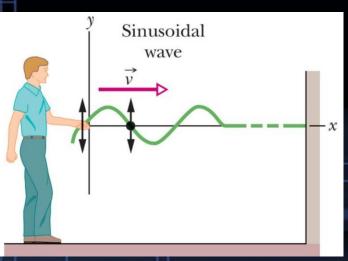
Course announcement

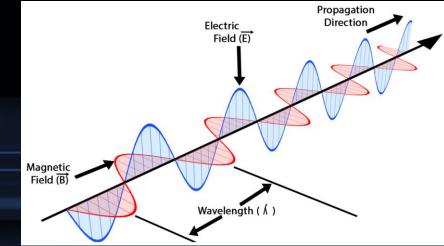
 Homework set 3 will be posted on eLearn today. It will be due on 11/18 Friday at 5PM.

10	11/15(Tue.)	Oscillation and Waves: description of waves
10	11/18(Fri.)	Oscillation and Waves: interference of waves
11	11/22(Tue.)	Oscillation and Waves: propagation of waves
11	11/25(Fri.)	Fluid Motion: Density, Pressure, and Hydrostatic Equilibrium (Homework4)

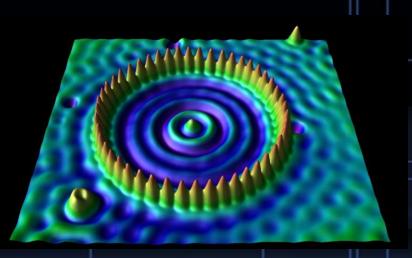
Different types of waves

 Waves are of three main types: Mechanical waves.
Electromagnetic waves.
Matter waves.





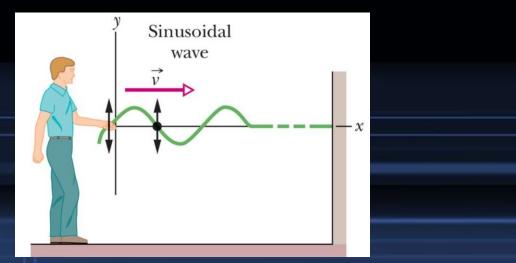
https://commons.wikimedia.org/wiki/Fi le:Electromagnetic_waves.png

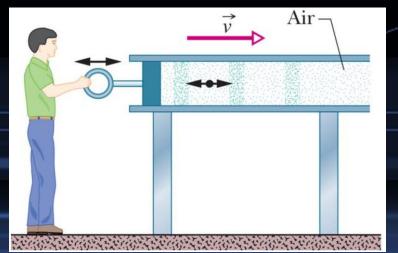


https://www.nisenet.org/catalog/scie ntific-image-quantum-corral-top-view

Transverse and Longitudinal Waves

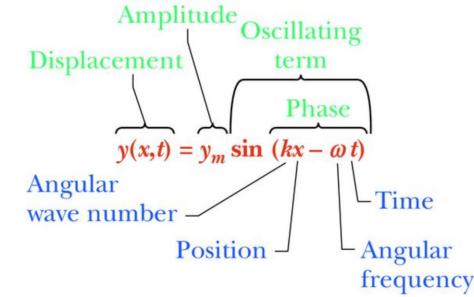
- Transverse waves: the displacement of every oscillating element is perpendicular to the direction of travel of the wave.
- Longitudinal waves: the displacement of the oscillating elements is parallel to the direction of the wave's travel.





Description of wave

Use wave on a string as an example. Imagine a sinusoidal wave traveling in the positive direction of an x axis. The elements oscillate parallel to the y axis. At time t, the displacement y(x,t) of the element located at position x is given by



GENERAL PHYSICS B1 OSCILLATION & WAVE

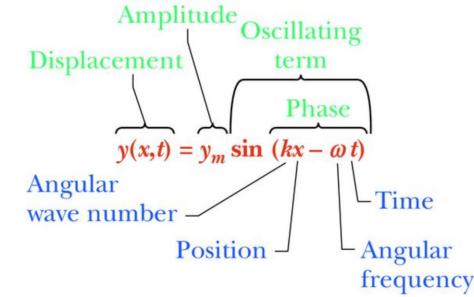
Damped, Forced Oscillation, and Wave 2022/11/11

Today's topic

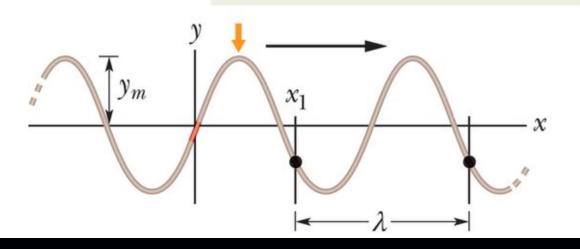
- Description of Wave
- Wave speed on a stretched string
- Wave equation

Description of wave

Use wave on a string as an example. Imagine a sinusoidal wave traveling in the positive direction of an x axis. The elements oscillate parallel to the y axis. At time t, the displacement y(x,t) of the element located at position x is given by

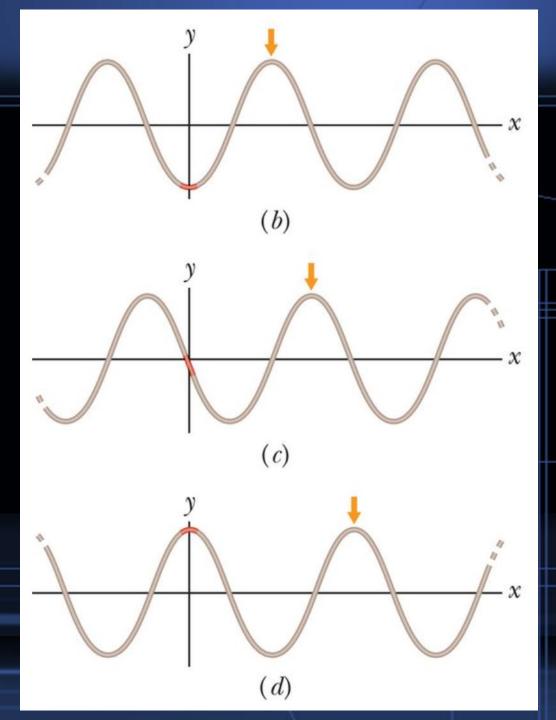


Watch this spot in this series of snapshots.

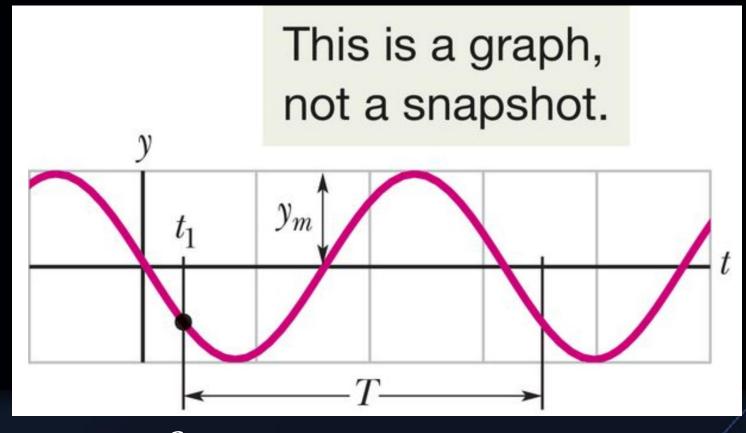


• $k = \frac{2\pi}{\lambda}$ (angular wave number)

phase of the wave is the argument $(kx - \omega t)$ of the sine: a wave traveling to positive x direction



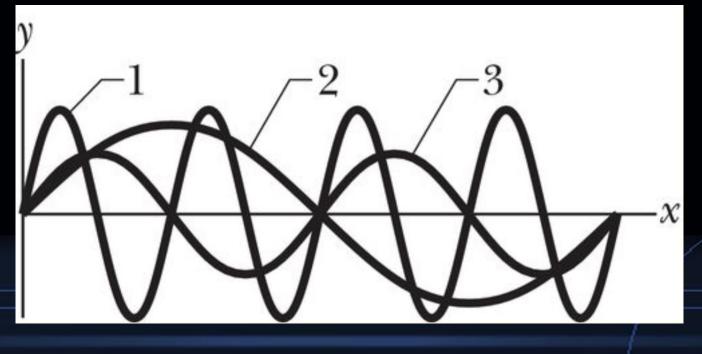
Angular frequency and frequency of wave



•
$$\omega = \frac{2\pi}{T}$$
 (angular wave frequency)
• $f = \frac{1}{T} = \frac{\omega}{2\pi}$ (frequency)

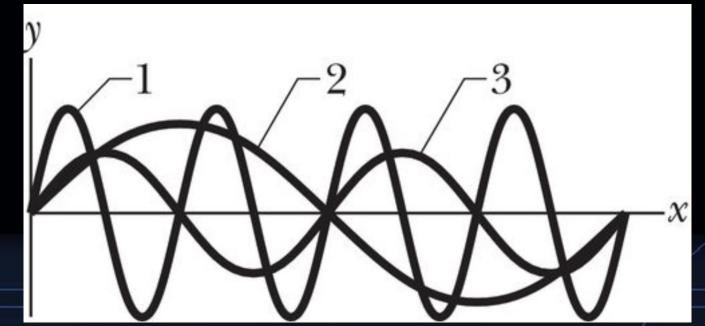
Example

The phases for the waves are given by (a) 2x - 4t, (b) 4x - 8t, and (c) 8x - 16t. Which phase corresponds to which wave in the figure?



Example

The phases for the waves are given by (a) 2x - 4t, (b) 4x - 8t, and (c) 8x - 16t. Which phase corresponds to which wave in the figure?

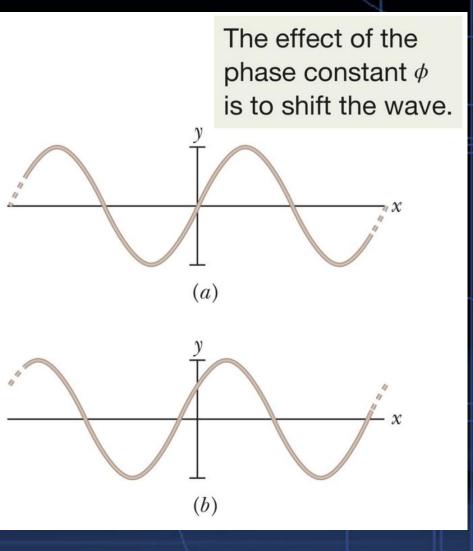


Ans: 1-(c), 2-(a), and 3-(b). $k = \frac{2\pi}{\lambda}$:longer wavelength, smaller k

The phase constant

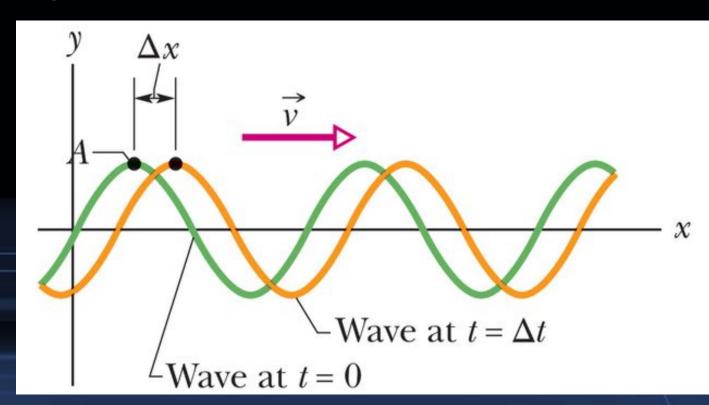
 A value of \$\phi\$ can be chosen so that the function gives some other displacement and slope at x = 0 when t = 0.

$$y=y_m~\sin{(kx-\omega t+\phi)}$$



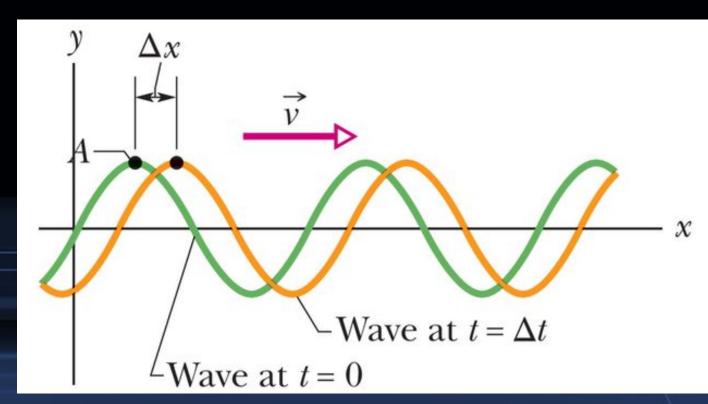
The speed of a traveling wave

 The wave is traveling in the positive direction of x, the entire wave pattern moving a distance Δx in that direction during the interval Δt. The ratio Δx/Δt (or, in the differential limit, dx/dt) is the wave speed v.



The speed of a traveling wave

- If point A retains its displacement as it moves, the phase must remain a constant: $kx \omega t = constant$.
- Thus the wave speed is $\frac{dx}{dt} = v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$



Direction of wave propagation

• With the concept of wave speed, one can find that: $y(x,t) = y_m \sin(kx - \omega t + \phi)$

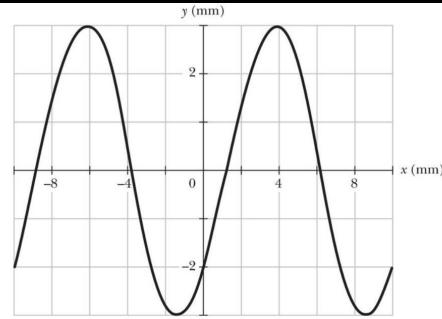
is a wave traveling to positive x direction with positive wave speed $v = \frac{\omega}{v}$.

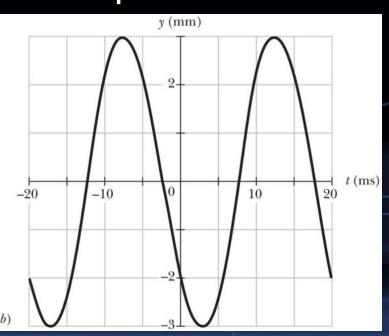
 $y(x,t) = y_m \sin(kx + \omega t + \phi)$

is a wave traveling to negative x direction with negative wave speed $v = -\frac{\omega}{k}$.

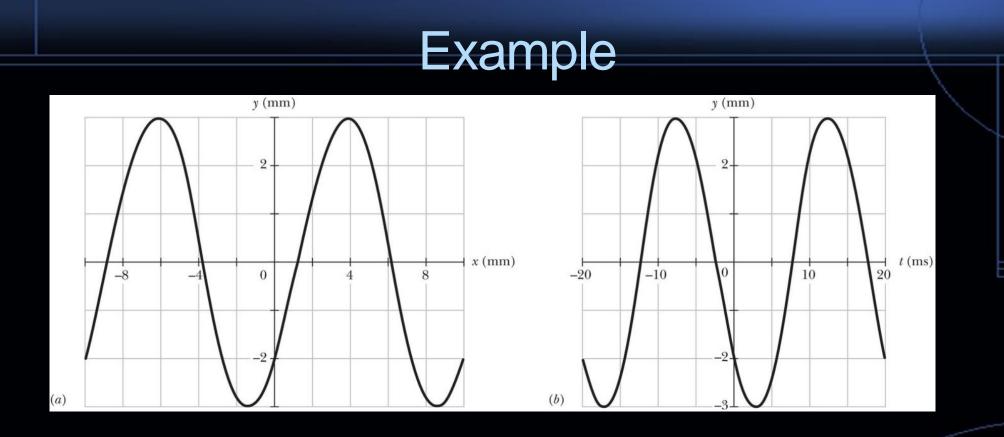
Example

A transverse wave traveling along an x axis has the form given by $y(x,t) = y_m \sin(kx \pm \omega t + \phi)$. Figure (a) gives the displacements of string elements as a function of x, all at time t = 0. Figure (b) gives the displacements of the element at x = 0 as a function of t. Find the values of the quantities .

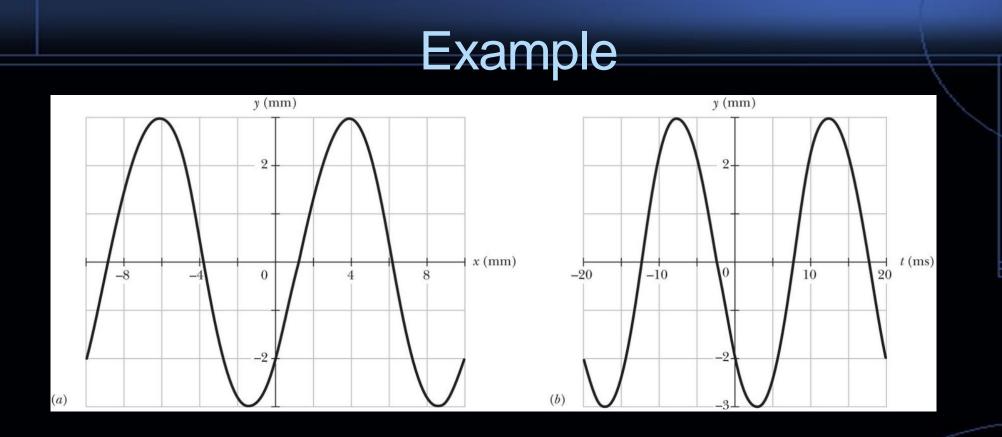




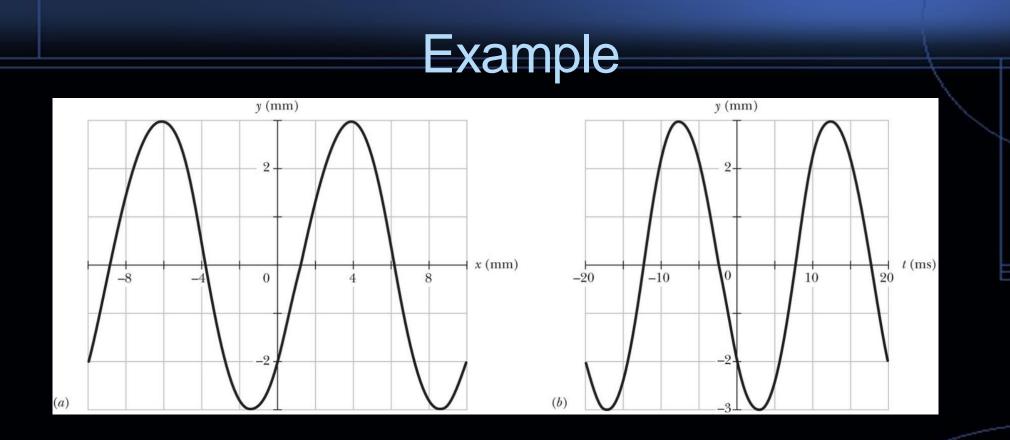
(a)



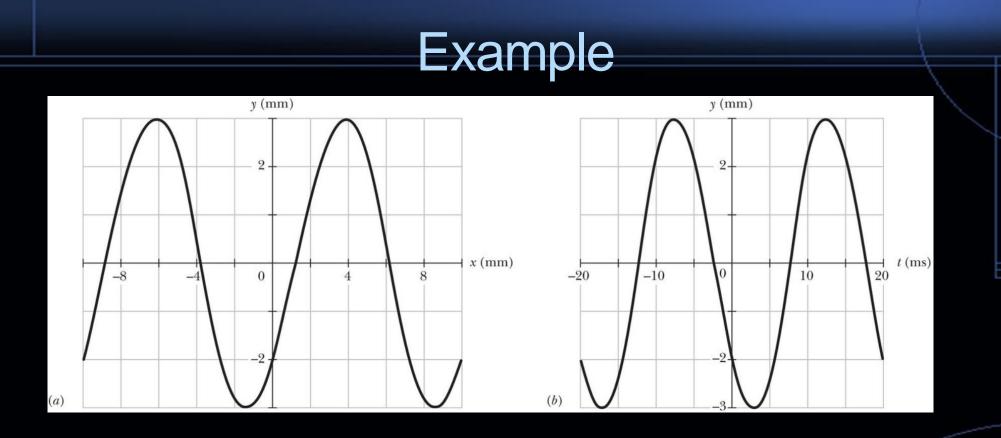
• Amplitude of wave y_m : The wave is oscillating between $+y_m$ and $-y_m$. In both figure, the wave oscillating between +3mmand -3mm. Therefore $y_m = 3mm$



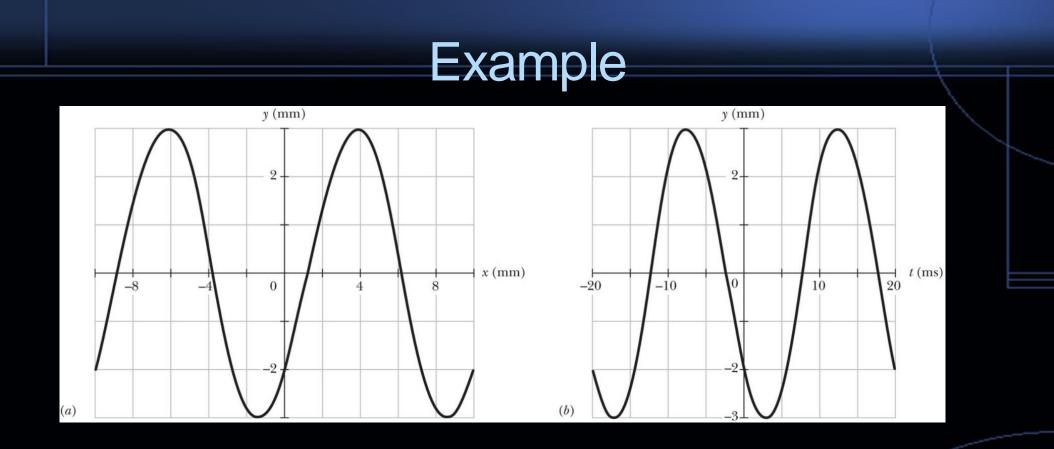
Angular wave number k: We will find out wavelength λ first and use k = ^{2π}/_λ to find out angular wave number. From figure (a), we can find out λ = 10mm. Therefore k = 200π rad/m



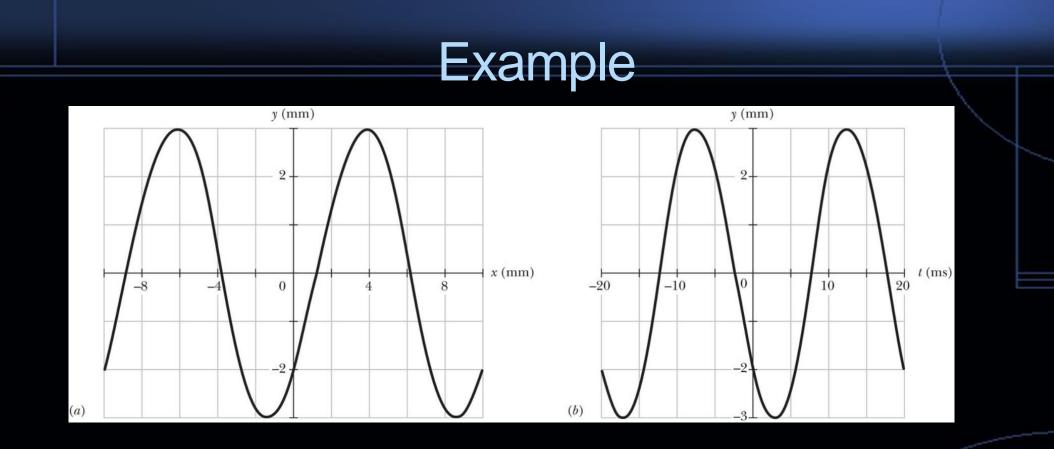
• Angular wave frequency ω : We will find out period *T* first and use $\omega = \frac{2\pi}{T}$ to find out angular wave frequency. From figure (b), we can find out T = 20ms. Therefore $\omega = 100\pi \ rad/s$



Direction of travel: From (b), we know that the point x=0 is oscillating toward negative first when t is increasing from 0. This can only happen when the wave is moving to the right in figure (a). Thus, it should be kx - ωt

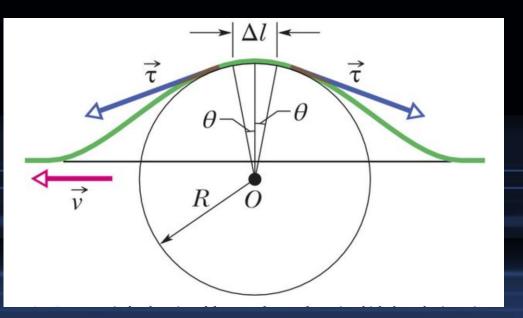


• Phase constant ϕ : From (a), we know that at $y(x = 0, t = 0) = 3\sin(\phi) = -2mm$. This gives $\phi = \sin^{-1}\left(-\frac{2}{3}\right) = -0.73rad$

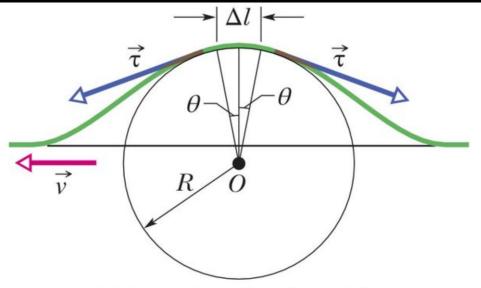


• Therefore we have $y(x,t) = 3mm \sin(200\pi x - 100\pi t - 0.73)$

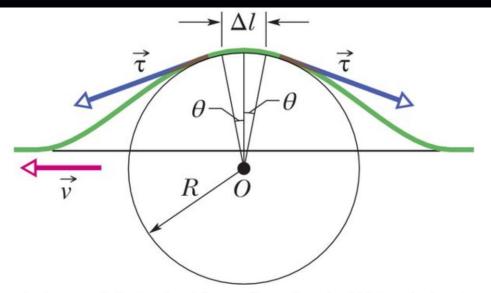
- What is a wave speed of a stretched string? Let's analyze in the following way:
- consider a single symmetrical pulse moving from left to right along a string with speed v.



Consider a small string element of length ΔI within the pulse, an element that forms an arc of a circle of radius R and subtending an angle 20 at the center of that circle. A force $\vec{\tau}$ with a magnitude equal to the tension in the string pulls tangentially on this element at each end.



A radial restoring force with magnitude $F = 2\tau sin\theta \approx \tau \frac{\Delta l}{R}$ The mass of the element is $\Delta m = \mu \Delta l$, where μ is the unit mass of the string.



Considering it as a uniform circular motion, the force provide a centripetal acceleration: $a = \frac{v^2}{R}$ to the mass $\Delta m = \mu \Delta l$. Thus, we have $\tau \frac{\Delta l}{R} = \mu \Delta l a = \mu \Delta l \frac{v^2}{R}$ There fore we can get $v = \sqrt{\frac{\tau}{\mu}}$, which is the wave speed of the stretched string.

Energy of a wave traveling along string

• The kinetic energy dK associated with a string element of mass $dm = \mu dx$ is given by $dK = \frac{1}{2} dmu^2$, where u is the transverse speed of the oscillating string element.

•
$$dK = \frac{1}{2} dm \left(\frac{dy}{dt}\right)^2 = \frac{1}{2} dm \left(\frac{dy_m \sin(kx - \omega t + \phi)}{dt}\right)^2 = \frac{1}{2} \mu dx y_m^2 \omega^2 \cos^2(kx - \omega t + \phi)$$

• Therefore, $\frac{dK}{dt} = \frac{1}{2}\mu v y_m^2 \omega^2 \cos^2(kx - \omega t + \phi)$, where $v = \frac{dx}{dt}$ is the wave speed

Energy of a wave traveling along string

- The average kinetic energy transfer $\left(\frac{dK}{dt}\right)_{avg} = \frac{1}{2}\mu v y_m^2 \omega^2 \left[\cos^2(kx - \omega t + \phi)\right]_{avg} = \frac{1}{4}\mu v y_m^2 \omega^2$
- The average potential energy transfer will be the same amount because the nature of harmonic oscillation. Therefore, the power of the total energy transfer will be $P_{avg} = \frac{1}{2} \mu v y_m^2 \omega^2$

The wave equation

 By applying Newton's second law to the element's motion, we can derive a general differential equation, called the wave equation, that governs the travel of waves of any type:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

• The description $y(x,t) = y_m \sin(kx - \omega t + \phi)$ is the solution of this general differential equation.