Ordinal features can be understood as categorical 

values that can be sorted or ordered, but nominal 
features are not.

10nominal ordinal numerical
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Mapping Ordinal Features
• We usually use dictionary mapping to map values of 

an ordinal feature to integers
• We can use reverse-dictionary mapping to transform 

the integer values back to the original string values of 
an ordinal feature
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Encoding Class Labels (1/3)
• Many ML libraries require that class labels are encoded as 

integers
• In scikit-learn, most classifiers convert classes to integers 

internally
• This can be done by creating a mapping dictionary
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Encoding Class Labels (2/3)
• Define a reverse-mapping dictionary can map the converted 

class labels back to the original string representation
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Encoding Class Labels (3/3)

•In scikit-learn, the preprocessing module has 
a LabelEncoder class which directly 
implements the conversion
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Performing One-Hot Encoding on 
Nominal Features (1/3)

• Performing label conversion to integers directly for 
nominal features does not make any reasonable sense 
since the values of a nominal feature do not have any 
intrinsic order
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Performing One-Hot Encoding on 
Nominal Features (2/3)

•Instead, one-hot encoding is a common 
technique for this problem
– To create a new dummy feature for each value possible 

value in the nominal feature column
– If there are three possible values red, blue, green of the 

color feature which is nominal, we create three new 
dummy feature color_red, color_blue, color_green, and 
binary values are assigned to these new dummy values

– If an instance has blue color value, the values of the three 
dummy features will be color_red=0, color_blue=1, 
color_green=0
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Performing One-Hot Encoding on 
Nominal Features (3/3)
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Partition a Dataset into a Separate 
Training and Test Sets
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Wine Dataset
•178 wine instances with 13 features
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Wine Dataset
• Extract feature matrix X and the class label vector y, both 

as NumPy array, from df_wine
• Split the data into separate training and test datasets (7:3) 

by scikit-learn’s train_test_split function from 
model_selection module

• The stratification is specified by y 
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Feature Scaling
Bring Different Features onto the Same Scale
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•Rescale values in a feature column to a range of [0,1]
•A special case of min-max scaling

–         and       are the minimum and maximum value of the ith 
feature column

•Useful when we need values in a bounded interval

Normalization

22
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The importance of feature scaling can be illustrated by a simple example. Let's 
assume that we have two features where one feature is measured on a scale from 1 
to 10 and the second feature is measured on a scale from 1 to 100,000, respectively. 
When we think of the squared error function in Adaline in Chapter 2, Training Simple 
0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, it is intuitive to say that the algorithm 
will mostly be busy optimizing the weights according to the larger errors in the 
second feature. Another example is the k-nearest neighbors (KNN) algorithm with 
a Euclidean distance measure; the computed distances between samples will be 
dominated by the second feature axis.

Now, there are two common approaches to bring different features onto the same 
scale: normalization and standardization. Those terms are often used quite loosely 
LQ�GLIIHUHQW�ÀHOGV��DQG�WKH�PHDQLQJ�KDV�WR�EH�GHULYHG�IURP�WKH�FRQWH[W��0RVW�RIWHQ��
normalization refers to the rescaling of the features to a range of [0, 1], which is a 
special case of min-max scaling. To normalize our data, we can simply apply the 
min-max scaling to each feature column, where the new value ( )i

normx  of a sample ( )ix  
can be calculated as follows:

( )
( )

min

max min

i
i
norm

x xx
x x

−=
−

Here, ( )ix  is a particular sample, minx  is the smallest value in a feature column, and 
maxx  the largest value.

The min-max scaling procedure is implemented in scikit-learn and can be used as 
follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)
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Standardization
•Rescale values in a feature column to take the 

form of a standard normal distribution
– Gaussian with zero mean and unit variance

23
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Although normalization via min-max scaling is a commonly used technique that 
is useful when we need values in a bounded interval, standardization can be more 
practical for many machine learning algorithms, especially for optimization algorithms 
such as gradient descent. The reason is that many linear models, such as the logistic 
regression and SVM that we remember from Chapter 3, A Tour of Machine Learning 
&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ, initialize the weights to 0 or small random values close 
to 0. Using standardization, we center the feature columns at mean 0 with standard 
deviation 1 so that the feature columns takes the form of a normal distribution, which 
makes it easier to learn the weights. Furthermore, standardization maintains useful 
information about outliers and makes the algorithm less sensitive to them in contrast 
to min-max scaling, which scales the data to a limited range of values.

The procedure for standardization can be expressed by the following equation:

( )
( )i

i x
std

x

xx µ
σ
−=

Here, xµ  is the sample mean of a particular feature column and xσ  is the 
corresponding standard deviation.

The following table illustrates the difference between the two commonly used 
feature scaling techniques, standardization and normalization, on a simple sample 
dataset consisting of numbers 0 to 5:

,QSXW Standardized Min-max normalized
0.0 -1.46385 0.0
1.0 -0.87831 0.2
2.0 -0.29277 0.4
3.0 0.29277 0.6
4.0 0.87831 0.8
5.0 1.46385 1.0

<RX�FDQ�SHUIRUP�WKH�VWDQGDUGL]DWLRQ�DQG�QRUPDOL]DWLRQ�VKRZQ�LQ�WKH�WDEOH�PDQXDOO\�
by executing the following code examples:

>>> ex = np.array([0, 1, 2, 3, 4, 5])
>>> print('standardized:', (ex - ex.mean()) / ex.std())
standardized: [-1.46385011 -0.87831007 -0.29277002  0.29277002  
0.87831007  1.46385011]
>>> print('normalized:', (ex - ex.min()) / (ex.max() - ex.min()))
normalized: [ 0.   0.2  0.4  0.6  0.8  1. ]
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Feature Selection
Selecting Meaningful Features

24



Hsi-Pin Ma

Select Meaningful Features

•The common reason for overfitting is that our 
model is too complex for the giving training 
dataset

•Common solutions to reduce generalization error
– Collect more training data
– Choose a simpler model with few parameters
– Introduce a penalty for complexity via regularization
– Reduce the dimensionality of the data
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L1 and L2 Regularization

•L2 regularization

•L1 regularization

– L1 yields sparse feature vectors; most feature weights 
will be zero

– Useful for high-dimensional datasets with irrelevant 
features

– Can be viewed as a technique for feature selection

26
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/��DQG�/��UHJXODUL]DWLRQ�DV�SHQDOWLHV�DJDLQVW�
model complexity
We recall from Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�VFLNLW�OHDUQ,  
that L2 regularization is one approach to reduce the complexity of a model by 
SHQDOL]LQJ�ODUJH�LQGLYLGXDO�ZHLJKWV��ZKHUH�ZH�GHÀQHG�WKH�/��QRUP�RI�RXU�ZHLJKW�
vector w as follows:
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Another approach to reduce the model complexity is the related L1 regularization:
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j
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Here, we simply replaced the square of the weights by the sum of the absolute 
values of the weights. In contrast to L2 regularization, L1 regularization usually 
yields sparse feature vectors; most feature weights will be zero. Sparsity can be 
useful in practice if we have a high-dimensional dataset with many features that are 
irrelevant, especially cases where we have more irrelevant dimensions than samples. 
In this sense, L1 regularization can be understood as a technique for feature selection.

$�JHRPHWULF�LQWHUSUHWDWLRQ�RI�/��UHJXODUL]DWLRQ
As mentioned in the previous section, L2 regularization adds a penalty term to 
the cost function that effectively results in less extreme weight values compared 
to a model trained with an unregularized cost function. To better understand how 
L1 regularization encourages sparsity, let's take a step back and take a look at a 
geometric interpretation of regularization. Let us plot the contours of a convex cost 
IXQFWLRQ�IRU�WZR�ZHLJKW�FRHIÀFLHQWV� 1w  and 2w . Here, we will consider the Sum of 
Squared Errors (SSE) cost function that we used for Adaline in Chapter 2, Training 
6LPSOH�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, since it is spherical and easier to 
draw than the cost function of logistic regression; however, the same concepts apply 
WR�WKH�ODWWHU��5HPHPEHU�WKDW�RXU�JRDO�LV�WR�ÀQG�WKH�FRPELQDWLRQ�RI�ZHLJKW�FRHIÀFLHQWV�
WKDW�PLQLPL]H�WKH�FRVW�IXQFWLRQ�IRU�WKH�WUDLQLQJ�GDWD��DV�VKRZQ�LQ�WKH�IROORZLQJ�ÀJXUH�
(the point in the center of the ellipses):
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• Regularization penalty and cost pull in opposite directions
– Regularization wants the weights to be at (0,0), i.e.,  prefers a simpler 

model, and decreases the dependence of the model on training data

Geometric Interpretation of 
L2, L1 Regularization

27
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Scikit-lean with L1 Regularization
•For regularized models in scikit-learn that supports 

L1 regularization, we can set the penalty parameter 
to l1 to obtain a sparse solution

•Apply to the standardized Wine data
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L1 Regularization on Wine Data
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Dimensionality Reduction of Data

•Two main categories of dimensionality 
reduction
– Feature selection

•Selecting a subset of important features from the original 
features

– Feature extraction
•Deriving new features from the original features by 

creating a mapping from the original feature space      to a 
feature space       of lower dimension

30

lr = LogisticRegression(penalty='l1', C=10.**c, random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)

weights = np.array(weights)

for column, color in zip(range(weights.shape[1]), colors):
plt.plot(params, weights[:, column],

label=df_wine.columns[column + 1],
color=color)

plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**(-5), 10**5])
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(loc='upper center',

bbox_to_anchor=(1.38, 1.03),
ncol=1, fancybox=True)

#plt.savefig('images/04_07.png', dpi=300,
# bbox_inches='tight', pad_inches=0.2)
plt.show()

5.2 Dimensionality Reduction of Data

5.2.1 Feature selection versus feature extraction

• Feature selection : selecting a subset of important features from the original features.
• Feature extraction : deriving new features from the original features by creating a mapping

from the original feature space Rm to a feature space Rd of lower dimension.
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Sequential Feature Selection Algorithms

•A family of greedy search algorithms that are 
used to eliminate unimportant features from the 
original features

•Dimensionality reduction of data aims to 
improve computational efficiency and reduce 
the generalization error of model by removing 
irrelevant features or noise

•Useful for learning algorithms which do not 
support regularization
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Sequential Backward Selection (SBS) 
Algorithm

•Implementation of SBS
– Initialize the algorithm with k=d, where d is the 

dimensionality of the full feature space Xd
– Determine the feature x- that maximizes the criterion: x-

=argmax J(Xk-x), where
– Remove the feature x- from the feature set Xk-1=Xk-x-; 
k=k-1

– Terminate if k equals the number of desired features; 
otherwise, go to step 2.

32

Chapter 4

[ 131 ]

The idea behind the SBS algorithm is quite simple: SBS sequentially removes 
features from the full feature subset until the new feature subspace contains the 
desired number of features. In order to determine which feature is to be removed 
DW�HDFK�VWDJH��ZH�QHHG�WR�GHÀQH�WKH�FULWHULRQ�IXQFWLRQ�J that we want to minimize. 
The criterion calculated by the criterion function can simply be the difference in 
SHUIRUPDQFH�RI�WKH�FODVVLÀHU�EHIRUH�DQG�DIWHU�WKH�UHPRYDO�RI�D�SDUWLFXODU�IHDWXUH��
7KHQ��WKH�IHDWXUH�WR�EH�UHPRYHG�DW�HDFK�VWDJH�FDQ�VLPSO\�EH�GHÀQHG�DV�WKH�IHDWXUH�
that maximizes this criterion; or in more intuitive terms, at each stage we eliminate 
the feature that causes the least performance loss after removal. Based on the 
SUHFHGLQJ�GHÀQLWLRQ�RI�6%6��ZH�FDQ�RXWOLQH�WKH�DOJRULWKP�LQ�IRXU�VLPSOH�VWHSV�

1. Initialize the algorithm with N G, where d is the dimensionality of the full 
feature space dX .

2. Determine the feature x−  that maximizes the criterion: ( )argmax kJ− = −x X x ), 
where k∈x X .

3. Remove the feature x−  from the feature set: ; 1k -1 k k k−− = −X = X x .
4. Terminate if N equals the number of desired features; otherwise, go to step 2.

<RX�FDQ�ÀQG�D�GHWDLOHG�HYDOXDWLRQ�RI�VHYHUDO�VHTXHQWLDO�IHDWXUH�
algorithms in &RPSDUDWLYH�6WXG\�RI�7HFKQLTXHV�IRU�/DUJH�6FDOH�
)HDWXUH�6HOHFWLRQ, )��)HUUL, P. Pudil, M. Hatef, and J. Kittler, pages 
403-413, 1994.

Unfortunately, the SBS algorithm has not been implemented in scikit-learn yet. But 
since it is so simple, let us go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

class SBS():
    def __init__(self, estimator, k_features, 
                 scoring=accuracy_score,
                 test_size=0.25, random_state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k_features = k_features
        self.test_size = test_size
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Sequential Feature Selection (SBS) (1/3)
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Sequential Feature Selection (SBS) (2/3)
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Sequential Feature Selection (SBS) (3/3)
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KNN Classifier with SBS
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Assessing Feature Importance with 
Random Forest

•Measure
– With K binary decision trees in a random forest, the 

mean decrease impurity of the ith feature xi for the 
random forest is the average of the mean decrease 
impurity of the K trees

– The larger the mean decrease impurity, the more 
important a feature is.
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scikit-learn Example
• The DecisionTreeClassifier and RandomForestClassifier 

classes in scikit-learn’s tree and ensemble modules 
respectively automatically compute the feature importance 
and store the values in the feature_importance_ attribute 
(which is an array)
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Results
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scikit-learn Example
• Scikit-learn also implements a SelectFromModel 

class that selects features based on user-specific 
threshold after model fitting
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