Course anhouncement

= The homework set 4 has been posted on eLearn. Please
submit your homework via eLearn by 5PM, 12/02. No late
homework will be accepted. Solution will be posted
tonight.

= The first midterm will on 12/06 (Tuesday). Exam will be
started 8:00AM.



- 11/22(Tue.) Oscillation and Waves: propagation of waves

- 11/25(Fri.) Fluid Motion: Density, Pressure, and Hydrostatic Equilibrium (Homework4)
- 11/29(Tue. Fluid Motion: Fluid Dynamics and Application

12 [12/2(Fri)  [Reviewn ]
B




Midterm Exam 2

= Exams will be started at 8:00AM and ends at 9:.50AM.
= Please bring student ID and calculator.
= You can bring one A4 information sheet for the exam.

= Cheating will result in O points for the whole exam and will
be reported to university.

= No Exams Corrections for Midterm 2



Policy for COVID-19

= We follow university guideline about course under
COVID-19.

= Please have facial mask with you

= For students who cannot attend exam due to COVID-19,
they can have test remotely with monitor of web camera.

(https://teams.live.com/meet/9570955571789). The problem
will be posted on eLearn and can be handed via eLearn.
Only students inform me in advance can have test via
eLearn.



https://teams.live.com/meet/9570955571789

Problem about Exam

= There will be 6 problem sets. Range: 9~15 chapter (skip
chapter 12) of Essential University Physics by Richard
Wolfson.

= All the problems will be related to materials covered in
class, problem discussed in class, and homework
problems.
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The Center of Mass (COM)

"he center of mass of a system of particles is the point
that represents the motion of the system.

The center of mass moves as though (1) all of the
system’s mass were concentrated there (but it doesn't
have to be inside the system) and (2) all external forces
were applied there.




The center of mass in a many particles system

We can further extend this equation to a more general
situation In which n particles in three dimension. Then the
total massis M =m, + m, + ... + m_, and the location of the

center of mass iIs
—_— 1 —>
Tcom = MZ m;r;



The center of mass In a continuous system

An ordinary object contains so many particles (atoms) that we
can best treat it as a continuous distribution of matter. The
“particles” then become differential mass elements dm, the

sums become integrals, and the coordinates of the center of
mass are defined as

1
xcomzﬁfxdm

9_1 _>d 1
rcom—ﬁ ot ycom=Mfydm

1
Zecom = MJ zdm



Linear momentum

= For a single particle, we define a quantity p called its
linear momentum as

p = mv
which Is a vector quantity that has the same direction as

the particle’s velocity. We can write Newton’s second law in
terms of this momentum:

. dp

Fner = dt
= For a system of particles these relations become

= —_— —— dPp
P — mvCOM and FNET — E



Impulse and Momentum

= Similar to our derivation to energy (integral EOM respect
to displacement), we integral EOM respect to time:

Fygr dt = ﬁ(tfinal) — ﬁ(tinitial) — Aﬁ

Where we define impulse as | = [ Fygr dt

and we have | = Ap



Collision of two particles

= The total inear momentum of the system cannot change
for a collision of two particles because there is no net
external force to change the system.

= |f that total happens to be unchanged by the collision,
then the kinetic energy of the system is conserved (it Is
the same before and after the collision). Such a collision
IS called an elastic collision.

= |f the kinetic energy of the system Is not conserved, such
a collision is called an inelastic collision.



Collision of two particles

= Conservation of linear momentum:
mqVq; + MoVyi = mlvlf + mzvzf

= Elastic collision(conservation of kinetic energy)
1 1 1 1

2 2 2 2
—M4 Vi +=M5Vy;° = =MV +=m,v
= |nelastic collision
1 ;1 o1 ;1 ,
_mlvli +_m2772i o= _mlvlf +_m2U2f

2 2 2 2



Case 1: completely Inelastic collision

= In a completely inelastic collision
the two particles will stick
together: the final velocities are e "2

Projectile  Target

Before

the same "
= Conservation of linear Aer =D
momentum: e}

myvy; + myvy; = (Mg+my)V
= |f v,; = 0, we will have




Example of completely inelastic collision

"he ballistic pendulum was used to measure
the speeds of bullets before electronic timing
devices were developed. A large block of
wood of mass M = 5.4 kg, hanging from two
long cords. A bullet of mass m =9.5 g is fired
Into the block, coming quickly to rest. The
block + bullet then swing upward, their center
of mass rising a vertical distance h = 6.3 cm
What is the speed of the bullet just prior to
the collision?




Example of completely inelastic collision

There are two events: 1. collision of bullet
and block. 2. swinging of bullet and block.

= Collision of bullet and block: a completely
Inelastic collision:

= Swing of bullet and block: conservation of
energy

1 -
E(m1 +my)(V)* = (my + my)gh



Example of completely inelastic collision

Therefore, we have:

2
1 my
> (my; + m;) (m1 T, Vli) = (my + my)gh

And we can get:
vy; = 630m/s




Case 2: Elastic collision

In an elastic collision, (1)total momentum Is conserved (2)

the kinetic energy of each colliding body may change, but

the total kinetic energy of the system does not change.
MUy + MaVy = MyVyf + MUy

1 1 1 1

2 2 __ 2
—Mq1Vq; +_m2v2i —_mlvlf +_mzvzf

2 2 2 2

Body 1 Body 2

2

—

\%

i
Before _{>I




Case 2: Elastic collision

After rearrange, we can get final velocities of each particles
INn terms of Initial velocities:

, _ml—mzv | 2m, ,

1f = 1i 21

T mi+m, Y my+m, &

- 2my | ml—mzv
2f = 1i 21
/ m; +m, m; +m,

Body 1

—

vV

'1i
Before >

'n]




2.Elastic Collision

A small ball of mass m is aligned above a larger ball of mass M = 0.63 kg (with a slight separation, as with the
baseball and basketball of Fig.(a), and the two are dropped simultaneously from a height of h = 1.8 m. (Assume
the radius of each ball is negligible relative to h.) (a) If the larger ball rebounds elastically from the floor and then
the small ball rebounds elastically from the larger ball, what value of m results in the larger ball stopping when it
collides with the small ball? (0.5points) (b) What height does the small ball then reach Fig.(b)? (0.5points)

Q)

Baseball

@

(a) Before (b) After




Solution:

(a) Right before the basketball hit the floor, both basket ball and baseball have a velocity with magnitude
vo = 2gh = —5.94m/s and the negative sign means the direction of momention is pointing down. After the
basketball hit the floor, the basketball will have a velocity with the same magnitude but the direction is upward
because it rebounds elastically. Next, the collision process between basketball and baseball is elastic and the final
velocity of basketball is zero. Therefore, we will have conservation of energy and conservation of momentum and
the expression for final velocity of ellastic collision is valid.

Therefore final velocity of basketball -?_.-'mq;fe.tbau_f = H;:: vy — -ijr”m Vg = ‘L{r f:,:{‘ vo. Thus, if the final velocity of
basketball is zero, the requirement is m = &4 = 0.21kg.

2M . ] o = SM-m,, SM—%?I
M+m U0 'LI-I—m Yo = M+m 0o = 1I+L,3‘T

(b)The final velocity of baseball vpgsepani—f =

2

7.2
g m

Thus, the final height is h =




Angular position

= |n pure rotation (angular motion),
every point of the body moves in
a circle whose center lies on the
axis of rotation, and every point
moves through the same angle
during a particular time interval.

= The angular position 0 is
measured relative to the positive
direction of the x axis.

==

r

The body has rotated
counterclockwise

Y by angle 6. This is the
positive direction.

Rotation
axis
This dot means that
the rotation axis is
out toward you.




Rotation with constant angular acceleration

Linear Equation Missing Angular Equation
Variable

v =Uvg+at X—Xo 0-05 w=wg+at

T — xg :vot+%at2 v 0 — 0y = wyt + %at2
‘=2 +2a(z— )|t w® = w? + 2a (6 — 6)
:13—3:0:%(’00—#‘0)15 a 9—90:%(w0—|—W)t

m—mgzvt—%atz Vo Q—QU:wt—%atQ




Angular velocity as a vector

This right-hand rule
establishes the
direction of the
angular velocity
vector.




Relation between linear and angular variable

= For acceleration, the point has both tangential and radial
components. The tangential component is

at = ar
where a is the magnitude of the angular of the body. The
I’adlal COmpOnen’[ Of |S The acceleration always
2 has a radial (centripetal)
v y  component and may have
aT _ — = (I)ZT a tangential component.




Rotational inertia (or moment of inertia)

In the rotating rigid body the rotational velocity Is the same
for every point. Thus we can rewrite:

1 | |
K = zimiviz = Ezmi(riw)z = 5(2 m;r)w?

We call that quantity the rotational inertia (or moment of
iInertia) | of the body with respect to the axis of rotation:

I = Zmiriz

And thus the kinetic energy is K = %Ia)z



Calculating the rotational inertia

= |If a rigid body consists of a few particles, we can calculate
Its rotational inertia about a given rotation axis with I =

Z miT'iZ.

= |f a rigid body consists of a great many adjacent particles,
we replace the sum with an integral and define the
rotational inertia of the body as

I=J rédm




Hoop about

\ central axis
’

I= MR?

Axis

Solid cylinder
(or disk) about

/ central diameter

| L
ll\’ \\/

I=iMR? + s ML?

Axis

Thin
spherical shell
about any
diameter

I= 3MR?

Annular cylinder

(or ring) about
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I= $M(R%} + R3)

Axis
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| L

W]

I= $ML2

Axis
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“ R \ ¢

I= MR?

e—o a \*l‘

I= M (a + b2)
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about any
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)

Slab about
perpendicular

_ axis through

center




Parallel-Axis Theorem

= For calculating rotational inertia, directly calculation
through I = [ r*dm can work.

= Assuming we know the rotational inertia I_,,,, where the
rotational axis is through the body’s center of mass. Then,
the rotational inertia | about a rotational axis parallel to
the rotational axis through COM is:
I —_ ICOM + Mhz
where M Is the mass of the body and h is the distance that
we have shifted the rotation axis from being through the
com.



Momentum: translational vs. rotational

Translational Rotational
— .
F Torque 7 X

_>, %
Linear momentum ' Angular momentum | £ ( r X

— —
Linear momentum? ; Angular momentum?® | L ( >/ i)

Linear momentum? P = M v com  Angular momentum® L = Jw

1P — L
b Fnet = - b -

Newton’s second law = Newton’s second law® | 7T et = T

— —

d P = a constant Conservation law¥ L = a constant

Conservation law




Summary |

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)

Position X Angular position 0

Velocity v=dx/dt Angular velocity ® = dO/dt
Acceleration a =dv/dt Angular acceleration a=dw/dt
Mass m Rotational inertia

Newton’s second law Fhet = ma Newton’s second law

Work W= [Fdx Work

1 2 . . .
E’m/l.? Kinetic energy

Kinetic energy K =

Power (constant force) Power (constant torque)

Work—Kkinetic energy theorem | W = AK Work—Kkinetic energy theorem W = AK




Summary |l

Translational
o
F
Linear momentum

Linear momentumb

: b | o 7
Linear momentum P =Muv.m

d;

4>
Newton’s second law? F net = —;

Rotational

A

Angular momentum (

ﬁ\’_
Torque r X

—
1’1

! —
Angular momentum? | L

4>
=7

Angular momentum® L = Jw

— T
Newton’s second law? T net = %

_>

Conservation lawd P = a constant Conservation lawd L, = a constant




3. Rotational Inertia and Angular Momentum

As shown in the following figure, a rigid structure consisting of a circular hoop of radius R and mass m, and a
square made of four thin bars, each of length R and mass m. The rigid structure rotates at a constant speed about a
vertical axis, with a period of rotation of 2.5 s. Assuming R = 0.50 m and m = 2.0 kg, calculate (a) the structure’s
rotational inertia about the axis of rotation and (0.5points) (b) its angular momentum about that axis. (0.5points)

/—Rm:dti{m axis

~~N
(Y

Solution:
(a) For the square, the rotational inertia I 00 = MR? +2 x [%MFRQ + f'vf(%)g] +0= %MRE. For the circle

loop, we can start with rotaional inertia — %M.FRQ when the rotation is panetrating the circle center. (You can find
this in the course slides.) Then use parallel axis theorem, we have [rce = %Mng + MR? = %Mrl?g. Therefore,
. : . 57, 31, 19 3,
the total rotaional intertia I = Isquare + Leircie = %MFRQ + ?-"JRQ = ?MFRZ = 1.58kgm?
(b) The angular moment L = I;o1qw = 3.97Tkgm/s




4.Conservation of Angular Momentum

In the following fig. (an overhead view), a uniform thin rod of length 0.500 m and mass 4.00 kg can rotate in a
horizontal plane about a vertical axis through its center. The rod is at rest when a 3.00 g bullet traveling in the
rotation plane is fired into one end of the rod. In the view from above, the bullet’'s path makes angle j — 60.0°
with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 10 rad /s immediately after the
collision, what is the bullet’s speed just before impact?

Axis \

Solution:
During the process, there is no external torque exerting on the system. Therefore, the angular momentum is
conserved:
Linitia = rpsing = (%)?mfs-iﬂﬂ
L_final =Jlw = [%JIL.E + TTL(%)Z]M
[ ML*+m(%£)?%]w

Thus the velocity of bullet: v = T

ETTISEHH

= 1285m/s




Simple Harmonic Motion (SHM)

= A particle that is oscillating about the origin of an x axis,
repeatedly going left and right by identical amounts. A
simple harmonic motion (SHM) is that the displacement
can be described as a sinusoidal function of time t:

X(t) = XmCOSQ(Dt QgPhase

Amplltude Angular Phase
frequency constant

Displacement as a
function of time t




The Velocity of SHM

= By taking derivative of
displacement respect to time,
one can get velocity of SHM:

Displacement

[y
O
2
O
>




The acceleration of SHM

= By taking derivative of velocity

respect to time, one can get velocity
of SHM:

Displacement

2

Velocity

a(t) = —w’xy, cos(wt+ ¢) (acceleration)

= \WWe can also find that:

a(t) = —wz (t)

a
o
=
=
=
3)
Q
O
<




The force law of simple harmonic oscillation

= From Newton’s second law we can know that the force in
the SHM should have the form of:

* Thus:




9.0scillation with two springs

In the following figure, two springs are attached to a block that can oscillate over a frictionless floor. If the left
spring is removed, the block oscillates at a frequency of 30 Hz. If, instead, the spring on the right is removed. the
block oscillates at a frequency of 45 Hz. At what frequency does the block oscillate with both springs attached?
(1point)

00000 00000

olution:

1 k

The oscillation frequency of a mass m attached to one spring with spring constant kis f = 5= = 51/

For the setup in the figure, the two springs exert forces that have the same direction and sum up at all time.

Therefore, we can conclude that fio = %ﬁ%.

Thllh‘? ffot _ (% a'.i.,l-i-kz) (217)2 ki+ka __ f] + fE
And fis = ﬁflg + fzz b4H




Simple pendulums

Consider a simple pendulum, which
consists of a particle of mass m
suspended from one end of an
unstretchable, massless string of length
L that is fixed at the other end. The
mass Is free to swing back and forth in
the plane of the page, to the left and
right of a vertical line through the
pendulum’s pivot point




Simple pendulums

= \We can find the torque on m:

= This leads to:

—L (mg sin 6) = Ia

= |f the angle is small: s

o= "9 g ¢ S \\; component
- L This ~ merely
This Is also SHM! component  f,  pulls on

brings the the string.
bob back

to center.




Simple pendulums

= \We can find that:

~ |/mgL
TN

This

\\; component
. This ~ merely
= With I = mL?, we have component oulls on

brings the the string.
bob back

to center.

T=2n,/%

9




Physical Pendulums

= The analysis Is the same to
the COM even if the
pendulum have a
complicated distribution of
mass(physical pendulum).

I*g sin 6

This component
brings the
pendulum

back to center.

T = 27

mgh




Description of wave

= Use wave on a string as an example. Imagine a sinusoidal
wave traveling in the positive direction of an x axis. The
elements oscillate parallel to the y axis. At time t, the
displacement y(x,t) of the element located at position X Is

given by

T\ e

=9,,sin (kx— @t)

Angular \; .
. , [1me
wave numbel
Position Angular

I‘l‘('(lu(*n(‘\'




Watch this spot in this
series of snapshots.

2
= k= 7” (angular wave number)

= phase of the wave Is the
argument (kx — wt) of the sine: a
wave traveling to positive X
direction




Angular frequency and frequency of wave

This is a graph,
not a snapshot.

2TC
" W= (angular wave frequency)

" f = % = % (frequency)



Direction of wave propagation

= With the concept of wave speed, one can find that:
y(x,t) = y,,sin(kx — wt + @)
IS a wave traveling to positive x direction with positive wave
speed v = %
y(x,t) = y,,sin(kx + wt + @)
IS a wave traveling to negative x direction with negative
wave speed v = — %



Example

A transverse wave traveling along an x axis has the form given
by y(x,t) = y,,sin(kx + wt + ¢). Figure (a) gives the
displacements of string elements as a function of x, all at time t
= 0. Figure (b) gives the displacements of the element at x =0
as a function of t. Find the values of the quantities .

y (mm ) y (mm)




Example

= Am
anc

olitude of wave y,,,: The wave Is oscillating between +y,,
—ym- In both figure, the wave oscillating between +3mm

ana

-3mm. Therefore y,,, = 3mm



Example

= Angular wave number k: We will find out wavelength A first
2T : :
and use k = — 1o find out angular wave number. From figure

(a), we can find out A = 10mm. Therefore k = 200w rad/m



Example

= Angular wave frequency w: We will find out period T first and
use w = 2?” to find out angular wave frequency. From figure
(b), we can find out T = 20ms. Therefore w = 100w rad/s



Example

= Direction of travel: From (b), we know that the point x=0 is
oscillating toward negative first when t is increasing from O.
This can only happen when the wave is moving to the right in
figure (a). Thus, it should be kx — wt



Example

= Phase constant ¢: From (a), we know that at y(x = 0,t = 0) =

3sin(¢) = —2mm. This gives ¢ = sin! (— g) = —0.73rad



Example

= Therefore we have y(x,t) = 3mm sin(200rx — 100nt — 0.73)



Wave speed on a stretched string

Consider a small string element of length Al within the pulse,
an element that forms an arc of a circle of radius R and
subtending an angle 206 at the center of that circle. A force T
with a magnitude equal to the tension in the string pulls
tangentially on this element at each end.




Wave speed on a stretched string

Considering it as a uniform circular motion, the force provide
2

a centripetal acceleration:a = % to the mass Am = uAl.
Al v?
Thus, we have T— = ulla = ,uAl?

There fore we can get v = \/% which iIs the wave speed of

the stretched string.



Principle of superposition

= Principle of superposition: when several effects occur
simultaneously, their net effect is the sum of the individual
effects.

= Suppose that two waves travel simultaneously along the
same stretched string. Let y1(x, t) and y2(x, t) be the
displacements that the string would experience If each
wave traveled alone. The displacement of the string when
the waves overlap is then the algebraic sum:

y'(x,t) = y.(x,t) + y,(x, t)




Math description: interference of waves in the

same directions

» The resultant wave: y'(x,t) = y,(x, t) + y,(x,t) =
ymSin(kx — wt)+ y,,sin(kx — wt + @)

l)ispl;u‘(‘nu'nl
P e

'/ .‘ ¢ | - |
y'(x,8) = [2y,, cCOS 5] sin(kx— @i+ 5¢P)

_—_ N
Magnitude Oscillating

o1VeS term

;nn])lillul('



Superposition of two waves Iin opposite directions

= Consider two waves: y,(x, t) = y,,sin(kx — wt) and
Vo (x,t) = y,sin(kx + wt).
= By principle of superposition:
y'(x,t) = y1(x, t) + y2(x, t)
= The resultant wave:
y'(x,t) = [2y,, sin(kx)]coswt



Mathematical form of standing wave

Displacement
S
y'(x%,t) = |2y,, sIn kx| cos !
Magnitude Oscillating
oIVeS term
amplitude

al [)().\‘ili()n x



Example

resonant oscillation of a string of mass m = 2.500 g and
length L = 0.800 m and that is under tension 1 = 325.0 N.
(a)What is the wavelength A of the transverse waves
producing the standing wave pattern, and what is the
harmonic number n?

3.00 m m:[

0 0.800




Example

y'(x,t) = [2y,, sin(kx)]coswt
We can find in the plot that L = 2A. Thus A = 0.4m

By counting the or half-wavelengths, the correspond
harmonic is n=4

3.00 m m:[

0 0.800




elglelle

(b)What is the frequency f of the transverse waves and of
the oscillations of the moving string elements?

8.00 m mI x (m)
0 0.800




elglelle

With the wave speed on string: v = \/% = \/%L = 322.49m/s

v

The resonance frequency f = 7= 806.2Hz

8.00 m mI x (m)
0 0.800




elglelle

(c) What is the maximum magnitude of the transverse
velocity um of the element oscillating at coordinate x =
0.180 m?

8.00 m mI x (m)
0 0.800




elglelle

By taking derivative of displacement respect to time, we

have: u(t) = % |2y, sinkx]|coswt = [-2y,,wsinkx]|sinwt

Therefore, at x=0.18m, the maximum u = 6.26m/s

8.00 m mI x (m)
0 0.800




= There are two ways of pulse can
reflect from the end of the string:

= (a) hard end: the reflected pulse is
Inverted from the incident pulse.

= (b) soft end: the pulse Is not inverted bt
by the reflection. |

... and the pulse
emerges upright.

~_|

And away it goes.
And away it goes.




The Doppler Effect: Moving Source

= When a wave source moves through the wave medium, a
stationary observer experiences a shift in wavelength and
frequency:

> |f the wave moves with a speed v and the source moves
with a speed u, the shifted frequency is:

F=r/(1=ujv)

- The frequency decreases for a receding source.
= The frequency Increases for an approaching source.



The Doppler Effect: Moving Source

B perceives longer
wavelength,
lower frequency.

]
LI9e
.y
]

A perceives shorter
-~ wavelength,
higher frequency.

D - 2
approach
Bp A

Source -+




The Doppler Effect: Moving Observers

= When the wave source Is stationary, an observer
moving with a speed u will experience a Doppler shift
In frequency (but no shift in wavelength) that is given
by: fr=f(1+u/v)

= At low speeds (u Is small compared to v), the formula
for a source moving with a speed u gives nearly the
same result as the formula for an observer moving

with a speed u.




Hydrostatic equilibrium with gravity

= In the presence of gravity, the pressure in a static
fluid must increase with depth:

= This allows an upward pressure force to balance
the downward gravitational force.

= This condition Is hydrostatic equilibrium.
o Detalls depend on the nature of the fluid:

= Incompressible fluids like liquids have constant
density; for them, pressure as a function of

depth h |S as fO”OWS p — pl} + f_‘)gh PressuEre force on the bottom
i must be greater in order to
where p, IS the pressure at the surface balance gravity.

Fluid element




Pascal’'s Law

A pressure increase anywhere is felt through out the fluid:
Pascal’s law.

Pascal’s law’s application: hydraulic press.
Example: lift a car with hydraulic press as shown

F
n(7.15)2 m(60)°

Meard = pTL’(60)2=

Thus: F; = ==




Archimedes’ Principle and Buoyancy

= Replacing the fluid with an object of the
same shape doesn’t change the force due
to the pressure differences:

‘[""Replace the
fluid with a

= Therefore, the object experiences an ol olect
upward force equal to the weight of the pressure force
- - doesn’t change.
Orlgmal fluid. But the weight
= This Is the buoyancy force. — may.

= Archimedes’ principle states that the
buoyancy force is equal to the weight of
the displaced fluid: F,=pgV.




elglelle

= The average density of a typical arctic iceberg is 0.86 that
of sea water. What fraction of an iceberg’s volume is
submerged?




elglelle

= The average density of a typical arctic iceberg is 0.86 that
of sea water. What fraction of an iceberg’s volume is
submerged?

The weight of iceberg Is equal to buoyancy force:
Weight of iceberg: m;..g9 = piceVice g

buoyancy force: Wyater = PwatergVsub

Thus:

Vsub — Pice — 0.86

Vice Pwater




Conservation of Mass: The Continuity Equation

= The continuity equation expresses
conservation of mass in a moving fluid:

= |t follows from considering a flow S
) ] *» Two nearby streamlines

tube, usually an imaginary tube define a flow tube.
bounded by nearby streamlines:

= The flow tube may also be an actual
physical tube or pipe.

same mass, so they take the same
time Az to enter and exit the tube.

(b)




Conservation of Mass: The Continuity Equation

= The continuity equation reads:

where p is the density, v is the flow

speed, and A Is the cross-sectional area,

the quantities are evaluated at points
along the same flow tube.
= The quantity pvA s is the mass flow rate.

= For incompressible fluids, density is
constant and the continuity equation
reduces to VA = constant:

- Here VA Is the volume flow rate.

= Two nearby streamlines
define a flow tube.

These ﬂllld elements have the
same mass, so they take the same
time Ar to enter and exit the tube.

(b)



Conservation of Energy: Bernoull's Equation

This is the ---
same fluid
element.

Neglecting fluid friction (viscosity) and in the absence of
mechanical pumps and turbines that add or remove energy
from the incompressible fluid, Bernoulli's equation reads

p+1 pv’ + pgh = constant




Example: Draining a Tank

= Alarge, open tank is filled to a
height h with liquid of density p.
Find the speed of the liquid
emerging from a small hole at
the base of the tank?

The surface area at
the top 1s much larger
than at the hole, so up
here fluid 1s hardly

moving.




Example: Draining a Tank

The surface area at

The fluid at the top of the tank and just . _
: . the top 1s much larger

outside the exit hole are both at " than at the hole, 50 up

atmospheric pressure, p,. here fluid is hardly

Because the tank is large, the fluid
velocity at the top Is nearly zero.

Assuming y = 0 at the hole and y = h at
the top of the fluid, we can find the exit
speed using Bernoulli’'s equation:

moving.

Solving for v, We obtain:

= ,/2gh

hole




