Course announcement

 The total number of enrolled people in this course reached 190 people. This is the maximum capacity of classroom. No more extra enrollment will be approved.

Week	Date	Content
1	9/13(Tue.)	Course Information
		Fundamental Tools: measurement & unit
1	9/16(Fri.)	Fundamental Tool: vector & basic calculus
2	9/20(Tue.)	Kinetics: motion in 1D
2	9/23(Fri.)	Kinetics: motion in 2D and 3D
3	9/27(Tue.)	Newton's law: Newton's first and second law I
3	9/30(Fri.)	Newton's law: Newton's first and second law II (Homework 1)

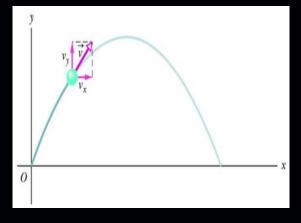
GENERAL PHYSICS 1 KINETICS

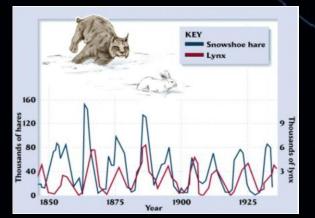
Dynamics: Motion in two and three dimension 2022/09/23

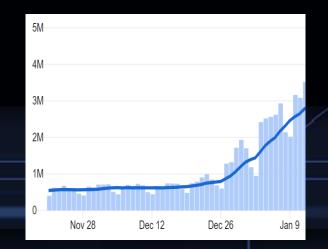
Dynamics: physical quantities evolving with time

 If the physical quantities that we are interested in are a function of time. The study of how these physical quantities change with time is called dynamics.

Examples of dynamical systems







Motion in one dimension

 Physical quantities that we are interested in to describe the motion of an object along a straight line:
 position, velocity, and acceleration.

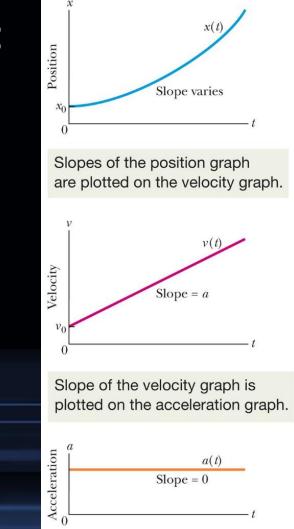
• Position: x_1

- Displacement: $\Delta x = x_2 x_1$ (a vector)
- Average velocity: $v_{\text{avg}} = \frac{\Delta x}{\Delta t} = \frac{x_2 x_1}{t_2 t_1}$ (a vector)
- Average speed: $S_{\text{avg}} = \frac{\text{total distance}}{\Delta t}$ (a scalar)
- Instantaneous velocity: $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ (a vector)
- Average acceleration: $a_{\text{avg}} = \frac{v_2 v_1}{t_2 t_1} = \frac{\Delta v}{\Delta t}$, (a vector)
- Instantaneous acceleration : $a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$ (a vector)

Constant acceleration motion

When acceleration is constant, we have:

Equation	Missing Quantity
$v = v_0 + at$	$x - x_0$
$x-x_0=v_0t+rac{1}{2}at^2$	υ
$v^{2}=v_{0}^{2}+2a\left(x-x_{0} ight)$	t
$x-x_0=rac{1}{2}(v_0+v)t$	а
$x-x_0=vt-rac{1}{2}at^2$	ν _o



Motion in two and three dimension

- Position, velocity, and acceleration in 2D and 3D
- Relative motion
- Projectile motion
- Circular motion

Position in two and three dimension

 Position: a vector that extends from a reference point (usually the origin) to the point of interest.

$$\overrightarrow{r} = x\hat{\mathrm{i}} + y\hat{\mathrm{j}} + z\hat{\mathrm{k}}$$

Ζ

Position in two and three dimension

 Displacement: a vector represents the change of position during a certain time interval.

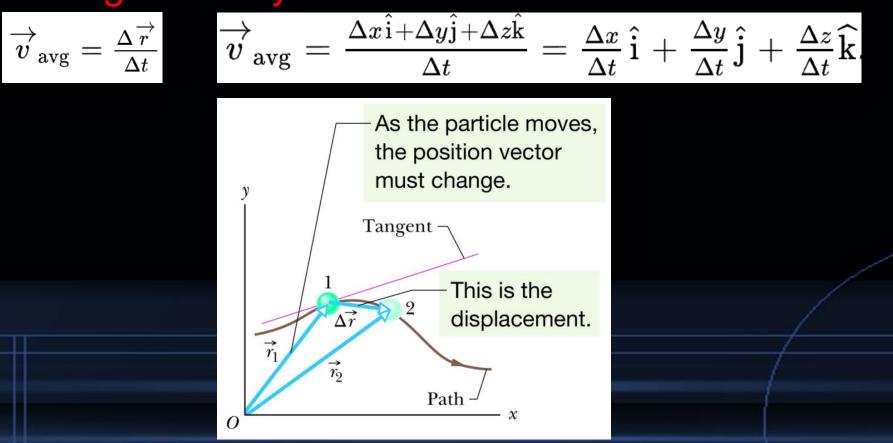
$$\hat{j} \qquad \hat{r_2} \qquad \hat{\lambda} \vec{r} = \vec{r}_2 - \vec{r}_1$$

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

$$\hat{k} \qquad \hat{k}$$

Average velocity and instantaneous velocity

Average velocity

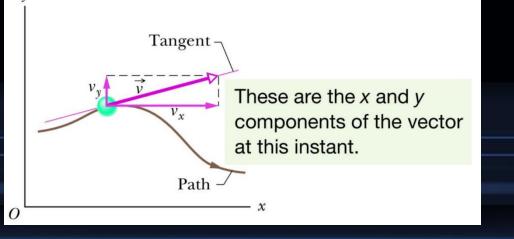


Average velocity and instantaneous velocity

Instantaneous velocity

$$\overrightarrow{v} = rac{d}{dt} \Big(x \hat{\mathrm{i}} + y \hat{\mathrm{j}} + z \widehat{\mathrm{k}} \Big) = rac{dx}{dt} \hat{\mathrm{i}} + rac{dx}{dt} \hat{\mathrm{j}} + rac{dz}{dt} \widehat{\mathrm{k}}$$

The velocity vector is always tangent to the path.



Average acceleration and instantaneous acceleration

Average acceleration

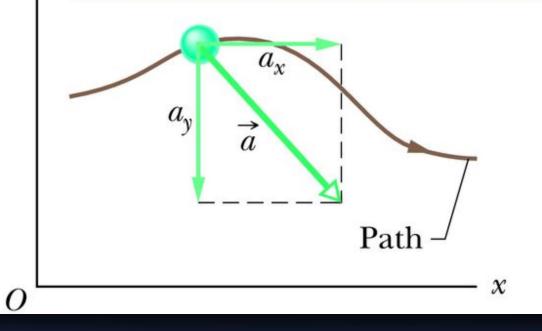
$$\overrightarrow{a}_{\mathrm{avg}} = rac{\overrightarrow{v}_2 - \overrightarrow{v}_1}{\Delta t} = rac{\Delta \overrightarrow{v}}{\Delta t}$$

Instantaneous acceleration

$$egin{aligned} \overrightarrow{a} &= rac{d \, \overrightarrow{v}}{dt} \ \overrightarrow{a} &= rac{d \, d \, \overrightarrow{v}}{dt} \left(v_x \, \widehat{\mathrm{i}} + v_y \, \widehat{\mathrm{j}} + v_z \, \widehat{\mathrm{k}}
ight) \ &= rac{d v_x}{dt} \, \widehat{\mathrm{i}} + rac{d v_y}{dt} \, \widehat{\mathrm{j}} + rac{d v_z}{dt} \, \widehat{\mathrm{k}}. \end{aligned}$$

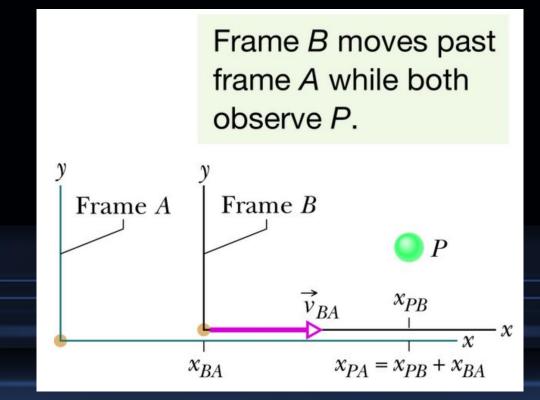
Average acceleration and instantaneous acceleration

These are the *x* and *y* components of the vector at this instant.



Relative motion in one dimension

If the observer have a relative constant velocity to the observed object, then:



Relative motion in one dimension (2)

• We can find that:

$$x_{PA} = x_{PB} + x_{BA}$$

Thus, the conversion of velocity between frames:

$$rac{d}{dt}(x_{PA}) = rac{d}{dt}(x_{PB}) + rac{d}{dt}(x_{BA})$$

$$v_{PA} = v_{PB} + v_{BA}$$

Relative motion in one dimension (3)

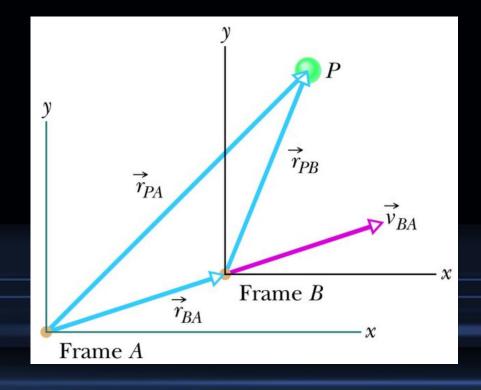
For the acceleration:

$$rac{d}{dt}(v_{PA}) = rac{d}{dt}(v_{PB}) + rac{d}{dt}(v_{BA})$$

- Frame B moves with constant velocity, we have: $a_{PA} = a_{PB}$
- The velocity changes on different frames but acceleration is a constant if the frame moves with constant velocity.

Relative motion in two or three dimension

 The relative motion can be generalized in two or even three dimension:



$$\overrightarrow{r}_{PA}=\overrightarrow{r}_{PB}+\overrightarrow{r}_{BA}$$

$$\overrightarrow{v}_{PA} = \overrightarrow{v}_{PB} + \overrightarrow{v}_{BA}$$

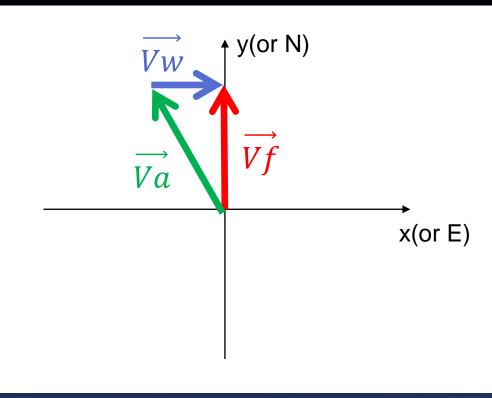
$$\overrightarrow{a}_{PA}=\overrightarrow{a}_{PB}$$

Example of Relative Motion

An airplane flies at 960 km/h relative to the air in a wind blowing eastward at 190 km/h. In what direction should the plane point to track exactly northward?

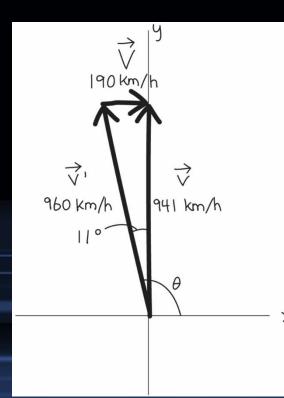
Example of Relative Motion

 An airplane flies at 960 km/h relative to the air in a wind blowing eastward at 190 km/h. In what direction should the plane point to track exactly northward?

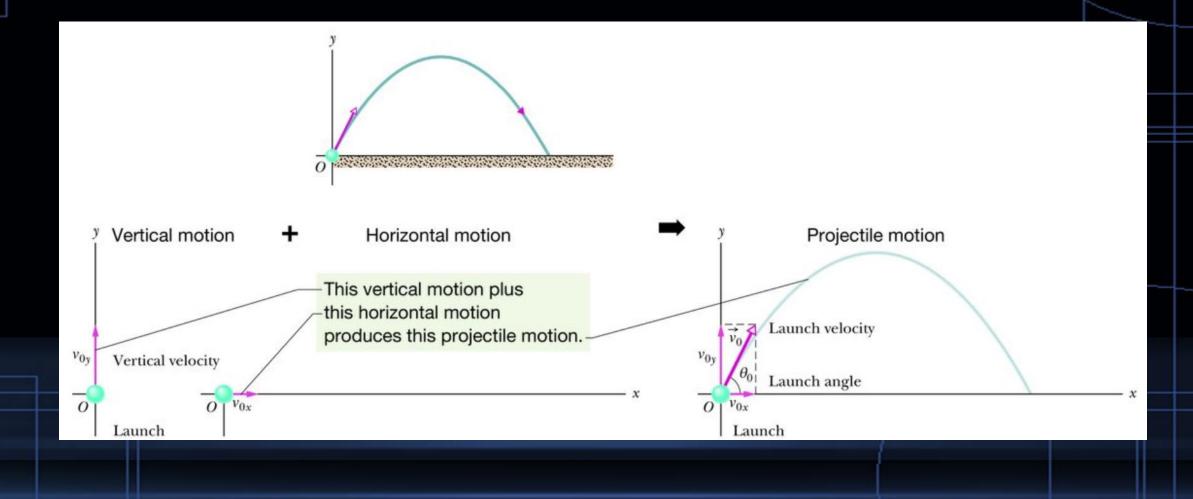


Example of Relative Motion

An airplane flies at 960 km/h relative to the air in a wind blowing eastward at 190 km/h. In what direction should the plane point to track exactly northward?



Projectile motion



Projectile motion

- Horizontal motion: $x x_0 = v_{0x}t_1$ $= (v_0 \ \cos \ heta_0)t_1$
- Vertical motion:

$$egin{array}{rcl} y-y_0&=&v_{0y}t-rac{1}{2}gt^2\ &=&(v_0\,\,\sin\,\, heta_0)\,t-rac{1}{2}gt^2 \end{array}$$

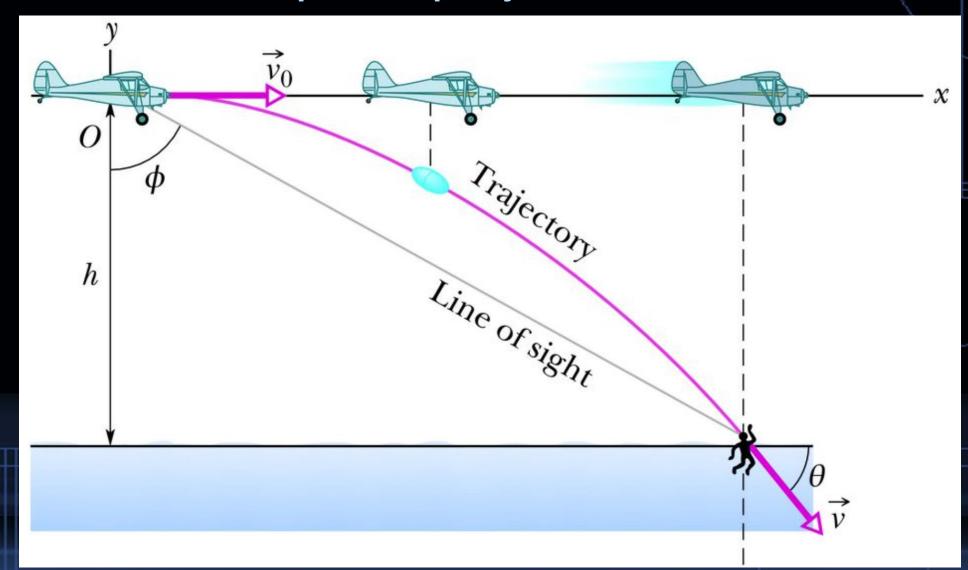
• Equation of the path: $y = (an \ heta_0) \, x - rac{g x^2}{2 (v_0 \ \cos \ heta_0)^2}$

Example of projectile motion

a rescue plane flies at 198 km/h (= 55.0 m/s) and constant height h = 500 m toward a point directly over a victim, where a rescue capsule is to land.

- (a) What should be the angle ϕ of the pilot's line of sight to the victim when the capsule release is made?
- (b) As the capsule reaches the water, what is its velocity ?

Example of projectile motion



Key idea for (a)

- To find ϕ , we will use $\phi = tan^{-1}\frac{x}{h}$, therefore, we want to find x.
- To find x, we can use $x = v_x t$, where $v_x = 55m/s$. therefore, we want to find t, the time of the whole process.
- To find t, we can use h = ¹/₂gt², where h = 500 m and g = 9.8m/s². Therefore, we can find t = 10.1s and
 Therefore, we can find t = 10.1s and x = 555m. Thus we can get φ = 48°.

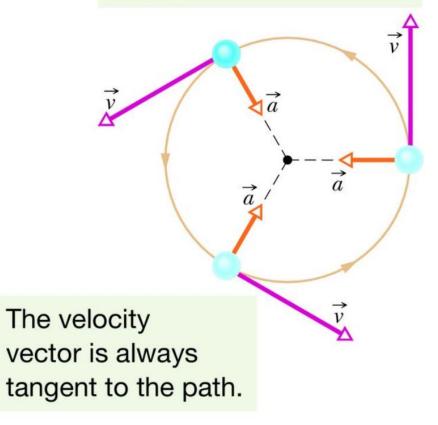
Key idea for (b)

• To find v, we will need to know v_x and v_y .

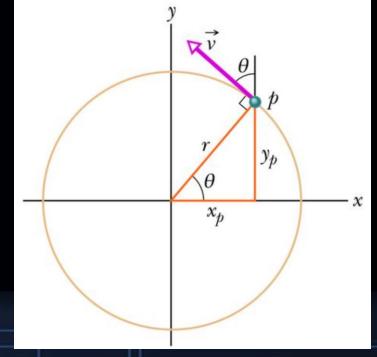
- $v_x = 55m/s$ since it is constant along x-direction.
- To find v_y , we can use $v_y = gt$, $g = \frac{9.8m}{s^2}$ and t = 10.1s
- Therefore, we can find $v = \frac{55m}{s}\hat{i} \frac{99m}{s}\hat{j}$

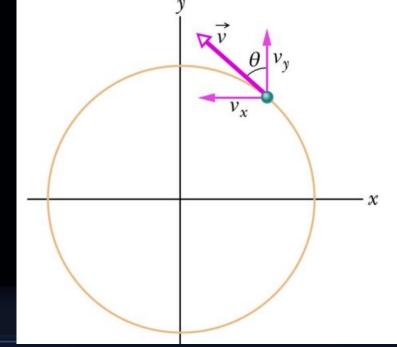
Uniform Circular Motion

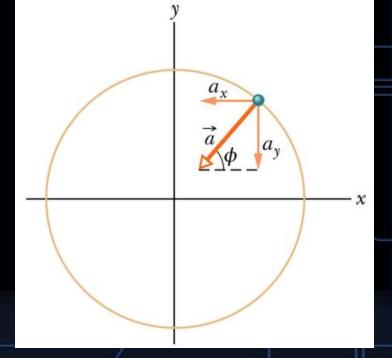
The acceleration vector always points toward the center.



Analysis of position, velocity and acceleration





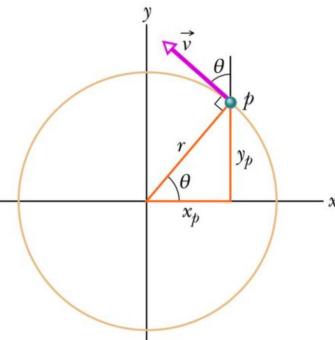


Think about it...

Which set of equation is the best for describing position of a particle in uniform circular motion given (x,y)=(r,0) when t=0?

a.
$$x = rsin\theta, y = rsin\theta, \theta = \omega t$$

b. $x = rcos\theta, y = rsin\theta, \theta = \omega t$
c. $x = rsin\theta, y = rcos\theta, \theta = \omega t$
d. $x = rcos\theta, y = rcos\theta, \theta = \omega t$

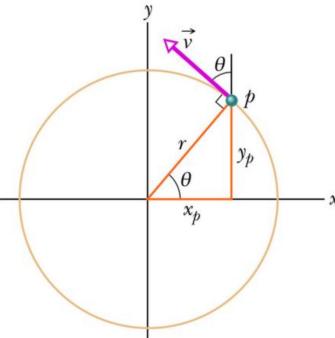


Think about it...

Which set of equation is the best for describing position of a particle in uniform circular motion given (x,y)=(r,0) when t=0?

a.
$$x = rsin\theta, y = rsin\theta, \theta = \omega t$$

b. $x = rcos\theta, y = rsin\theta, \theta = \omega t$
c. $x = rsin\theta, y = rcos\theta, \theta = \omega t$
d. $x = rcos\theta, y = rcos\theta, \theta = \omega t$



The condition for uniform circular motion

The velocity of the particle is:

$$\overrightarrow{v} = v_x\, \hat{\mathrm{i}} + v_y\, \hat{\mathrm{j}} = (-v\,\, \sin\,\, heta)\,\, \hat{\mathrm{i}} + (v\,\, \cos\,\, heta)\,\, \hat{\mathrm{j}}$$

• Or we can rewrite as:

$$\overrightarrow{v} = \left(-rac{vy_p}{r}
ight) \hat{\mathrm{i}} + \left(rac{vx_p}{r}
ight) \hat{\mathrm{j}}$$

Thus the acceleration:

$$\overrightarrow{a} = rac{d \overrightarrow{v}}{dt} = \left(-rac{v}{r}rac{dy_p}{dt}
ight)\hat{\mathbf{i}} + \left(rac{v}{r}rac{dx_p}{dt}
ight)\hat{\mathbf{j}}$$

The condition for uniform circular motion (2)

Thus, we can find:

$$\overrightarrow{a} = \left(-rac{v^2}{r} \cos \, heta
ight) \hat{\mathrm{i}} + \left(-rac{v^2}{r} \sin \, heta
ight) \hat{\mathrm{j}}$$

The condition of having uniform circular motion is:

$$a = \sqrt{a_x^2 + a_y^2} = rac{v^2}{r} \sqrt{(\cos \, heta)^2 + (\sin \, heta)^2} = rac{v^2}{r} \sqrt{1} = rac{v^2}{r}$$

Summary

- In two and three dimensions, position, velocity, and acceleration become vector quantities.
 - Velocity is the rate of change of position: $\vec{v} = \frac{dr}{dt}$
 - Acceleration is the rate of change of velocity: $\vec{a} = \frac{d\vec{v}}{dt}$
- In general, acceleration changes both the magnitude and direction of the velocity.
- Projectile motion results from the constant acceleration of gravity.
- In uniform circular motion, the acceleration has magnitude v² / r and points toward the center of the circular path.