Course annhouncement

= The 2" midterm score has been posted on eLearn today.
| will bring the answer sheet to class for review from
Friday until 12/30. You can also review it during Monday's

office hours. If you have any questions about the score,
please contact me.

= The 5" homework set will be posted today (12/27). And it
will be due on (1/3), 5pm.



‘ 12/23(Fri.) The First Law of Thermal Dynamics: 1°' law of thermal dynamics

\ 12/27(Tue.) The First Law of Thermal Dynamics: Thermodynamic processes (Homework5)

12/30(Fri.) Entropy and the Second Law of Thermal Dynamics: entropy
1/3(Tue.) Entropy and the Second Law of Thermal Dynamics: engines and refrigerator




GENERAL PHYSICS Bl
HEAT, WORK, AND THE FIRST
LAW OF THERMODYNAMICS

2022/12/20
Thermodynamic process
Specific Heats of an 1deal gas



A gas system transferring heat to work

= The system (the gas) starts from
an initial state I: described by a
pressure p;, a volume V,, and a
temperature T..

= The final state f. described by a |
pressure p;, avolume V;, and a el
temperature T-.

= The procedure from its initial
state to its final state Is called a
thermodynamic process.




Summary of ideal gas processes

Table 18.1 Ideal-Gas Processes
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Work in an Adiabatic Process

* In an adiabatic process, we have pV? = 1 L Cepesnsdepmes
p,V,Y.Thus the work done one the gas can be B
found: W

V2 V2 y dV i ( Isotherms
W=—-| pdV =- PV’
VY
Vl Vl




Example: Bubble in isothermal process

= A scuba diver is 25m down, where the pressure is 3.5atm.
The air she exhales forms bubbles 8.0mm in radius. How
much work does each bubble do as it rises to the surface,

assuming the bubbles remain at the uniform 300K of
water.




Example: Bubble in isothermal process

= The process is isothermal process(temperature Is constant).
For ideal gas, the work done in isothermal process is: —W =

nRTIn(
1

= From ideal gas law : pVV = nRT, we can know that n, R, T are
all constant for the bubble in isothermal process. We have

pV =p G nr3) = nRT = constant. This means the volume will

expand by a factor of 3.5 since the pressure is reduced from
3.5atm to latm.

= Therefore, —W = nRTIn (%

1

) = pganIn(S.S) = 0.95]



Example: an Adiabatic Process: Diesel Power

Fuel ignites in a diesel engine because of the
temperature rise that results from i Cytinder™§

Piston

compression as the piston moves toward the
top of the cylinder; there’s no spark plug as
tin a gasoline engine. Compression Is fast
enough that the process is essentially
adiabatic. If the ignition temperature is 500°C,
what compression ratio Vmax/Vmin Is
needed? Air’'s specific-heat ratio y is 1.4 and
before compression the air is at 20°C.




Example: an Adiabatic Process: Diesel Power

Since the process Is adiabatic, the gas

fOllOWS TpinV " = TinaxVirox . Therefore, we Y
can find out that: e
|74 1 773K 1
mar — ( mln)y_lz ( )ﬂ: 11 Connecting rod
Vnin T 293K

Crankshaft




Cyclic Processes

Cyclic processes combine the basic processes of other thermodynamic
processes to take a system around a complete cycle and back to its
starting state.

= Cyclic processes are important in technological systems like engines.

= The net work done on a gas in a cyclic process can be found from the
area enclosed by the process curve in the pV diagram.

Work is done by the gas as it goes

C
[=

from state B to state A.

Work done on the gas as it goes from Net work done on the gas
state A to state B is the entire shaded area. during the whole cycle is
o the area encircled by the
closed path.

P
:




Example: Finding the work of a cyclic process

An ideal gas with y = 1.4 occupies 4.0L
at 300K and 100 kPa pressure. It's
compressed adiabatically to one-fourth of
its original volume, then cooled at
constant volume back to 300K, and finally Voluume, V(L)
allowed to expand isothermally to its

original volume. How much work is done

on the gas”?
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Example: Finding the work of a cyclic process

= The cyclic process can be expressed as the
path A-B-C-AIn the right plot. The work
done on the gas of this process is the area
In the close loop. We need to find our work
done Iin every process.

= |t Is adiabatic compression from Ato B. We
have p,V,Y = pgVg". So, we have

pg = pa(V4/Vg)Y= 696.4kPa

Ve — 04V
WAB=pB B pAA=741]
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Example: Finding the work of a cyclic process

= There iIs no work done from B to C

= |t Is Isothermal expansion compression
from C to A. We have:

V
Wecqa = —nRTIn (V—A> = —paVyln <—) Volume, V(L)
C

= —(400/)(In4) = —555]

= Thus the total work done on the gas is
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Specific heat of monatomic ideal gases

we are now able to derive an expression for the molar
specific heat of monatomic ideal gas. There will be two
cases:

= C, (specific heat of constant volume):

The volume of the gas remains constant as energy Is
transferred to or from it as heat.

= Cp (specific heat of constant pressure):

The pressure of the gas remains constant as energy Is
transferred to or from it as heat.



Cv of Monatomic ldeal Gases

= During a constant volume process(red
arrow), the heat absorbed:
Q@ = nCy AT (constant volume)

= Since there is no work done during this
process, the heat absorbed is the change

The temperature

of internal energy(1st law of thermal e e

the volume.

dynamics). Thus:

. AE‘int
n AT

AEy, = 3nR AT

Cy




Cv of Monatomic ldeal Gases

= \WWe can conclude that the molar specific

heat at constant volume of monatomic
idea gas Is:

Cy = %R = 12.5J/mol- K (monatomic gas)

The temperature

. e d
Molecule Example Cy (J/mol - K) Increase Is done

without changing
the volume.

Monatomic | Ideal gR =12.5

Real He 12.5

Ar 12.6




Cp of Monatomic Ideal Gases

We now assume that the temperature of
our ideal gas Is increased by the same
small amount AT as previously but now
the necessary energy (heat Q) is added
with the gas under constant pressure.

Thus Q =nC, AT (constant pressure)

With 1st law of thermal dynamics, we

have
A-Eint — Q o 4

The temperature

increase is done

without changing
the pressure.

ure

7
v
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Volume




Cp of Monatomic Ideal Gases

With constant pressure, the gas does
work:

W =p AV =nR AT

And change of internal energy Is:

AE;; = nCy AT (ideal gas, any process)

The temperature
increase is done

ThUS, nCpT — nCVAT — nRT and without changing

the pressure.

ure

7
v
=9

Volume




Cv of nhon-monatomic gas

Molecule Example Cy (J/mol - K) Diatomic | Ideal

3
Monatomic Ideal ER = 12.5 Real

Real He 12.5

Ar 12.6 Polyatomic Ideal

Real




Monatomic vs Diatomic gas

Monatomic Diatomic
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Degree of freedom and molar specific heat

The type of motion of gas molecules can have:

= Helium(monatomic): translational motion in X, vy, z
direction: (3)

= Oxygen(diatomic): translational motion in X, y, z and
rotational along x, and z direction: (5)

E.. = (f’2)nRT, where f is the number of degrees of freedom




Equipartition of energy

= To keep account of the various ways in which energy can
be stored in a gas, James Clerk Maxwell introduced the
theorem of the equipartition of energy:

Every kind of molecule has a certain number f of degrees of
freedom, which are independent ways in which the
molecule can store energy. Each such degree of freedom

has associated with it—on average—an energy of %kT per
molecule (or %RT per mole).



Degree of freedom vs specific heat

Degrees of Freedom Predicted Molar Specific Heats

Molecule Example Translational Rotational Total (f) Cy (Eq. 19-51)

Monatomic He

Diatomic |O,

Polyatomic CH,




Example: Specific Heat of gas mixture

= A gas mixture consists of 2.0mol of oxygen (O2) and 1.0
mole of argon (Ar). Find the volume specific heat of the
mixture.



Example: Specific Heat of gas mixture

= A gas mixture consists of 2.0mol of oxygen (O2) and 1.0

mole of argon (Ar). Find the volume specific heat of the
mixture.

= For O2, the degree of freedom of the molecule is 5:
Cy 02 = ER. Argon is monatomic molecule gas: C,, 4, = %R.

= For the mixture we can find:

nOZCv 02 T nAer Ar
C, = = L = 2.2R
Np2 T Nyr




Osclllational degree of freedom

= The Cv of oxygen actually depends on temperature.
Shown in the plot is the Cv of H, gas. At higher
temperature there will be another R added in for Cy,
which associated with two atom vibrating respect to COM.

50 100 200 500 1000 2000 5000 10,000
Temperature (K)
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