#### Course announcement

- Homework set 3 will be posted on eLearn today. It will be due on 11/18 Friday at 5PM.
- Solution of homework set 3 will be posted tonight.

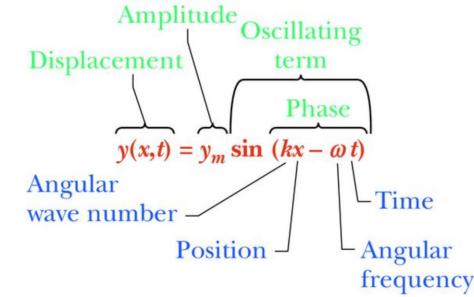
| 10 | 11/15(Tue.) | Oscillation and Waves: description of waves                              |
|----|-------------|--------------------------------------------------------------------------|
| 10 | 11/18(Fri.) | Oscillation and Waves: interference of waves                             |
| 11 | 11/22(Tue.) | Oscillation and Waves: propagation of waves                              |
| 11 | 11/25(Fri.) | Fluid Motion: Density, Pressure, and Hydrostatic Equilibrium (Homework4) |

# GENERAL PHYSICS B1 OSCILLATION & WAVE

Interference of Waves 2022/11/11

# Description of wave

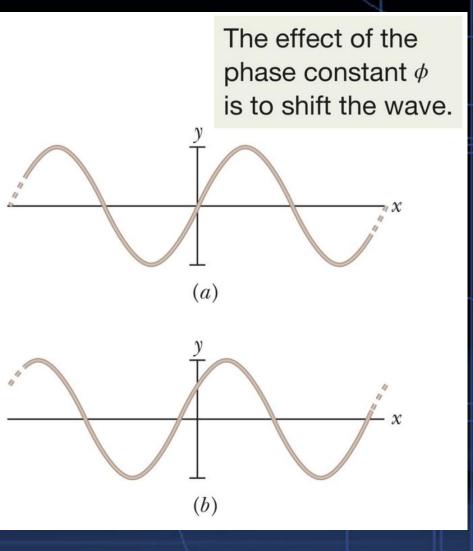
Use wave on a string as an example. Imagine a sinusoidal wave traveling in the positive direction of an x axis. The elements oscillate parallel to the y axis. At time t, the displacement y(x,t) of the element located at position x is given by



#### The phase constant

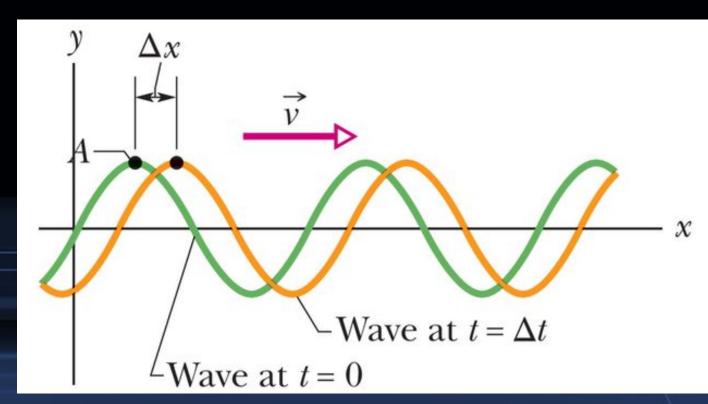
 A value of \$\phi\$ can be chosen so that the function gives some other displacement and slope at x = 0 when t = 0.

$$y=y_m~\sin{(kx-\omega t+\phi)}$$



# The speed of a traveling wave

- If point A retains its displacement as it moves, the phase must remain a constant:  $kx \omega t = constant$ .
- Thus the wave speed is  $\frac{dx}{dt} = v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$



#### Direction of wave propagation

• With the concept of wave speed, one can find that:  $y(x,t) = y_m \sin(kx - \omega t + \phi)$ 

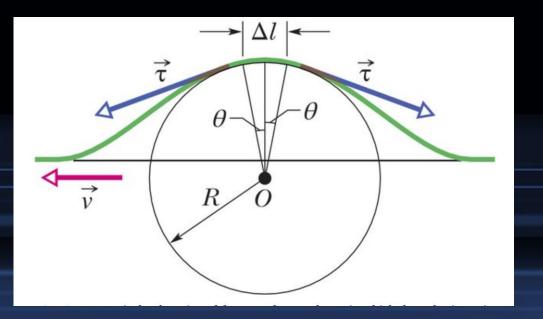
is a wave traveling to positive x direction with positive wave speed  $v = \frac{\omega}{v}$ .

 $y(x,t) = y_m \sin(kx + \omega t + \phi)$ 

is a wave traveling to negative x direction with negative wave speed  $v = -\frac{\omega}{k}$ .

#### Wave speed on a stretched string

- $v = \sqrt{\frac{\tau}{\mu}}$ , which is the wave speed of the stretched string.
- The power of total energy transfer is  $P_{avg} = \frac{1}{2} \mu v y_m^2 \omega^2$



# Today's topic

- Wave equation
- Interference of wave
- Standing wave

#### The wave equation

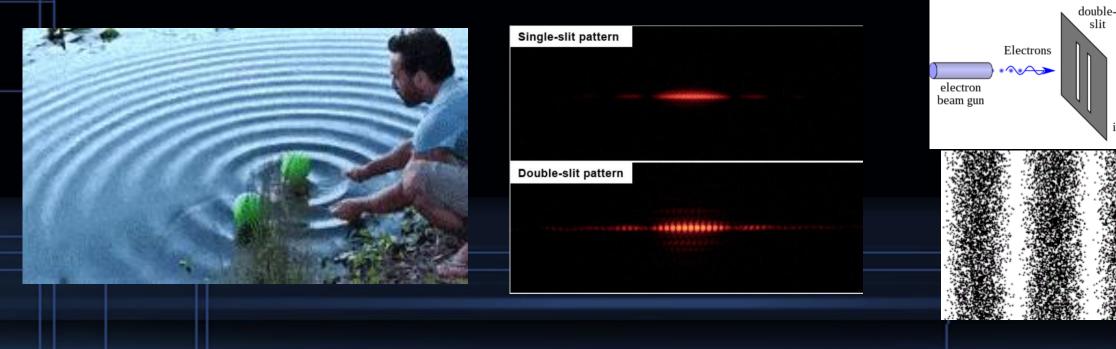
 By applying Newton's second law to the element's motion, we can derive a general differential equation, called the wave equation, that governs the travel of waves of any type:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

• The description  $y(x,t) = y_m \sin(kx - \omega t + \phi)$  is the solution of this general differential equation.

# Interference of wave

It often happens that two or more waves pass simultaneously through the same region and have interference to each others



https://gfycat.com/gifs/search/destructive+waves

#### https://en.wikipedia.org/wiki/Double-slit\_experiment

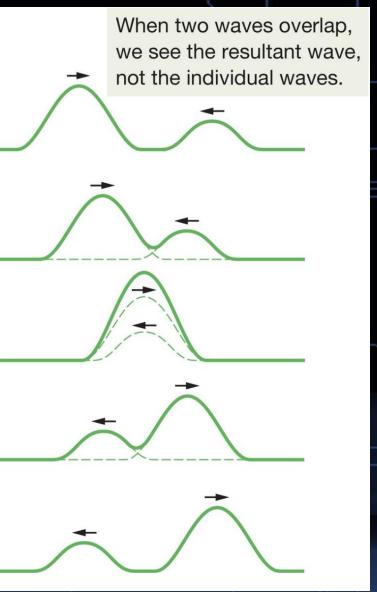
screen

# Principle of superposition

- Principle of superposition: when several effects occur simultaneously, their net effect is the sum of the individual effects.
- Suppose that two waves travel simultaneously along the same stretched string. Let  $y_1(x, t)$  and  $y_2(x, t)$  be the displacements that the string would experience if each wave traveled alone. The displacement of the string when the waves overlap is then the algebraic sum:  $y'(x,t) = y_1(x,t) + y_2(x,t)$

# Principle of superposition

- $y'(x,t) = y_1(x,t) + y_2(x,t)$
- Overlapping waves algebraically add to produce a resultant wave (or net wave).

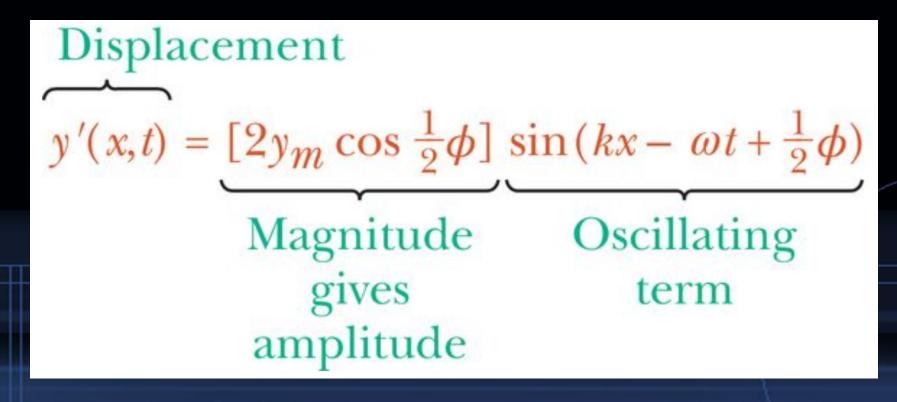


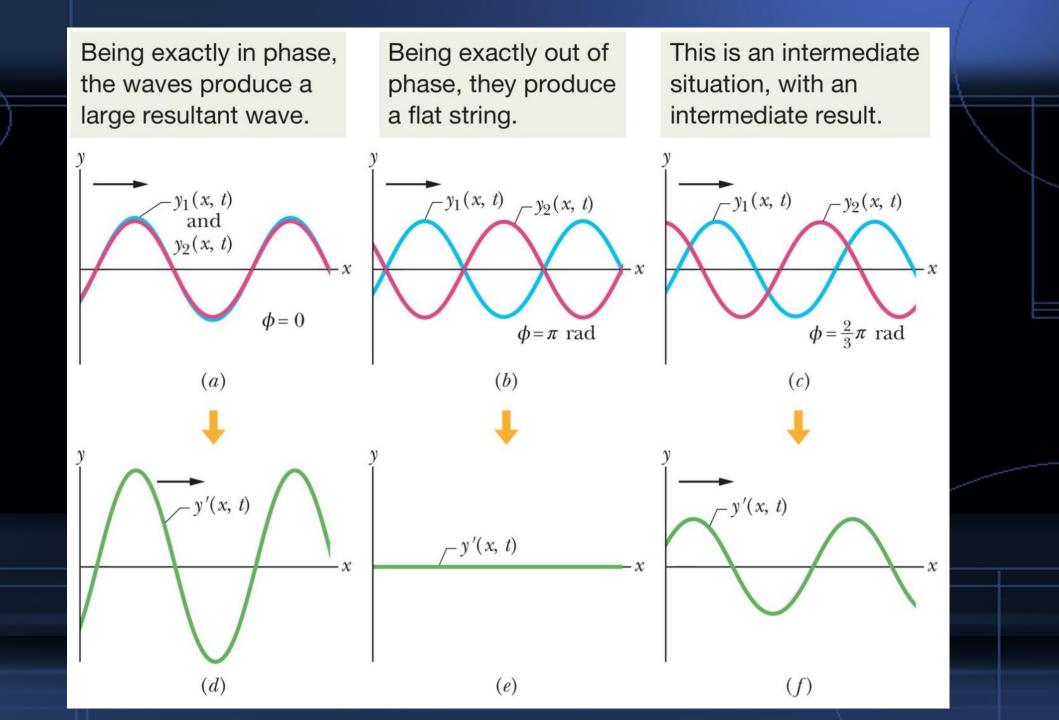
#### Math description: interference of waves

- Let one wave traveling along a stretched string be given by  $y_1(x,t) = y_m \sin(kx - \omega t)$ .
- Another wave is  $y_2(x,t) = y_m \sin(kx \omega t + \phi)$
- They differ only by a constant angle φ, the phase constant. These waves are said to be out of phase by φ or to have a phase difference of φ, or one wave is said to be phaseshifted from the other by φ.

#### Math description: interference of waves

• The resultant wave:  $y'(x,t) = y_1(x,t) + y_2(x,t) = y_m \sin(kx - \omega t) + y_m \sin(kx - \omega t + \phi)$ 





| Phase Difference, in |                  |             | Amplitude of Resultant Wave | Type of Interference |
|----------------------|------------------|-------------|-----------------------------|----------------------|
| Degrees              | Radians          | Wavelengths |                             |                      |
| 0                    | Ο                | О           | $2y_m$                      | Fully constructive   |
| 120                  | $\frac{2}{3}\pi$ | 0.33        | $y_m$                       | Intermediate         |
| 180                  | π                | 0.50        | 0                           | Fully destructive    |
| 240                  | $\frac{4}{3}\pi$ | 0.67        | $y_m$                       | Intermediate         |
| 360                  | 2π               | 1.00        | $2y_m$                      | Fully constructive   |
| 865                  | 15.1             | 2.40        | 0.60 <i>y</i> <sub>m</sub>  | Intermediate         |

# Standing Wave

- we discussed two sinusoidal waves of the same wavelength and amplitude traveling in the same direction along a stretched string. What if they travel in opposite directions?
- We again use principle of superposition to treat the problem.

# Superposition of two waves in opposite directions

- Consider two waves:  $y_1(x,t) = y_m \sin(kx \omega t)$  and  $y_2(x,t) = y_m \sin(kx + \omega t)$ .
- By principle of superposition:  $y'(x,t) = y_1(x,t) + y_2(x,t)$
- The resultant wave:

 $y'(x,t) = [2y_m \sin(kx)]cos\omega t$ 

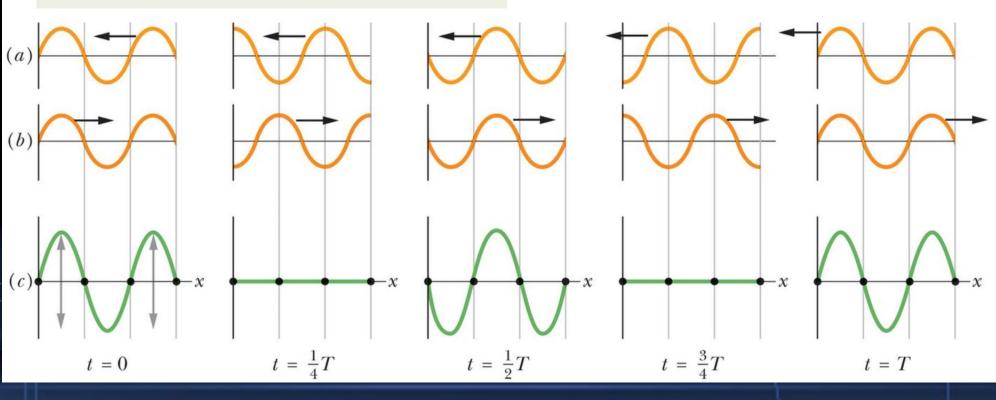
# Mathematical form of standing wave

Displacement  $y'(x,t) = [2y_m \sin kx] \cos \omega t$ Magnitude Oscillating gives term amplitude at position x

# Visualization of standing wave

As the waves move through each other, some points never move and some move the most.

 $y'(x,t) = [2y_m \sin kx] \cos \omega t$ 



# Node and antinode of standing wave

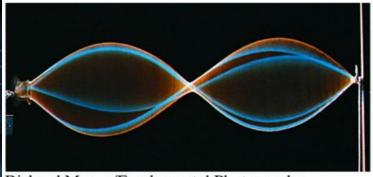
- The amplitude is zero for values of kx that give sin kx = 0:  $kx = n\pi$ , where n = 0,1,2,...By insert  $k = 2\pi/\lambda$ , we find the nodes of the standing wave:  $x = n\frac{\lambda}{2}$ , where n = 0,1,2,...
- The amplitude is maximum for values  $2y_m$  when:

$$kx = (n + \frac{1}{2})\pi$$
, where  $n = 0, 1, 2, ...$ 

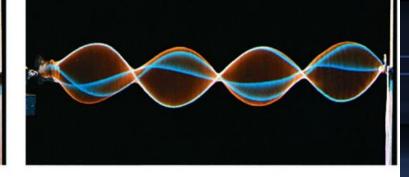
By insert  $k = 2\pi/\lambda$ , we find the antinodes of the standing wave:  $x = (n + \frac{1}{2})\frac{\lambda}{2}$ , where n = 0, 1, 2, ...

# Standing wave and resonance

- Consider a string, such as a guitar string, that is stretched between two clamps. Suppose we send a continuous sinusoidal wave of a certain frequency along the string,
- Resonance: for certain frequencies, the interference produces a standing wave pattern (or oscillation mode) with nodes and large antinodes.







Richard Megna/Fundamental Photographs

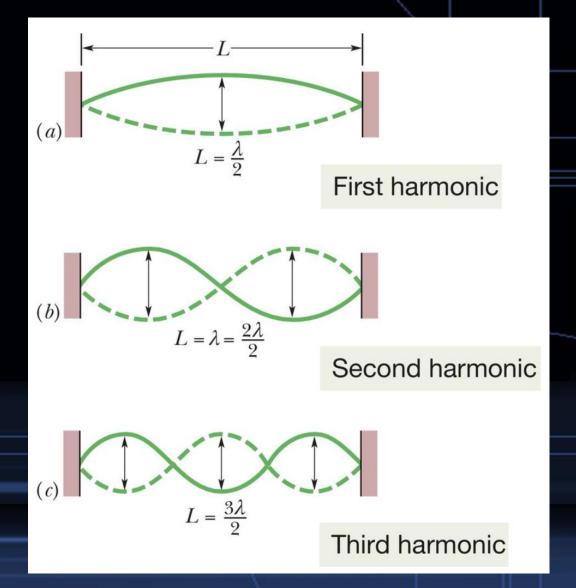


# **Resonance frequency**

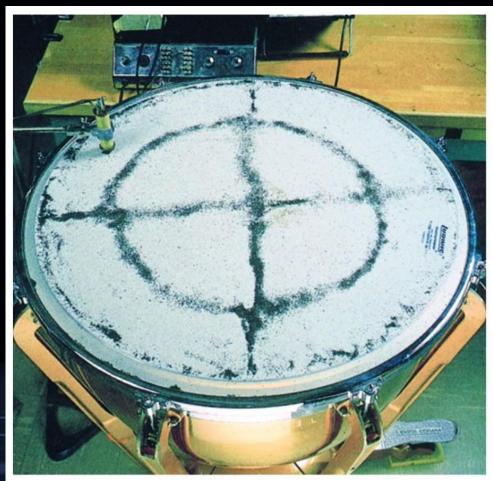
A standing wave can be set up on a string of length L by a wave with a wavelength equal to one of the values:

$$\lambda = \frac{2L}{n}$$
,  $n = 1, 2, 3, ...$ 

• Therefore, the resonance frequency is:  $f = \frac{v}{\lambda} = n \frac{v}{2L}, n = 1,2,3, ...$ 



# Standing wave on a drum



Courtesy Thomas D. Rossing, Northern Illinois University

resonant oscillation of a string of mass m = 2.500 g and length L = 0.800 m and that is under tension  $\tau = 325.0$  N. (a)What is the wavelength  $\lambda$  of the transverse waves producing the standing wave pattern, and what is the harmonic number n?

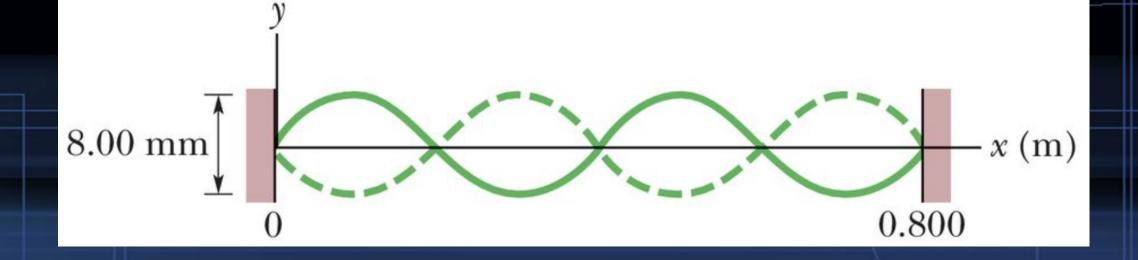


 $y'(x,t) = [2y_m \sin(kx)]cos\omega t$ We can find in the plot that  $L = 2\lambda$ . Thus  $\lambda = 0.4m$ By counting the or half-wavelengths, the correspond harmonic is n=4

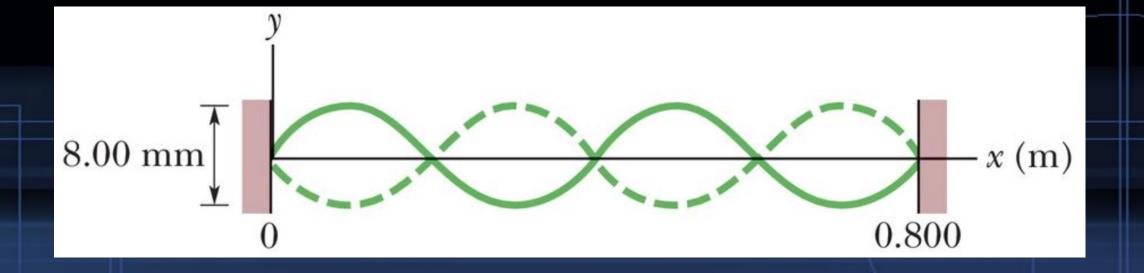




(b)What is the frequency f of the transverse waves and of the oscillations of the moving string elements?



With the wave speed on string:  $v = \sqrt{\frac{\tau}{\mu}} = \sqrt{\frac{\tau L}{m}} = 322.49 m/s$ The resonance frequency  $f = \frac{v}{\lambda} = 806.2 Hz$ 



(c) What is the maximum magnitude of the transverse velocity um of the element oscillating at coordinate x = 0.180 m?



By taking derivative of displacement respect to time, we have:  $u(t) = \frac{\partial}{\partial t} [2y_m sinkx] cos\omega t = [-2y_m \omega sinkx] sin\omega t$ Therefore, at x=0.18m, the maximum u = 6.26m/s

