Course announcement

- Homework set 4 has been posted on eLearn. It will be due on 12/2 Friday at 5PM.
- Final check of your grade of the first midterm (Posted on eLearn).
- The second midterm will on 12/6 (Tuesday). Range: from chapter 9 to chapter 15 of Wolfson (skip chapter 12).
 Exam will be started 8:00AM. Please bring student ID and calculator. You can bring one A4 information sheet for the exam.

Midterm Exam 1 Final Score

Midterm Exam Final Score

Midterm 1_finale score_final check

 \Box

11	11/22(Tue.)	Oscillation and Waves: propagation of waves
11	11/25(Fri.)	Fluid Motion: Density, Pressure, and Hydrostatic Equilibrium (Homework4)
12	11/29(Tue.)	Fluid Motion: Fluid Dynamics and Application
12	12/2(Fri.)	Review II
13	12/6(Tue.)	Mid Term 2

GENERAL PHYSICS B1 FLUID MOTION

Hydrostatic equilibrium and fluid dynamics 2022/11/29

Pascal's Law

- A pressure increase anywhere is felt through out the fluid: Pascal's law.
- Pascal's law's application: hydraulic press.
- Example: lift a car with hydraulic press as shown

$$m_{car}g = p\pi(60)^2 = \frac{F_1}{\pi(7.5)^2}\pi(60)^2$$

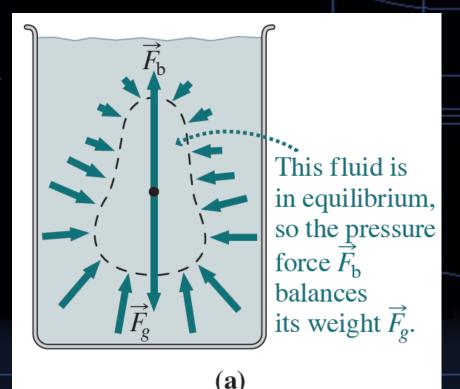
-120 cm

5 cm

• Thus:
$$F_1 = \frac{m_{carg}}{64}$$

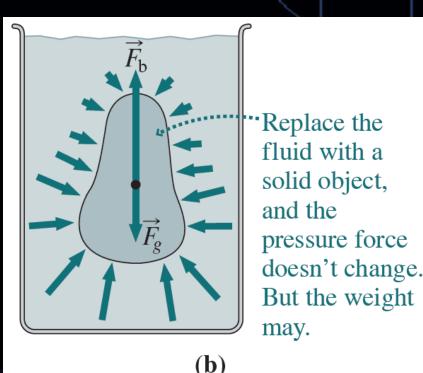
Archimedes' Principle and Buoyancy

 When a fluid is in hydrostatic equilibrium, the force due to pressure differences on an arbitrary volume of fluid exactly balances the weight of the fluid.



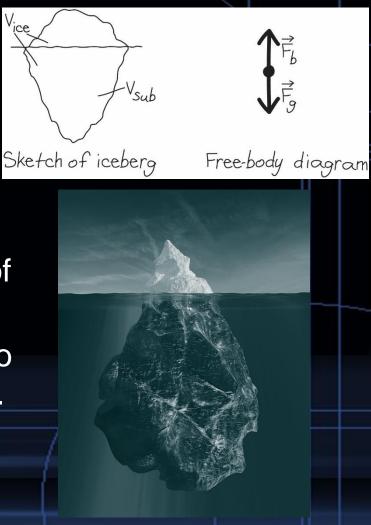
Archimedes' Principle and Buoyancy

- Replacing the fluid with an object of the same shape doesn't change the force due to the pressure differences:
 - Therefore, the object experiences an upward force equal to the weight of the original fluid.
 - This is the buoyancy force.
 - Archimedes' principle states that the buoyancy force is equal to the weight of the displaced fluid: $F_{b} = \rho_{f}gV_{f}$



Floating Objects

- If a submerged object is less dense than a fluid, then the buoyancy force is greater than its weight and the object rises.
- In a liquid, the object eventually reaches the surface:
- Then the object floats at a level such that the buoyancy force equals its weight.
- That means the submerged portion displaces a weight of liquid equal to the weight of the object.
- In the atmosphere, a buoyant object (like a balloon) rises to a level where its density is equal to that of the atmosphere.
- This is **neutral buoyancy**.



The average density of a typical arctic iceberg is 0.86 that of sea water. What fraction of an iceberg's volume is submerged?

Example

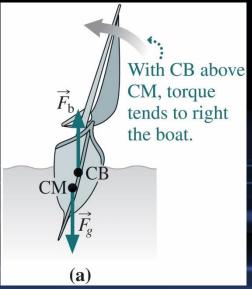
The average density of a typical arctic iceberg is 0.86 that of sea water. What fraction of an iceberg's volume is submerged?

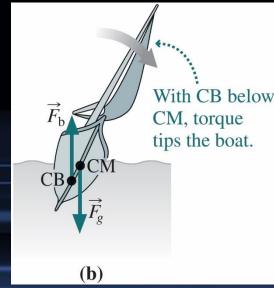
The weight of iceberg is equal to buoyancy force: Weight of iceberg: $m_{ice}g = \rho_{ice}V_{ice}g$ buoyancy force: $W_{water} = \rho_{water}gV_{sub}$ Thus:

$$\frac{V_{sub}}{V_{ice}} = \frac{\rho_{ice}}{\rho_{water}} = 0.86$$

Center of Buoyancy

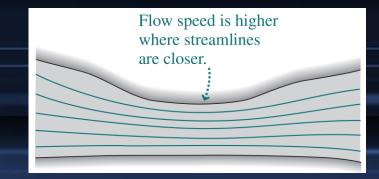
- The buoyancy force acts not at the center of mass of a floating object but at the center of mass of the water that would be there if the object weren't. This point is called the center of buoyancy.
- For stable equilibrium, the center of buoyancy must lie above the center of mass.





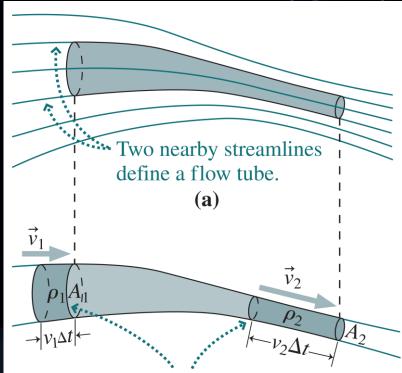
Fluid Dynamics

- Moving fluids are characterized by their flow velocity as a function of position and time:
 - In steady flow, the velocity at a given point is independent of time:
 - Steady flows can be visualized with streamlines, which are everywhere tangent to the local flow direction. The density of streamlines reflects the flow speed.
 - In unsteady flow, the fluid velocity at a given point varies with time.
 Unsteady flows are more difficult to treat.



Conservation of Mass: The Continuity Equation

- The continuity equation expresses conservation of mass in a moving fluid:
 - It follows from considering a flow tube, usually an imaginary tube bounded by nearby streamlines:
 - The flow tube may also be an actual physical tube or pipe.



These fluid elements have the same mass, so they take the same time Δt to enter and exit the tube.

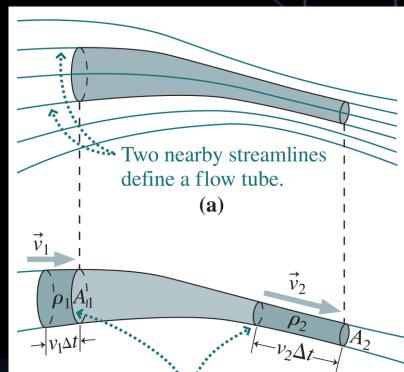
Conservation of Mass: The Continuity Equation

The continuity equation reads:

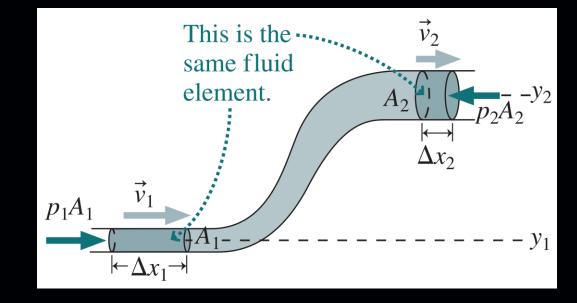
 $\rho v A = constant$

where ρ is the density, v is the flow speed, and A is the cross-sectional area; the quantities are evaluated at points along the same flow tube.

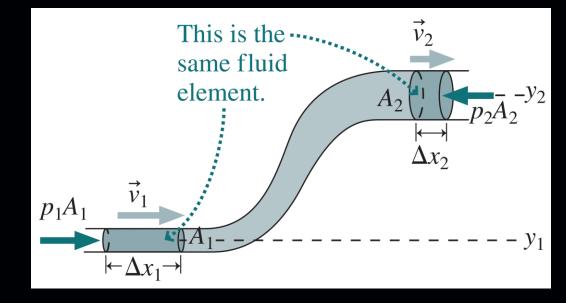
- The quantity pvA is is the mass flow rate.
- For incompressible fluids, density is constant and the continuity equation
 reduces to vA = constant:
 - Here vA is the volume flow rate.



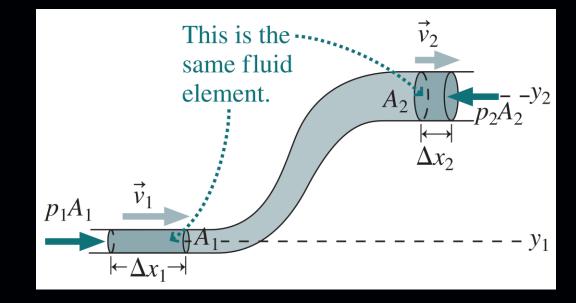
These fluid elements have the same mass, so they take the same time Δt to enter and exit the tube.



Consider the conservation of energy in fluid motion: the same fluid element flow from one side to the other side:
 The work done by pressure when enter: W₁=p₁A₁Δx₁.
 The work done by pressure when leaving: W₂=-p₂A₂Δx₂.

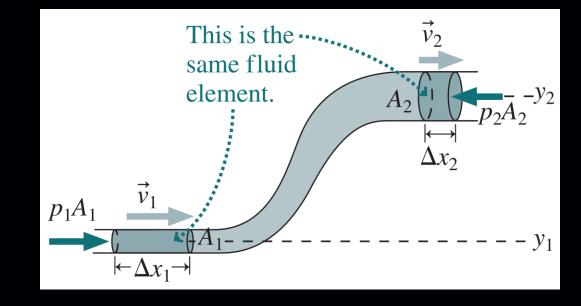


• The change of gravitation energy: $W_g = mg(y_2 - y_1)$. • The change of kinetic energy: $\Delta K = \frac{1}{2}m(v_2^2 - v_1^2)$ With work energy theorem: $W1 + W2 + W_g = \Delta K$ We have $p_1A_1\Delta x_1 - p_2A_2\Delta x_2 + mg(y_2 - y_1) = \frac{1}{2}m(v_2^2 - v_1^2)$



Since volume V=A∆x and m/V=p, plug in to the previous equation we get:

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

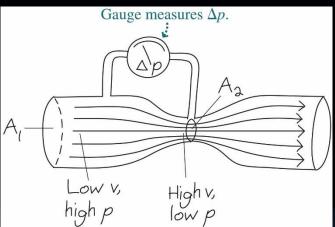


Neglecting fluid friction (viscosity) and in the absence of mechanical pumps and turbines that add or remove energy from the incompressible fluid, Bernoulli's equation reads

$$p + \frac{1}{2}\rho v^2 + \rho gh = constant$$

Venturi Flows and the Bernoulli Effect

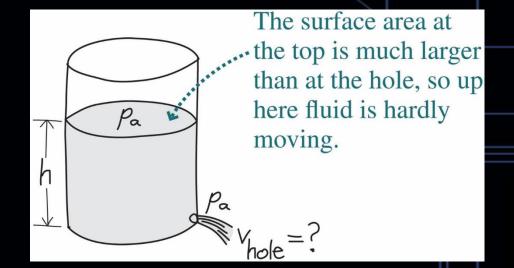
For flows that don't involve height differences, Bernoulli's equation shows that higher flow speeds are accompanied by lower pressures: This is the Bernoulli effect.



 The venturi flow : Measuring the pressure difference between the constricted and the unconstricted pipe gives a measure of the flow speed.

Example: Draining a Tank

 A large, open tank is filled to a height *h* with liquid of density *p*.
 Find the speed of the liquid emerging from a small hole at the base of the tank?

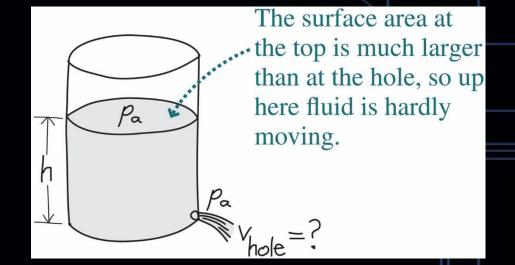


Example: Draining a Tank

- The fluid at the top of the tank and just outside the exit hole are both at atmospheric pressure, p_a.
- Because the tank is large, the fluid velocity at the top is nearly zero.
- Assuming y = 0 at the hole and y = h at the top of the fluid, we can find the exit speed using Bernoulli's equation:

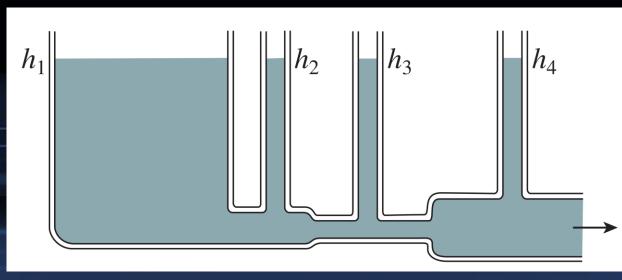
$$p_{a} + \rho g h = p_{a} + \frac{1}{2}\rho V_{hole}^{2}$$

Solving for v_{hole}, we obtain:



Think about it...

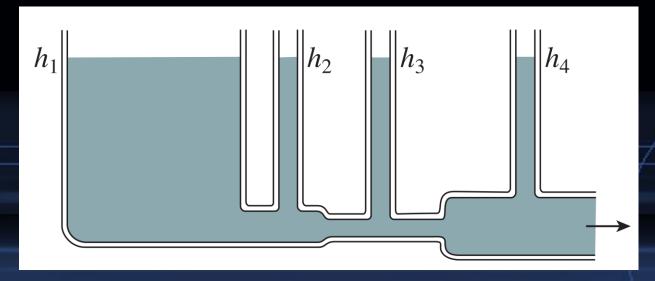
- A large tank is filled with liquid to the level h₁ shown in the figure. It drains through a small pipe whose diameter varies; emerging from each section of pipe are vertical tubes open to the atmosphere. Although the picture shows the same liquid level in each pipe, they really won't be the same.
- Rank levels h_1 through h_4 in order from highest to lowest.



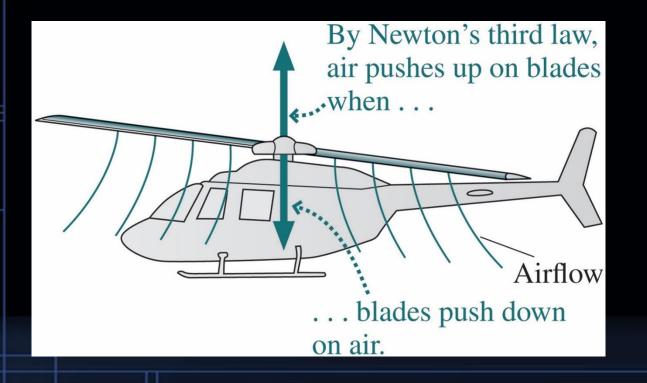
Think about it...

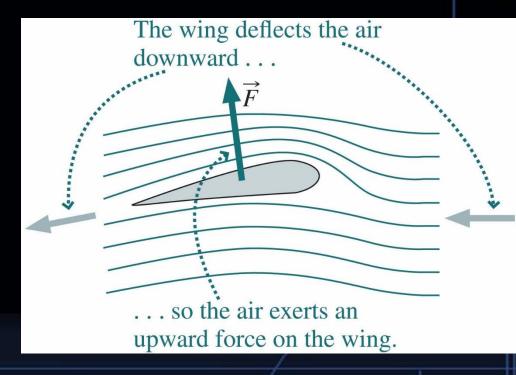
$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$$

 v large, then h is small. For pipe area is small, v is large: h₄>h₁=h₂>h₃



Flight and Lift

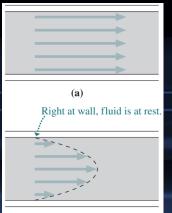




Viscosity and Turbulence

Viscosity is fluid friction:

- It's associated with the transfer of momentum among adjacent layers within a fluid.
- It also occurs where a fluid contacts pipe walls, river banks, and other material containers.
- Viscosity dissipates flow energy.
- Turbulence is complex, chaotic, time-dependent fluid motion.



Without viscosity, flow in a pipe would be uniform. Viscous drag at the pipe walls introduces a parabolic flow profile.

Smooth flow becomes turbulent in a column of rising smoke.

(b)