10620PME 300600 #1#IFIEE = Introduction to Material Science

HA =& — Midterm Exam | AM 10:10-12:00, April 2, 2018

1. Answer following questions briefly:  (55%)
(a) What are shape-memory alloys? How to use these alloys for artery stents ..

R,

Shape-memory alloys, once strained 1, revert back to their original shape 1 upon
an increase in temperature above T, 1.

Supporting weakened artery walls or expanding narrowed arteries 1: The deformed
stent is first delivered in the appropriate position in the artery using a probe 1. The
stent expands to its original shape and size after unfastening its bundle sheath and
Increasing its temperature to body temperature 1.

(b) A 100-gram alloy of Fe and C consists of 99.2 wt% Fe and 0.8 wt% C. What are
the atomic percentages of Fe and C in this alloy? (atomic mass: Fe 55.85 g/mol, C
12.01 g/mol)

C:  (0.8/12.01)/[(99.2/55.85)+(0.8/12.01)] x 100% 1.5=3.61at% 1
Fe: (99.2/55.85)/[(99.2/55.85)+(0.8/12.01)] x 100% 1.5 = 96.39 at% 1

(c)List the electronic configurations of Si (Z = 14) and Ag (Z = 47).
Si: 1s225?2p®3s23p? 2.5
Ag: 1522522p®3s23p°3d194s24pf4di95st 2.5

(d) Describe the trends of atomic radius and electron affinity in the periodic table.
One moves from top to bottom in a group, the size of the atom, generally, increases.
1.5
One moves across a period from left to right, the size of the atom, generally,
decreases. 1.5
Electron affinity increases as we move to right across a period land decreases as
we move down in a group. 1

(e) Calculate the density of BCC iron metal. (atomic radius = 0.124 nm, atomic
mass = 55.85 g/mol)



a: lattice parameter, r: atomic radius = +3a =4rl= a = (%) ril
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(f) Calculate the atomic packing factor (APF) for the HCP unit cell, assuming the

atoms to be perfect hard spheres.
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(g) Listthe indices of two planes and three directions in Fig. 1.
Plane 1: (1100) 1
Plane 2: (1011) 1
Direction 1: [0110] 1
Direction 2: [1121] or [1123] 1 [001] 1
Direction 3: [1101] or [1102] 1

[112]1 7]
(h) Draw the [001], [110], [111], [112], /
and [221] directions in a cubic unit cell. =
[221]1
[110] 1 [111]1

(i) Prove that the diffraction peaks of {100} and {110} planes are not found for a FCC



crystal.

(200) atom plane can reflect the X-ray 1 (220) atom plane can reflect the X-ray 1
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The extra distance of travel of ray 2 for (100) planes is A means that the extra
distance of travel of ray 2 for (200) planes is A/2 1, so that deconstructive
interference occurs 1 and no (100) diffraction peak can be seen.
The extra distance of travel of ray 2 for (110) planes is A means that the extra
distance of travel of ray 2 for (220) planes is A/2, 1 so that deconstructive
interference occurs 1 and no (110) diffraction peak can be seen.

(j) Compare the differences between homogeneous and heterogeneous nucleation of
solid particles in liquid metal.

Homogeneous nucleation Heterogeneous nucleation
Nucleation site: 2 Metal itself Surfaces of other agents e.g.:
Container surface, Insoluble impurities.
Activation energy: 1 Higher Lower
Critical size: 1 Larger Smaller
Undercooling: 1 Larger Smaller

(k) Calculate the ASTM grain size number n in Fig. 2.
Grain number in this photo: 4 x 1/4 +35x 1/2+ 61 x1=79.52
200%, 8 cm x 8 cm , 79.5 grains change to 100x%, 2.54 cm x 2.54 cm, N grains:
N=795x4+(254%8%) =321
N=32=2""'1=n-1=5=n=6= ASTM grain size number is 6. 1

2. Discuss the differences of the bonding-origins and material properties between the (a)
ionic, (b) covalent, and (c) metallic bonds. (15%)



Bonding-origins

lonic: Electrons are transferred 1 from electropositive to electronegative atoms and cations and
anions are formed 1. lonic bonding is due to electrostatic force of attraction 1 between cations and
anions.

Covalent: Takes place between elements with small electronegativity differencesl. Outer s and p
electrons are shared 1 between two atoms to obtain noble gas configuration. Covalent bonds are
directional. 1

Metallic: Loosely bounded valence electrons 1 are attracted towards nucleus 1 of other atoms,
shared by many atoms, form electron clouds 1, and overall energy of individual atoms are lowered.
Material properties

lonic: lonic solids are hard, rigid, strong 1, and brittle 1. lonic solids are excellent insulators 1.
Covalent: Covalent solids are hard, rigid, strong and brittle 1. Covalent materials are poor
conductors of electricity 1 not only in a network solid form but also in a liquid or molten form 1.
Metallic: Metals are significantly more malleable 1 than ionic or covalent networked materials.
Metals are excellent conductors 1 of heat and electricity.

. Calculate the maximum interstitial atomic radius of the interstitial in FCC and BCC of
Fe. The interstitials in FCC are at the edge-center of a unit cell and atomic radius of
Fe = 0.129 nm. The interstitials in BCC are at the (1/2, 1/4, 0), (1/4, 1/2, 0), (1/2, 3/4,
0), (3/4, 1/2, 0), etc., type positions of a unit cell and atomic radius of Fe = 0.124 nm.
(10%)

The interstitial in FCC:

r+R=1/2alanda= 4R/vV2 1 = r+R=2R/\V2=+2R 1
MR=+vV2-1=0414 1

r=0.414 x0.129 nm=0.053 nm 1

The interstitial in BCC:

F+R= \](%-0)2+(§—0)2+(0—0)2 a=%q 1anda= 4R/V3 1

r+R=+5R/v3=1291R 1
MR=1291-1=0.291 1
r=0.291x0.124 nm=0.036 nm 1



4. Sketch and explain the characteristics of the 14 Bravais convectional unit cells.

(10%)
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4. Draw the schematic diagrams of edge and screw dislocations and determine their
Burger’s vectors. (10%)

Burger’s

Right 5 steps Right 5 steps

vector 1 : ,
\ l # Down 5 steps
\ \ \ Down 4 steps
Up 4 steps Y \ \_._ t
\ \ Up 5 steps M
Burger’s
3 7 3 &

Left 5 steps Left 5 steps vector 1

Edge dislocation Screw dislocation

5. Sketch and explain the principles for scanning electron microscope (SEM) and atomic
force microscope (AFM). (10%)

Electron

Gun

SEM: supply L Y*F
Electron gun generates electrons that are

accelerated (10-50 kV), focused, and hit the

sample surface and secondary electrons are i codener
produced.1 The secondary electrons are
collected to produce the signal. The signal is Second

used to produce the imagel. r
Depth of field: 300 times that of OM. 10 um

Electron
beam

Scanning Scanning
— 3 [ coils circuits
at 10,000x 1 tens
. . Spccimcn@\\\g_ Display and
Magnification: 15x - 500,000x Hearncoteion || L_I"] GG
) - . . system .lgl:llnlittdllon T
Chemical analysis: SEM is always equipped LL, =
acuum amplifiers

with an X-ray spectrometer. 1 2



Plane 2

a, " 2119 | Fig. 1 HCP unit cell

AFM:

Similar to STM but tip attached to cantilever beam 1. When ... y
tip interacts with surface, van der Waals forces deflect the @
beam. Deflection detected by laser and photodetector 1. Y
Short-range repulsive force (contact mode) or long-range
attractive force (non-contact mode) can be detected 1.

Non-conductive materials can be scanned 1. ’

N
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HAh=2— Midterm Exam |1 10:10-12:00, May 8, 2017

1. Answer following questions briefly: (70%)
(a) Calculate the vacancy fraction at 657 °C in pure aluminum. Assume: E, =

0.74eV,C=1and k =8.62 x 10° eV/K.

%o — Ce_EV/kTO — e—0.74-/[8.62X10_5(657+273)]oo = 09797 X 10—50

(b) The diffusivity of copper atoms in solid copper is 1078 cm?/s at 500 °C and 2 x
10713 cm?/s at 1000 °C. Calculate the activation energy (J/mol) for the diffusion of
Cu in Cu in the temperature range 500 °C to 1000 °C. [R = 8.314 J/(mol-K)]

Dlooo_exp(—Q/RTz)_e -Qr1 111,
Dy  OP(-Q/RT) L RI(T, T,

20 (-9 2oL
1x107*® R\1273 773

In (2.0x10°%) = —9(7.855><10-4 ~12.94x107*) = i(s.osxlo-“) *
R 8.314

12.21=0Q(6.11x10°) *=> Q =199,770 J/mol = 200 kd/mol *

(c) List Fick’s first law and Fick’s second law and explain their physical meanings.
Fick s first law: ] = —DZ—i o
The net flow of atoms by atomic diffusion (from rich to rare positions @) is equal
to diffusion coefficient (diffusivity) D times the concentration gradient dC/dx. @

Fick s first law: < = i(DE) o
dt dx dx
Rate of compositional change is equal to the rate of change @of diffusivity times

concentration gradient. @

(d) A sheet of a 70% Cu-30%2n alloy is cold-rolled 25 percent to a thickness of 2.80
mm. The sheet is then further cold-rolled to 2.0 mm. What is the total percent

cold work?
to — tr _ to —2.80 mm
n X 100% = % roll reduction 00— ” X 100% = 25%0
0 0
to — tf 3.733 —
to =3.733 mm 0 - X 100% = 3733 X 100%0 = 46.42%0

to



(e) Sketch to explain how to define the

¢y

Ultimate tensile strength

elastic modulus, yield strength, tensile
strength, elongation, and toughness in 600 (“=— T =
the engineering stress-engineering
strain curve.

Elastic modulus: The slope of initial
stress-strain curve (elastic deformation
range). E=ol/c ©

Yield strength: The corresponding
stress of a small certain plastic
deformation (such as 0.2%). ©

Tensile strength: The maximum stress 200
for a stress-strain curve. @

Elongation: Draw a line that is parallel

to elastic range from the end point of

the stress-strain curve and intercept

500

400

300

ineering stress (MPa)

Eng

100

% elon.
4

with abscissa at a specific strain. This 0% 0020 0040 0060 0080 0.100
specific strain is elongation. @ Bgideating stoa (/)
Toughness: The area below the stress-strain curve. @ 00

Compare the engineering stress and strain with the true stress and strain for the
tensile test of a low-carbon steel. Load: 60,000 N, Instantaneous diameter (60,000
N): 1.15 cm, Initial diameter: 1.25 cm.

A, = % (0.0125 m)? = 0.0001227 m?; A = % (0.0115 m)?2 = 0.0001039 m?

Assuming no volume change during extension, I,A, =LA = :—' = % *
o :

oo F o BOOON egypn o F__SO00ON oy

A, 0.0001327 m A 0.0001039 m

_ 2
:_I :Q = i_lz M_lz 0.181 *
Iy Iy A 0.0001039 m
2
&, =In|—‘= n’> Inwzo.l%*
Iy A 0.0001039 m

(g) List all the slip systems in FCC {111}<110> crystal structure.

(111)[170], (111)[10T], (111)[011], (111)[110], (111)[101], (111)[01T],



(111D)[110], (1T1)[10T], (111)[011], (11T)[110], (111)[101], (11T)[011].

(h) Astress of 10 MPa is applied in the [001] direction of a unit cell of a BCC iron

(1)

)

single crystal. Calculate the resolved shear stress for the following slip systems:
(i) (10D)[111], (ii) (211)[111].

T=06XCOSAXCOS ) O =

(i) (101)[111]

1 1 1
: =10 MPa:— = 4.08 MPa OO
VIXxV1Z4+12 V1 xV12 + 12412 V6

(i) (211)[111]

T=10 MPa-

1 1 1
=10 MPa- . =10 MPa:-—— = 2.36 MPa 00O
VIxV2Z+ 12412 1 xV12 +12+12 V18

Sketch and compare the differences between slip and twinning deformation in (i)
atomic move distance, (ii) lattice orientation.

Copynght © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
Slip steps
on surface

——————————————————————————— Twinning
Crystal axis / planes

remains straight Crystal axis

is deformed Twinned

region

(a) (b)

(1) (1)

(i) In slip the atoms on one site of the slip plane all move equal distances®,
whereas in twinning the atoms move distances proportional to their distance
from twinning plane. @

(i1)Slip does not reorient lattice. @ However, twinning reorients lattice and may
place new slip systems. @

Describe the general procedure to measure the hardness.

1. Press the indenter that is harder than the metal @ into metal surface. @
2. Withdraw the indenter @

3. Measure hardness by measuring depth @ or width of indentation. ©

(k) Describe three distinct stages of ductile fracture and brittle fracture.

Ductile fracture: (1) Specimen forms neck and cavities within neck. @ (2)
Cavities form crack and crack propagates towards surface, perpendicular to



stress. @ (3) When the crack nears the surface, direction of crack changes to 45°
resulting in cup-and-cone fracture. ©@

Brittle fracture: (1) Plastic deformation concentrates dislocation along slip
planes at obstacles. ® (2) Microcracks nucleate due to shear stress where
dislocations are blocked. @ (3) Crack propagates to fracture. @

(1) Sketch and describe the experimental procedure of
Charpy V-notch impact-testing.

(1) Place a special Charpy V-notch specimen (shown
in the upper part of Fig.) across parallel jaws in
the impact-tester. @

(2) Release the hammer to strike the specimen on its
downward swing and fracture the specimen. @

(3) The energy absorbed by the fracture can be
measured by the difference between the hammer’s
initial and final heights. @ 00

(m) Sketch and explain the characteristics of the fatigue fracture surface.
A: Crack nucleates at region of stress concentration
near surface (sharp corner, notch inclusion or flaw)

and propagates due to cyclic loading. ®
B: Clamshell or “beach” markers are created with §
cyclic loading. (smooth region). ® '
C: Failure occurs when cross sectional area of the
metal too small to withstand applied load. (rough )
surface area) @ 000

(n) Equiaxed MAR-M 247 MFB alloy is to support a stress of 207 MPa (Fig. 7.31).
Determine the time to stress rupture at 927 °C.
From Fig. 7.31: P(L.M.) = [26.7 + (27.8-26.7)5/10] x 10° @ = 27250 ©
P(L.M.) = 27250 = [T(°C) + 273](20 + log t;) @= (927 + 273) (20 + log t,)
20 +logt,=22.708 @ = t,=10%%®=510.5(h) @

2. The diffusivity values depend on 5 variables. Discuss how to affect? (10%)
Diffusivity depends upon
Type of diffusion: Whether the diffusion is interstitial or substitutional. Small



interstitial atoms are easy to move @ and interstitial diffusion rates are always faster
than that of substitutional diffusion. @

Temperature: As the temperature increases diffusivity increases. ® Melting point T
—  Diffusivity J. @

Type of crystal structure: BCC crystal has lower APF @ than FCC and hence has
higher diffusivity. @

Type of crystal imperfection: More open structures (such as grain boundaries)
increases diffusion @. Grain boundary diffusion rates are far faster than that of lattice
diffusion. @

The concentration of diffusing species: Higher concentrations @ of diffusing solute
atoms will affect diffusivity. @

. (a) Calculate the value of the diffusivity D for the diffusion of carbon in y iron at 950
°C. Use values of Do = 2.0 x 107> m?/s, Q = 142 kJ/mol, and R = 8.314 J/(mol-K). (b)
Consider the gas carburizing of a gear of 1040 steel at 950 °C. Calculate the time in
minutes necessary to increase the carbon content to 0.60% at 0.35 mm below the
surface. C; = 1.20% C. (10%)

(@)

—142000 J/mol
D= Dye ¢/RT@ =20 x 1075 mz/s{exp I/

[8.314 ]/mol-K](950+273)K

}ooo

D=1.7517 x 10 m%s (at 950 °C) @

(b)
C, — C, X 1.20 — 0.60 0.40 mm
= erf( ) - = erf 0
Cs — Co 2vDt/ 1.20-10.40 24/1.3174 x 10711 m2/s Xt

0.40 mm
0.75 = erf (1
24/1.72 x 10711 m?/s Xt

From error function Table: z=0.80 > erfz=0.7421and =0.85 > erf z=0.77070
&7707—07421__ 0.75-0.7421

serfz=0.75 > =
0.85-0.80 Zz—0.80

0.40 mm
2,/1.7517 x 10711 m?/s xt

t=3448 s =57.5 min @

-z =0.8138 =

. Sketch and discuss (from the microstructure change) the annealing temperature effect
on the tensile strength, elongation, and electrical conductivity of a heavily
cold-worked 70Cu-30Zn alloy. (10%)



Low temperature recovery:

Vacancies are eliminated®. Dislocations are
moved into lower energy configuration and form
subgrain structure (polygonization). ©® The
quantity of dislocation is not obvious decreased.
The strength is reduced slightly and the ductility
Is increased slightly, but its electrical conductivity
(green curve) is significantly increased. ©
Intermediate temperature recrystallization:
The cold worked structure is completely replaced
with  recrystallized grain  structure  (new )
strain-free grain) @. The quantity of dislocationis e ——
obvious decreased and recover to the un-worked condition. 000
The strength is reduced obviously and the ductility is increased obviously®, its
electrical conductivity (green curve) is significantly increased again. @

High temperature grain growth:

The grain size becomes larger in order to reduce the area of grain boundary®. The
strength is reduced slightly and the ductility is increased slightly, its electrical
conductivity (green curve) is slightly increased. ©

Internal
residual
tresses

Strength,
hardn
ductility

|

Grain

. A 7075 aluminum plate is subjected to a tensile stress of 165 MPa. The fracture
toughness of the materials is given to be 24.2 MPa-m'2. (a) Determine the critical
crack length to assure the plate will not fail under the static loading conditions
(assume Y = 1). (b) Consider the same plate under the action of cyclic
tensile/compressive stresses of 165 MPa and 65 MPa respectively. Under the cyclic
conditions, a crack length reaching 50% of the critical crack length under static
conditions (part a) would be considered unacceptable. If the component is to remain
safe for 1 million cycles, what is largest allowable initial crack length?  (10%)

q-(M/2+1 _ g~(m/2)+1
Hint: N, =—————— (Where m=3,Y =1 A=20x10")
AY "o "™ [-(m/2) +1]
(@)
Kic=Y of Vma®® — 242 MPam'? =1x 165 MPa V1a®0@® - a
= 0.006847 mo
(b)

o =165 MPa, ar=a/2 =0.003424 m, Ny =1 x10° m=3,A=2.0x 1072



Agmamizym[— (2) + 1]

25014 =17.09 - 4;°° ©

ay%° =42.104 ©
a=5.641x10"meo

0 1x10°=

0.003424795 — g5 05
2.0 x 10-12165%73/213[— (2) + 1]

690 T T T T
DS MAR-M 247 longitudinal MFB,
Copyright © Companies, Inc. L display 552 ‘7 1221°C/2 hiGFO, 982°C/5 WAC, | ]
Table 5.3 Table of the error function i [l Sil-Cron G, 1 imm Gianceey
| production data
z erf z z erf z z erf z z erf z 414 | ‘ ‘ |
0 0 040 04284 085 07707 1.6 09763 e g
0.025 0.0282 0.45 0.4755 0.90 0.7970 1.7 0.9838 982°C/5 WAC. 871°C/20 VAC
0.05 0.0564 0.50  0.5205 095  0.8209 1.8 0.9891 o 3:2and 4.1 mm diameler specimens |
0.10 0.1125 0.55 0.5633 1.0 0.8427 1.9 0.9928 z° ‘
0.15 0.1680 0.60 0.6039 L1 0.8802 2.0 0.9953 = ng{é{«({ “;}R'M lfz}ym*- 2
0.20 0.2227 0.65  0.6420 12 0.9103 22 09981 B 007 | S b g
0.25 0.2763 070 0.6778 13 0.9340 24 09993 & 1.8 mim diameter specimens
0.30 0.3286 0.75 0.7112 1.4 0.9523 2.6 0.9998
0.35 0.3794 0.80  0.7421 1.5 0.9661 28 09999 - 5§ €M 2471 onghidinal, |
N 1232°C/2 h + 1260°C/2 h/AC,
1079°C/4 WAC, 871°C/20 WAC
and 1232°C/ 2 h + 1260°C/20 WAC,
1050°C/16 h JAC, 871°C/20 WAC.
3.2 and 4.1 mm diameter specimens
69 | !
40 42 44 46 48 0 52 54 56
(222) (233) (244) (255) (26.7) (27.8) (289 (30) 3L

Larsen-Miller parameter, P = [T (°F) + 460] [20 + log(n)] X 10°3

[P = [T(C) + 273] [20 + log(n)] X 1073]

Fig. 7.31
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HAR*% Final Exam 11:10-13:00, June 21, 2018

1. Answer following questions briefly:  (70%)

(a) List the Gibbs phase rule and explain how to construct a ternary phase diagram.
P+F=C+2 O (P=number of phases that coexist in a system, C = Number of
components, F = Degrees of freedom) @. Generally, the pressure is set at 1 atm,
then Gibbs phase rule becomestoP+F=C+ 1. ©
Ternary phase diagrams (C=3andP=1, — F=3+1-1=3)canbe
constructed by using an equilateral triangle as a base with temperature on a vertical
axis@. Pure components are at each end of triangle and any composition can
locate in this triangle®.

(b) Draw the monotectic invariant reaction in a phase diagram.
om0 Q55°C: L1(36%Pb) — Cu(0%Pb) + L2(87%Pb)
nnnnn _I,M i o . ] oor T:Li—>S+L, ©

o
P —]
1 1 L 1 PR
el " 0000
Weight percent lead

(c) List the name, temperature, and composition of the all invariant reactions in the
Ti-Ni phase diagram.
Eutectoid:  765°C, BTi(5.5%Ni) — aTi(0.5%Ni) + TioNi(37%Ni) @
Eutectic: 942°C, L(27.9%Ni) — BTi(11.5%Ni) + Ti;Ni(37%Ni) @
Peritectic: ~ 984°C, L(37.5%Ni) + TiNi(54.4%Ni) — Ti,Ni(37.8%Ni) @
Eutectic: 1118°C, L(65.7%Ni) — TiNi(61.8%Ni) + TiNiz (78.3%Ni) @
Eutectic: 1304°C, L(86.1%Ni) — TiNi3; (78.3%Ni) + Ni(88.6%)©®



(d) Sketch and compare the slow-cooling microstructures of the Fe-0.2%C and

(e)

®

Fe-1.0%C plain carbon steels.

. Lamellar pearlite@
Lamellar pearlite@ P

Grain boundary

Grain boundary o ©
cementite

ferrite @
Cementite in pearlite

Cementite in pearlite o .
Ferrite in pearlite

Ferrite in pearlite

Microstructure of Fe-1.2%C
Grain boundary cementite ~ 3.5 wt%©

Microstructure of Fe-0.2%C
Grain boundary ferrite ~ 25 wt% ©

Lamellar pearlite ~ 75 wt% Lamellar pearlite ~ 96.5 wt%

800

Draw the cooling curves of full anneal,
normalizing, oil quench, water quench and
critical cooling rate in the
continuous-cooling diagram of eutectoid
plain-carbon steel.

700

600

500

400

Temperature (°C)

300

200

100

0

10° 5x10°

0.1 1 10 100 10° 10*
Time (s)

Describe the typical experimental procedures to get an isothermal transformation

diagram for a eutectoid plain carbon steel.

Several samples are first austenitized ({(({1 !
above eutectoid temperature (723 °C) l l
in a salt bath @ and rapidly cooled to
desired temperature (< 723 OC) in Furnace at S_;.fllhulh for Cold water
temperature lsothcrmu] quench tank at
another salt bath @ and then quenched **¢7**° bt o I
below 723°C

in water at various time intervals @. B - "
The transformed pearlite quantity after each transformation time can be calculated
from metallography photos @ and an isothermal transformation diagram can be
constructed @.



(g) List the limitations of plain-carbon steels comparing with alloy steels.

(1) Cannot be strengthened beyond 690 MPa without losing ductility and impact
strength. @

(2) Not deep hardenable.®

(3) Low corrosion resistance. ©@

(4) Rapid quenching leads to crack and distortion. @

(5) Poor impact resistance at low temperature. @

(h) Describe the carbon-related microstructural changes in martensite upon tempering

®

)

for a eutectoid plain-carbon steel.

Tempering Carbon-related
Temperature: Microstructure

20 — 200 °C: Carbon segregation ©@
Below 200 °C:  Epsilon Carbide (Fe,4C) ©
200 —-700°C:  Cementite Carbide (FesC) ©@
200 -300°C:  Cementite (Rod-like) @

400 -700 °C:  Cementite (Spheroidite) @

List the major alloy elements for the 2xxx, 3xxx, 5xxX, 6xxX, and 7xxx aluminum

alloys.
2xxx: Cu-Mg O, 3xxx: Mn ©, 5xxx: Mg ©,
6xxx: Mg-Si ©, 7xxx: Zn-Mg-Cu @

Describe and explain the heat treatment process of precipitation hardening.

(1) Solution heat treatment: Alloy sample heated to a temperature between solvus
and solidus® and got the maximum quantity of solutes in matrix. @

(2) Quenching: Sample then quenched to room temperature in water@® and
formed a supersaturated solid solution. ©@

(3) Sample then aged at intermit temperature® and formed finely dispersed
particles in matrix. @

(k) Compare the differences (composition, corrosion resistance) between the ferritic

(e.g. 430), mantensitic (e.g. 440A), and austenitic (e.g. 304) stainless steels.

SS430: Fe+17% Cr @+ 0.012%C. Good corrosion resistance. @
SS 440A: Fe +17% Cr + 0.7%C. @ Poor or fair corrosion resistance. @



SS304: Fe+ 19% Cr + 10%Ni. @ Excellent corrosion resistance. @

(1) How to prevent the intergranular corrosion of 304 stainless steel? Why?
The intergranular corrosion of 304 stainless steel is resulted from the
Cr-deficiency at grain boundary. No Cr-deficiency at grain boundary prevents
intergranular corrosion. The methods to prevent the intergranular corrosion are
following:
Decreasing carbon content to below 0.03%®: Due to the low quantity of carbon,
the Cr-carbide will not obvious form @ and no Cr-deficiency exists.
Adding Nb or Ti element®: Carbon prefer to combine with Nb or Ti than with Cr
and no Cr-deficiency exists.®.
Fast cooling between 870 °C and 600 °C®: Do not have enough time to form
Cr-carbide® and no Cr-deficiency exists.

(m) Sketch and explain the microstructure of an as-cast pearlitic grey iron.

Lamellar cementite @

Ferrite matrix @
Graphite flake @

v matrix @
Grain boundary carbide @

Small y’ precipitate ©

Large y’ precipitate @

2. Calculate the relative amount of each phase at 184, 182, 60 °C of a Pb-45wt%Sn alloy
from the Pb-Sn phase diagram. Sketch the microstructures of this alloy at 184 °C and
182 °C. (15%)



From Lever rule:

184 °C: W, =(61.9-45)/(61.9-18.3); W, =(45-18.3)/(61.9-18.3) @
= W, =38.8%0; W, =61.2% ©®

182°C: W, =(97.8-45)/(97.8-18.3); Wy =(45-18.3)/(97.8-18.3) ©@
= W, =66.4% @; W; =33.6% O

60°C: W, =(98.7-45)/(98.7-2.6); Wz =(45-2.6)/(98.7-2.6) ©®

=
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3. Two austenite 80 mm diameter 5140 alloy bars are quenched in agitated water and
agitated oil, respectively. Predict what the Rockwell C (RC) hardness of the bars will
be at (a) its surface and (b) its center. Change 5140 alloy to 4340 alloys and predict
RC hardness again.  (10%)

From Fig. 9.40:

Water quenched: Dsurface =3.1 mm @ ;  Dcenter =18.0 mm @
Oil quenched: Dsurface =11.0 mm @ ;  Deenter =27.5 mm ©

From Fig. 9.38:

5140 steel (£ 0.5 RC): 4340 steel (= 0.5 RC):
Swater = 52 RC © Swater = 53.5 RC ©
Cwater = 28 RC © Cwater =51 RC ©
Seil=35RC ©@ Seil=525RC @
Col=24RC © Coil=475RC ©

4. Compare the differences in cost, density, strength, corrosion resistance, and major
application between 1045 carbon steel (Fe-0.45%C), 2024Al (Al-4.5%Cu-1.5%Mg),
and C82400 (Cu-1.7Be-0.3C0).  (15%)

Cost: 1045 carbon steel << 2024Al < C82400 000

Strength: 1045 carbon steel < 2024Al < C82400 000

Density: 2024Al << 1045 carbon steel < C82400 000

Corrosion Resistance: 1045 carbon steel < 2024Al < C82400 000



Temperature (°C)

Major application

1045 carbon steel: Bridge or ship structures. @
2024 Al: Airplane structures. @

C82400: Safety tools. ®
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Figure 9.40

Cooling rates in long round steel bars quenched in (i) agitated water and (ii) agitated
oil. Top abscissa, cooling rates at 700°C; bottom abscissa, equivalent positions on an
end-quenched test bar. (C = center, M-R = midradius, S = surface, dashed line =
approximate curve for $-radius positions on the cross section of bars.)

(Van Vlack, L.H., “Materials for Engineering: Concepts and Applications.” Ist ed., © 1982. Electronically
reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.)



