Course announcement

- The homework set 2 has been posted on eLearn. Please submit your homework via eLearn by 5PM, 10/21. No late homework will be accepted.
- A review section will be on 10/21
- The first midterm will on 10/25 (Tuesday).

10/7(Fri.)	Energy: kinetic energy and work
10/11(Tue.)	Energy: potential energy and conservation of energy
10/14(Fri.)	Gravity: Law of gravity (Homework2)
10/18(Tue.)	Gravity: Gravitational energy and gravitational field
10/21(Fri.)	Review I
10/25(Tue.)	Mid Term 1
	10/11(Tue.) 10/14(Fri.) 10/18(Tue.) 10/21(Fri.)

GENERAL PHYSICS B1 GRAVITY

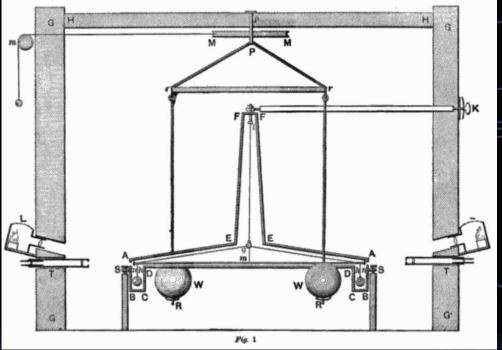
Gravitational Energy and Gravitational Field 2022/10/18

Today's topic

- Gravitational Energy
- Gravitational Field
- Gravity Beyond Newton's law

Universal Gravitation

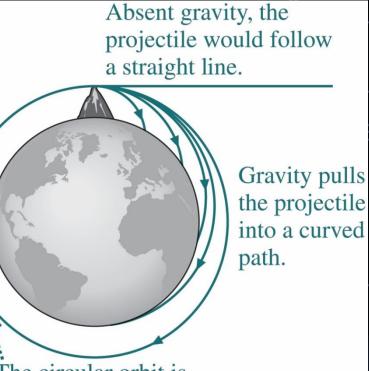
Newton's law of universal gravitation states that any two point particles attract each other with a force that is proportional to the product of their masses and inversely proportional to the square of their separation:


$$F = \frac{Gm_1m_2}{r^2}$$

• $G = 6.67 \times 10^{-11} N \cdot m^2 / kg^2$ is the constant of universal gravitation.

The Cavendish Experiment: Weighing the Earth

In 1798, Henry Cavendish made the first experimental measurement of the gravitational constant *G*:


- In an ingenious experiment, Cavendish measured the small gravitational force between two fixed masses and two masses that were suspended by a thin fiber.
- His result allowed him to find the Earth's mass!(g=GM/r)

https://en.wikipedia.org/wiki/Cavendish_experiment#/media/File:Caven dish_Experiment.png

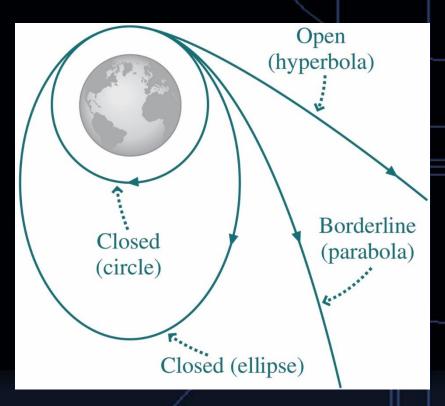
Orbital Motion around the Earth

- Orbital motion occurs when gravity is the dominant force.
 - Newton explained orbits using universal gravitation and his laws of motion:
 - The force of gravity causes a projectile to deviate from its straight-line path.
 - At a critical speed, the curvature of the projectile's path follows the Earth's curvature and it enters a circular orbit.

The circular orbit is a special case where the path is a circle.

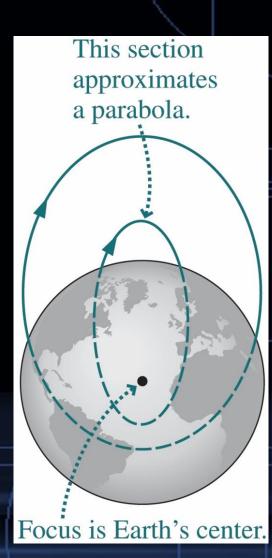
Circular Orbits

In a circular orbit, gravity provides the centripetal force needed to keep an object of mass *m* in its circular path about a much more massive object of mass *M*. Therefore:

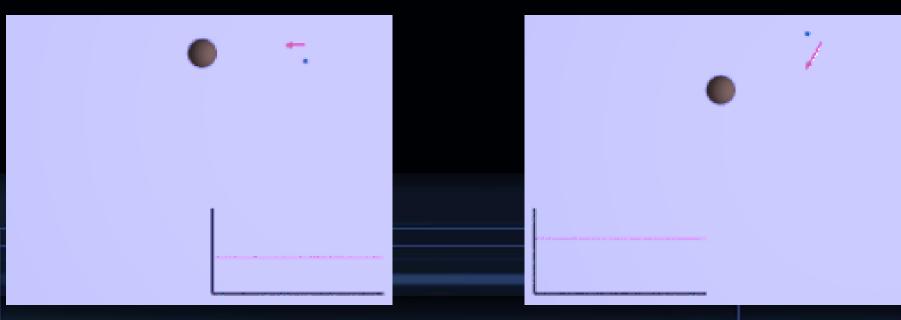

$$\frac{GMm}{r^2} = \frac{mv^2}{r}$$

• The orbital speed:
$$v = \sqrt{\frac{GM}{r}}$$

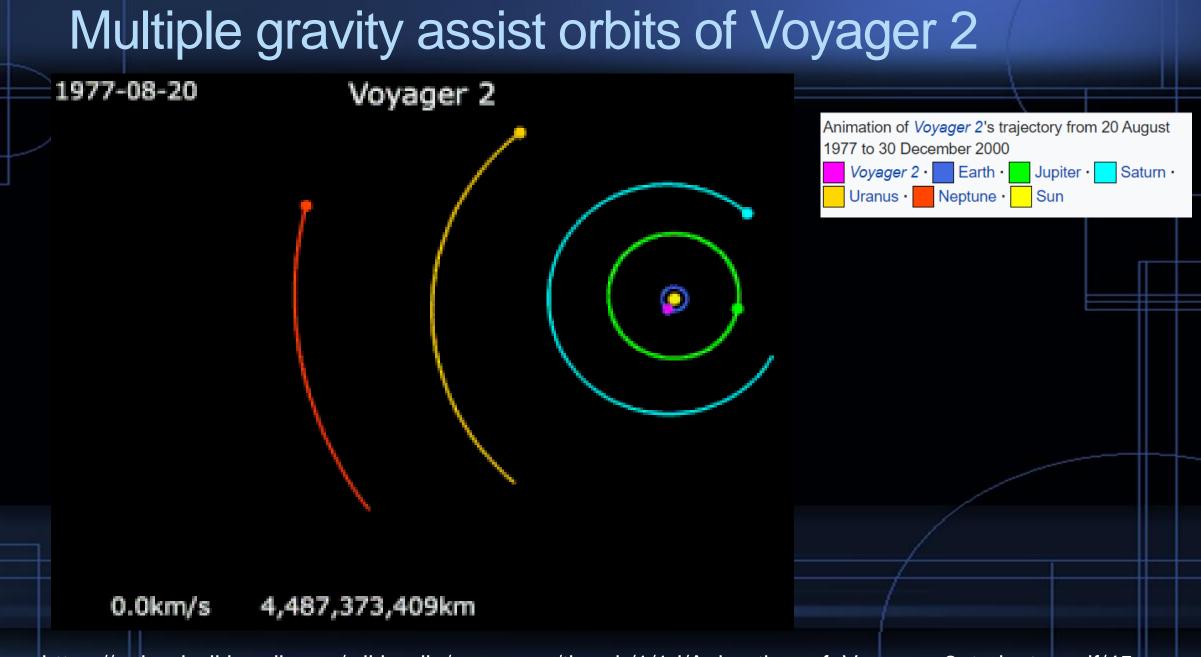
- Orbital period: $T^2 = (\frac{2\pi r}{v})^2 = \frac{4\pi^2 r^3}{GM}$
- This proves Kepler's third law: $T^2 \propto r^3$
- For satellites in low-Earth orbit, the period is about 90 minutes.


Elliptical Orbits and Open Orbits

- A circular orbit is not the only possibility:
 Closed (bound) orbits are elliptical.
 - In the special case of a circular orbit, the acceleration of the orbiting object has a constant magnitude and always points toward the center of the orbit.
 - Unbound orbits are hyperbolic or (borderline case) parabolic.


Projectile Motion and Orbits

- The "parabolic" trajectories of projectiles near Earth's surface are actually sections of elliptical orbits that intersect Earth.
- The trajectories are parabolic only in the approximation that we can neglect Earth's curvature and the variation in gravity with distance from Earth's center.



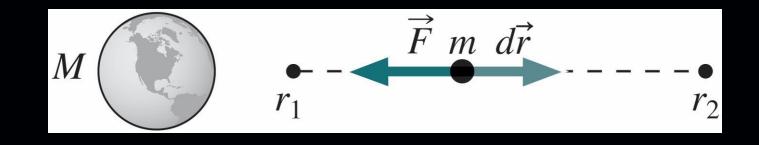
Gravity Assist for spacecraft

A gravitational slingshot, gravity assist maneuver, or swing-by is the use of the relative movement and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft.

https://upload.wikimedia.org/wikipedia/commons/8/8b/Swingby_dec_anim.gif

https://upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Animation_of_Voyager_2_trajectory.gif/45 0px-Animation_of_Voyager_2_trajectory.gif

Gravitational Energy


By observing Newton's law of gravity:

$$F = rac{Gm_1m_2}{r^2}$$

Gravitational force only depends on position => conservative force!

The work done by a conservative force become change of potential energy.

Gravitational Energy

The potential energy changes over large distances = The work done by gravitational force:

$$W = \int_{r_1}^{r_2} \frac{GMm}{r^2} dr = \left[-\frac{GMm}{r}\right]_{r_1}^{r_2} = GMm\left(\frac{1}{r_1} - \frac{1}{r_2}\right)_{r_1}^{r_2}$$

Gravitational Energy

- The result holds regardless of whether the two points are on the same radial line.
- It's convenient to take the zero of gravitational potential energy at infinity. Then, the gravitational potential energy becomes: *GMm*

• so ΔU_{12} is the same as if we start here.

Since altitude doesn't

change, $\Delta U = 0$

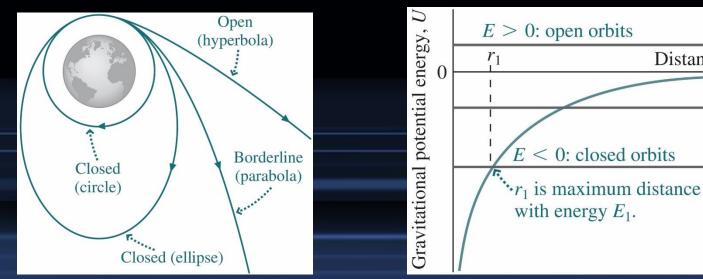
on this path . . .

Energy and Orbits

Open

Closed

Distance, r


< 0: closed orbits

 E_{2}

 E_1

The total energy E = K + U, the sum of kinetic energy K and potential energy U, determines the type of orbit an object follows:

- E < 0: The object is in a closed (bound), elliptical orbit:
 - Special cases include circular orbits and the straight-line paths of falling objects.
- E > 0: The orbit is open (unbound) and hyperbolic.
- E = 0: The borderline case gives a parabolic orbit.

Escape Speed

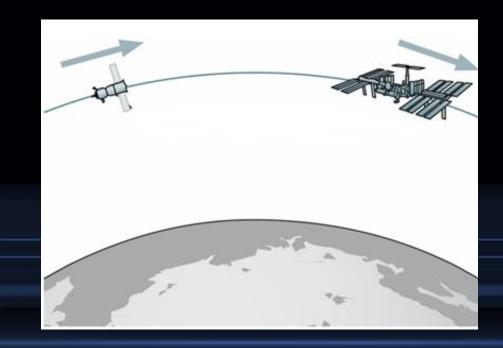
- An object with total energy *E* less than zero is in a bound orbit and cannot escape from the gravitating center.
- With energy E greater than zero, the object is in an unbound orbit and can escape to infinitely far from the gravitating

$$0 = K + U = \frac{1}{2}mv^2 - \frac{GMm}{r}$$

center

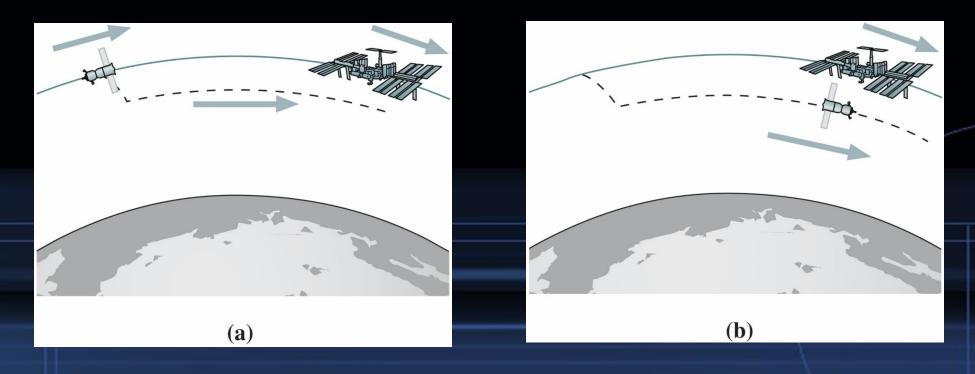
Solving for v gives the escape speed:

$$V_{\rm esc} = \sqrt{\frac{2GM}{r}}$$


Escape speed from Earth's surface is about 11 km/s.

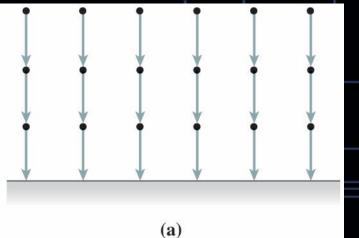
Energy in Circular Orbits

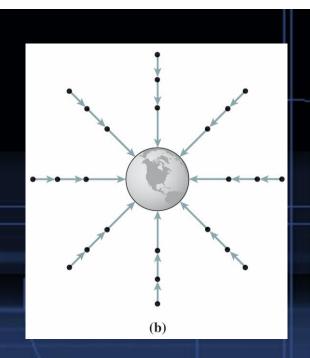
- If an object is in a circular orbit due to gravity. We know that the centripetal acceleration is provided by gravity and thus $v^2 = GM/r$. Thus, kinetic energy $K = \frac{1}{2}mv^2 = \frac{GMm}{2r}$
- The potential energy $U = -\frac{GMm}{r}$
- Thus, the total energy: $E = U + K = -\frac{GMm}{2r} = \frac{1}{2}U = -K$
 - This negative energy shows that the orbit is bound.
 - The lower the orbit, the lower the total energy—but the faster the orbital speed.


Think about it...

Astronauts heading for the International Space Station find themselves in the right circular orbit, but well behind the station. How should they do to catch up?

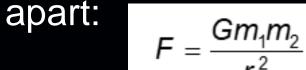
Think about it...


- The lower the orbit, the lower the total energy—but the faster the orbital speed:
 - This means an orbiting spacecraft needs to lose energy to gain speed.



The Gravitational Field

- It's convenient to describe gravitation in terms of a **gravitational field** that results from the presence of mass and that exists at all points in space:
 - A massive object creates a gravitational field in its vicinity and other objects respond to the field at their immediate locations.
 - The gravitational field can be visualized with a set of vectors giving its strength (in N/k g; equivalently, m/s²) and its direction.


$$\vec{g}=-\frac{GM}{r}\hat{r}$$

Summary

Newton's **law of universal gravitation** describes the attractive force between two point masses m_1 and m_2 located a distance r

Motion under gravity includes the following:

- Closed elliptical and circular orbits when the orbiting object's total energy is less than zero.
- Open parabolic and hyperbolic orbits when the total energy is zero or greater.

The **gravitational field** describes the force of gravity in terms of a field that exists at all points in space; an object then responds to the field in its immediate vicinity.