
Course announcement

▪ The homework set 4 has been posted on eLearn. Please 

submit your homework via eLearn by 5PM, 12/02. No late 

homework will be accepted. Solution will be posted 

tonight.

▪ The first midterm will on 12/06 (Tuesday). Exam will be 

started 8:00AM.





Midterm Exam 2

▪ Exams will be started at 8:00AM and ends at 9:50AM.

▪ Please bring student ID and calculator.

▪ You can bring one A4 information sheet for the exam.

▪ Cheating will result in 0 points for the whole exam and will 

be reported to university. 

▪ No Exams Corrections for Midterm 2



Policy for COVID-19

▪ We follow university guideline about course under 

COVID-19.

▪ Please have facial mask with you

▪ For students who cannot attend exam due to COVID-19, 

they can have test remotely with monitor  of web camera.

(https://teams.live.com/meet/9570955571789). The problem 

will be posted on eLearn and can be handed via eLearn. 

Only students inform me in advance can have test via 

eLearn.  

https://teams.live.com/meet/9570955571789


Problem about Exam

▪ There will be 6 problem sets. Range: 9~15 chapter (skip 

chapter 12) of Essential University Physics by Richard 

Wolfson.

▪ All the problems will be related to materials covered in 

class, problem discussed in class, and homework 

problems.
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The Center of Mass (COM)

▪ The center of mass of a system of particles is the point 

that represents the motion of the system. 

▪ The center of mass moves as though (1) all of the 

system’s mass were concentrated there (but it doesn’t 

have to be inside the system) and (2) all external forces 

were applied there.



The center of mass in a many particles system 

We can further extend this equation to a more general 

situation in which n particles in three dimension. Then the 

total mass is M = m1 + m2 + … + mn, and the location of the 

center of mass is 

𝑟𝑐𝑜𝑚 =
1

𝑀
෍

𝑖=1

𝑛

𝑚𝑖𝑟𝑖



The center of mass in a continuous system 

An ordinary object contains so many particles (atoms) that we 
can best treat it as a continuous distribution of matter. The 
“particles” then become differential mass elements dm, the 
sums become integrals, and the coordinates of the center of 
mass are defined as

𝑥𝑐𝑜𝑚 =
1

𝑀
න 𝑥𝑑𝑚
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Linear momentum

▪ For a single particle, we define a quantity Ԧ𝑝 called its 
linear momentum as 

Ԧ𝑝 = 𝑚 Ԧ𝑣

which is a vector quantity that has the same direction as  
the particle’s velocity. We can write Newton’s second law in 
terms of this momentum:

𝐹𝑁𝐸𝑇 =
𝑑 Ԧ𝑝

𝑑𝑡
▪ For a system of particles these relations become

𝑃 = 𝑚𝑣𝐶𝑂𝑀 and 𝐹𝑁𝐸𝑇 =
𝑑𝑃

𝑑𝑡



Impulse and Momentum

▪ Similar to our derivation to energy (integral EOM respect 

to displacement), we integral EOM respect to time:

න 𝐹𝑁𝐸𝑇 𝑑𝑡 = Ԧ𝑝 𝑡𝑓𝑖𝑛𝑎𝑙 − Ԧ𝑝 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = ∆ Ԧ𝑝

Where we define impulse as Ԧ𝐽 = ׬ 𝐹𝑁𝐸𝑇 𝑑𝑡

and we have Ԧ𝐽 = ∆ Ԧ𝑝



Collision of two particles

▪ The total linear momentum of the system cannot change 

for a collision of two particles because there is no net 

external force to change the system.

▪ If that total happens to be unchanged by the collision, 

then the kinetic energy of the system is conserved (it is 

the same before and after the collision). Such a collision 

is called an elastic collision.

▪ If the kinetic energy of the system is not conserved, such 

a collision is called an inelastic collision.



Collision of two particles

▪ Conservation of linear momentum:

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓

▪ Elastic collision(conservation of kinetic energy)
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Case 1: completely Inelastic collision

▪ In a completely inelastic collision

the two particles will stick 

together: the final velocities are 

the same

▪ Conservation of linear 

momentum:

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = (𝑚1+𝑚2)𝑉

▪ If 𝑣2𝑖 = 0, we will have 

𝑉 =
𝑚1

𝑚1 + 𝑚2
𝑣1𝑖



Example of completely inelastic collision

The ballistic pendulum was used to measure 
the speeds of bullets before electronic timing 
devices were developed. A large block of 
wood of mass M = 5.4 kg, hanging from two 
long cords. A bullet of mass m = 9.5 g is fired 
into the block, coming quickly to rest. The 
block + bullet then swing upward, their center 
of mass rising a vertical distance h = 6.3 cm 
What is the speed of the bullet just prior to 
the collision?



Example of completely inelastic collision

There are two events: 1. collision of bullet 

and block. 2. swinging of bullet and block. 

▪ Collision of bullet and block: a completely 

inelastic collision:

𝑉 =
𝑚1

𝑚1 + 𝑚2
𝑣1𝑖

▪ Swing of bullet and block: conservation of 

energy
1

2
(𝑚1 + 𝑚2)(𝑉)2 = 𝑚1 + 𝑚2 𝑔ℎ



Example of completely inelastic collision

Therefore, we have:

1

2
𝑚1 + 𝑚2

𝑚1

𝑚1 + 𝑚2
𝑣1𝑖

2

= 𝑚1 + 𝑚2 𝑔ℎ

And we can get:

𝑣1𝑖 = 630𝑚/𝑠



Case 2: Elastic collision

In an elastic collision, (1)total momentum is conserved (2) 

the kinetic energy of each colliding body may change, but 

the total kinetic energy of the system does not change. 

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓
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Case 2: Elastic collision

After rearrange, we can get final velocities of each particles 

in terms of initial velocities: 

𝑣1𝑓 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑣1𝑖 +

2𝑚2

𝑚1 + 𝑚2
𝑣2𝑖

𝑣2𝑓 =
2𝑚1

𝑚1 + 𝑚2
𝑣1𝑖 +

𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑣2𝑖







Angular position

▪ In pure rotation (angular motion), 

every point of the body moves in 

a circle whose center lies on the 

axis of rotation, and every point 

moves through the same angle 

during a particular time interval.

▪ The angular position θ is 

measured relative to the positive 

direction of the x axis. 

𝜃 =
𝑠

𝑟



Rotation with constant angular acceleration 



Angular velocity as a vector



Relation between linear and angular variable

▪ For acceleration, the point has both tangential and radial 

components. The tangential component is

𝑎𝑡 = 𝛼𝑟

where α is the magnitude of the angular of the body. The 

radial component of  is

𝑎𝑟 =
𝑣2

𝑟
= 𝜔2𝑟



Rotational inertia (or moment of inertia)

In the rotating rigid body the rotational velocity is the same 

for every point. Thus we can rewrite:

𝐾 = ෍
1

2
𝑚𝑖𝑣𝑖

2 = ෍
1

2
𝑚𝑖(𝑟𝑖𝜔)2 =

1

2
(෍ 𝑚𝑖𝑟𝑖

2)𝜔2

We call that quantity the rotational inertia (or moment of 

inertia) I of the body with respect to the axis of rotation:

𝐼 = ෍ 𝑚𝑖𝑟𝑖
2

And thus the kinetic energy is 𝐾 =
1

2
𝐼𝜔2



Calculating the rotational inertia

▪ If a rigid body consists of a few particles, we can calculate 

its rotational inertia about a given rotation axis with 𝐼 =
σ 𝑚𝑖𝑟𝑖

2.

▪ If a rigid body consists of a great many adjacent particles, 

we replace the sum with an integral and define the 

rotational inertia of the body as

𝐼 = න 𝑟2𝑑𝑚





Parallel-Axis Theorem

▪ For calculating rotational inertia, directly calculation 
through 𝐼 = ׬ 𝑟2𝑑𝑚 can work.

▪ Assuming we know the rotational inertia Icom, where the 
rotational axis is through the body’s center of mass. Then, 
the rotational inertia I about a rotational axis parallel to 
the rotational axis through COM is:

𝐼 = 𝐼𝐶𝑂𝑀 + 𝑀ℎ2

where M is the mass of the body and h is the distance that 
we have shifted the rotation axis from being through the 
com.



Momentum: translational vs. rotational  



Summary I



Summary II







Simple Harmonic Motion (SHM)

▪ A particle that is oscillating about the origin of an x axis, 

repeatedly going left and right by identical amounts. A 

simple harmonic motion (SHM) is that the displacement 

can be described as a sinusoidal function of time t:

𝑥 𝑡 = 𝑥𝑚cos(ωt + ϕ)

Displacement as a 

function of time t
Amplitude Angular 

frequency

Phase 

constant

Phase



The Velocity of SHM

▪ By taking derivative of 

displacement respect to time, 

one can get velocity of SHM: 



The acceleration of SHM

▪ By taking derivative of velocity 

respect to time, one can get velocity 

of SHM: 

▪ We can also find that: 



The force law of simple harmonic oscillation

▪ From Newton’s second law we can know that the force in 

the SHM should have the form of:

▪ Thus:





Simple pendulums

Consider a simple pendulum, which 

consists of a particle of mass m 

suspended from one end of an 

unstretchable, massless string of length 

L that is fixed at the other end. The 

mass is free to swing back and forth in 

the plane of the page, to the left and 

right of a vertical line through the 

pendulum’s pivot point



Simple pendulums

▪ We can find the torque on m:

▪ This leads to:

▪ If the angle is small:

This is also SHM!



Simple pendulums

▪ We can find that:

▪ With 𝐼 = 𝑚𝐿2, we have



Physical Pendulums

▪ The analysis is the same to 

the COM even if the 

pendulum have a 

complicated distribution of 

mass(physical pendulum).



Description of wave

▪ Use wave on a string as an example. Imagine a sinusoidal 

wave traveling in the positive direction of an x axis. The 

elements oscillate parallel to the y axis. At time t, the 

displacement y(x,t) of the element located at position x is 

given by



▪ 𝑘 =
2𝜋

𝜆
(angular wave number)

▪ phase of the wave is the 

argument (kx − ωt) of the sine: a 

wave traveling to positive x 

direction 



Angular frequency and frequency of wave

▪ 𝜔 =
2𝜋

𝑇
(angular wave frequency)

▪ 𝑓 =
1

𝑇
=

𝜔

2𝜋
(frequency)



Direction of wave propagation

▪ With the concept of wave speed, one can find that:

𝑦 𝑥, 𝑡 = 𝑦𝑚sin(𝑘𝑥 − 𝜔𝑡 + 𝜙)

is a wave traveling to positive x direction with positive wave 

speed 𝑣 =
𝜔

𝑘
. 

𝑦 𝑥, 𝑡 = 𝑦𝑚sin(𝑘𝑥 + 𝜔𝑡 + 𝜙)

is a wave traveling to negative x direction with negative 

wave speed 𝑣 = −
𝜔

𝑘
.



Example

A transverse wave traveling along an x axis has the form given 

by 𝑦 𝑥, 𝑡 = 𝑦𝑚sin(𝑘𝑥 ± 𝜔𝑡 + 𝜙). Figure (a) gives the 

displacements of string elements as a function of x, all at time t 

= 0. Figure (b) gives the displacements of the element at x = 0 

as a function of t. Find the values of the quantities .



Example

▪ Amplitude of wave 𝑦𝑚: The wave is oscillating between +𝑦𝑚

and −𝑦𝑚. In both figure, the wave oscillating between +3mm 

and -3mm. Therefore 𝑦𝑚 = 3𝑚𝑚



Example

▪ Angular wave number 𝑘: We will find out wavelength 𝜆 first 

and use 𝑘 =
2𝜋

𝜆
to find out angular wave number. From figure 

(a), we can find out 𝜆 = 10𝑚𝑚. Therefore 𝑘 = 200𝜋 𝑟𝑎𝑑/𝑚



Example

▪ Angular wave frequency ω: We will find out period 𝑇 first and 

use 𝜔 =
2𝜋

𝑇
to find out angular wave frequency. From figure 

(b), we can find out T = 20𝑚𝑠. Therefore 𝜔 = 100𝜋 𝑟𝑎𝑑/𝑠



Example

▪ Direction of travel: From (b), we know that the point x=0 is 

oscillating toward negative first when t is increasing from 0. 

This can only happen when the wave is moving to the right in 

figure (a). Thus, it should be 𝑘𝑥 − 𝜔𝑡



Example

▪ Phase constant 𝜙: From (a), we know that at 𝑦 𝑥 = 0, 𝑡 = 0 =

3 sin 𝜙 = −2𝑚𝑚. This gives 𝜙 = 𝑠𝑖𝑛−1 −
2

3
= −0.73𝑟𝑎𝑑



Example

▪ Therefore we have 𝑦 𝑥, 𝑡 = 3𝑚𝑚 sin 200𝜋𝑥 − 100𝜋𝑡 − 0.73



Wave speed on a stretched string

Consider a small string element of length Δl within the pulse, 

an element that forms an arc of a circle of radius R and 

subtending an angle 2θ at the center of that circle. A force Ԧ𝜏
with a magnitude equal to the tension in the string pulls 

tangentially on this element at each end.



Wave speed on a stretched string

Considering it as a uniform circular motion, the force provide 

a centripetal acceleration:𝑎 =
𝑣2

𝑅
to the mass ∆𝑚 = 𝜇∆𝑙. 

Thus, we have 𝜏
∆𝑙

𝑅
= 𝜇∆𝑙𝑎 = 𝜇∆𝑙

𝑣2

𝑅

There fore we can get 𝑣 =
𝜏

𝜇
, which is the wave speed of 

the stretched string.



Principle of superposition

▪ Principle of superposition: when several effects occur 

simultaneously, their net effect is the sum of the individual 

effects.

▪ Suppose that two waves travel simultaneously along the 

same stretched string. Let y1(x, t) and y2(x, t) be the 

displacements that the string would experience if each 

wave traveled alone. The displacement of the string when 

the waves overlap is then the algebraic sum:

𝑦′ 𝑥, 𝑡 = 𝑦1 𝑥, 𝑡 + 𝑦2 𝑥, 𝑡



Math description: interference of waves in the 

same directions
▪ The resultant wave: 𝑦′ 𝑥, 𝑡 = 𝑦1 𝑥, 𝑡 + 𝑦2 𝑥, 𝑡 =

𝑦𝑚sin(𝑘𝑥 − 𝜔𝑡)+ 𝑦𝑚sin(𝑘𝑥 − 𝜔𝑡 + 𝜙)



Superposition of two waves in opposite directions

▪ Consider two waves: 𝑦1 𝑥, 𝑡 = 𝑦𝑚sin(𝑘𝑥 − 𝜔𝑡) and 

𝑦2 𝑥, 𝑡 = 𝑦𝑚sin(𝑘𝑥 + 𝜔𝑡).

▪ By principle of superposition:

𝑦′ 𝑥, 𝑡 = 𝑦1 𝑥, 𝑡 + 𝑦2 𝑥, 𝑡

▪ The resultant wave:

𝑦′ 𝑥, 𝑡 = [2𝑦𝑚 sin 𝑘𝑥 ]𝑐𝑜𝑠𝜔𝑡



Mathematical form of standing wave



Example

resonant oscillation of a string of mass m = 2.500 g and 

length L = 0.800 m and that is under tension τ = 325.0 N. 

(a)What is the wavelength λ of the transverse waves 

producing the standing wave pattern, and what is the 

harmonic number n? 



Example

𝑦′ 𝑥, 𝑡 = [2𝑦𝑚 sin 𝑘𝑥 ]𝑐𝑜𝑠𝜔𝑡

We can find in the plot that 𝐿 = 2𝜆. Thus 𝜆 = 0.4𝑚

By counting the or half-wavelengths, the correspond 

harmonic is n=4



Example

(b)What is the frequency f of the transverse waves and of 

the oscillations of the moving string elements? 



Example

With the wave speed on string: 𝑣 =
𝜏

𝜇
=

𝜏𝐿

𝑚
= 322.49𝑚/𝑠

The resonance frequency 𝑓 =
𝑣

𝜆
= 806.2𝐻𝑧



Example

(c) What is the maximum magnitude of the transverse 

velocity um of the element oscillating at coordinate x = 

0.180 m?



Example

By taking derivative of displacement respect to time, we 

have: 𝑢 𝑡 =
𝜕

𝜕𝑡
2𝑦𝑚𝑠𝑖𝑛𝑘𝑥 𝑐𝑜𝑠𝜔𝑡 = −2𝑦𝑚𝜔𝑠𝑖𝑛𝑘𝑥 𝑠𝑖𝑛𝜔𝑡

Therefore, at x=0.18m, the maximum 𝑢 = 6.26𝑚/𝑠



Reflect on the boundary

▪ There are two ways of pulse can 

reflect from the end of the string:

▪ (a) hard end:  the reflected pulse is 

inverted from the incident pulse.

▪ (b) soft end: the pulse is not inverted 

by the reflection.



The Doppler Effect: Moving Source

▪ When a wave source moves through the wave medium, a 

stationary observer experiences a shift in wavelength and 

frequency:

 If the wave moves with a speed v and the source moves 

with a speed u, the shifted frequency is:

 The frequency decreases for a receding source.

 The frequency increases for an approaching source.



The Doppler Effect: Moving Source



The Doppler Effect: Moving Observers

▪ When the wave source is stationary, an observer 

moving with a speed u will experience a Doppler shift 

in frequency (but no shift in wavelength) that is given 

by:

▪ At low speeds (u is small compared to v), the formula 

for a source moving with a speed u gives nearly the 

same result as the formula for an observer moving 

with a speed u.



Hydrostatic equilibrium with gravity

▪ In the presence of gravity, the pressure in a static 

fluid must increase with depth:

 This allows an upward pressure force to balance 

the downward gravitational force.

 This condition is hydrostatic equilibrium.

 Details depend on the nature of the fluid:

 Incompressible fluids like liquids have constant 

density; for them, pressure as a function of 

depth h is as follows:

where p0 is the pressure at the surface



Pascal’s Law

▪ A pressure increase anywhere is felt through out the fluid: 

Pascal’s law.

▪ Pascal’s law’s application: hydraulic press.

▪ Example: lift a car with hydraulic press as shown

𝑚𝑐𝑎𝑟𝑔 = 𝑝𝜋(60)2=
𝐹1

𝜋(7.5)2
𝜋(60)2

▪ Thus: 𝐹1 =
𝑚𝑐𝑎𝑟𝑔

64



Archimedes’ Principle and Buoyancy

▪ Replacing the fluid with an object of the 

same shape doesn’t change the force due 

to the pressure differences:

 Therefore, the object experiences an 

upward force equal to the weight of the 

original fluid.

 This is the buoyancy force.

 Archimedes’ principle states that the 

buoyancy force is equal to the weight of 

the displaced fluid:



Example

▪ The average density of a typical arctic iceberg is 0.86 that 

of sea water. What fraction of an iceberg’s volume is 

submerged?



Example

▪ The average density of a typical arctic iceberg is 0.86 that 

of sea water. What fraction of an iceberg’s volume is 

submerged?

The weight of iceberg is equal to buoyancy force:

Weight of iceberg: 𝑚𝑖𝑐𝑒𝑔 = 𝜌𝑖𝑐𝑒𝑉𝑖𝑐𝑒𝑔
buoyancy force: 𝑊𝑤𝑎𝑡𝑒𝑟 = 𝜌𝑤𝑎𝑡𝑒𝑟𝑔𝑉𝑠𝑢𝑏

Thus:
𝑉𝑠𝑢𝑏

𝑉𝑖𝑐𝑒
=

𝜌𝑖𝑐𝑒

𝜌𝑤𝑎𝑡𝑒𝑟
= 0.86



Conservation of Mass: The Continuity Equation

▪ The continuity equation expresses 

conservation of mass in a moving fluid:

 It follows from considering a flow 

tube, usually an imaginary tube 

bounded by nearby streamlines:

 The flow tube may also be an actual 

physical tube or pipe.



Conservation of Mass: The Continuity Equation

▪ The continuity equation reads:

where ρ is the density, v is the flow 

speed, and A is the cross-sectional area; 

the quantities are evaluated at points 

along the same flow tube.

 The quantity ρvA is is the mass flow rate.

 For incompressible fluids, density is 

constant and the continuity equation

reduces to vA = constant:

 Here vA is the volume flow rate.



Conservation of Energy: Bernoulli’s Equation

Neglecting fluid friction (viscosity) and in the absence of 

mechanical pumps and turbines that add or remove energy 

from the incompressible fluid, Bernoulli’s equation reads



Example: Draining a Tank

▪ A large, open tank is filled to a 

height h with liquid of density ρ. 

Find the speed of the liquid 

emerging from a small hole at 

the base of the tank?



Example: Draining a Tank

 The fluid at the top of the tank and just 
outside the exit hole are both at 
atmospheric pressure, pa.

 Because the tank is large, the fluid 
velocity at the top is nearly zero.

 Assuming y = 0 at the hole and y = h at 
the top of the fluid, we can find the exit 
speed using Bernoulli’s equation:

 Solving for vhole, we obtain:


