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EXERCISES
Section 28.1 Alternating Current
	14.	INTERPRET We're asked to express how the voltage in Europe varies with time.
DEVELOP The time-dependence for AC voltage is given by Equation 28.3: [image: ] In Europe, the peak voltage and angular frequency are 
	[image: ]
EVALUATE Plugging the given values into the voltage equation gives 
	[image: ]
ASSESS The peak voltage and angular frequency are both larger than the rms voltage and frequency. 
	15.	INTERPRET We are to convert from rms voltage to peak voltage and from Hz to angular frequency.
DEVELOP Apply Equation 28.1 to convert from rms to peak voltage and Equation 28.2 to convert from Hz to angular frequency. 
EVALUATE (a) [image: ] and (b) [image: ].
ASSESS The peak voltage, as its name implies, is greater than the rms voltage.
	16.	INTERPRET We’re given the AC current in terms of a sinusoidal function, and asked to deduce the rms current and the frequency of the current. 
DEVELOP As shown in Equation 28.3, the AC current can be written as
[image: ]
where Ip is the peak current amplitude, ω is the angular frequency, and [image: ] is the phase constant. Comparison of the current with Equation 28.3 shows that its amplitude and angular frequency are [image: ] and [image: ] 
EVALUATE  (a) Applying Equation 28.1 gives [image: ] 
(b) Similarly, using Equation 28.2 we have [image: ] 
ASSESS The phase [image: ] is zero in this problem. Note that since the rms (root-mean-square) current is obtained by squaring the current, taking its time average, and then taking the square root, it is smaller than the peak current by a factor of [image: ]
	17.	INTERPRET We are to find the phase constants for a series of signals plotted as voltage versus dimensionless time.
DEVELOP The phase constant is a solution of Equation 28.3 for t = 0; that is, [image: ] Since [image: ] one must also consider the slope of the sinusoidal signal function at t = 0. In addition, the conventional range for [image: ] usually runs from −180° to +180°, or [image: ] Thus, [image: ] when [image: ] but [image: ] when [image: ]
EVALUATE For signal (a) in Figure 28.25, we guess that [image: ] (since that curve next crosses zero about halfway between π/2 and π) and the slope at zero is positive, so [image: ] This signal is [image: ] which leads a signal with zero phase constant by 45°. For the other signals, 
(b) [image: ] and [image: ] so [image: ] 
(c) [image: ] so [image: ] or 90° 
(d) [image: ] and [image: ] so [image: ] or [image: ] and 
(e) [image: ] so [image: ] or −90°.
ASSESS We used [image: ] or 90°, as is common on most electronic calculators, since the sine function is one-to-one only in such a restricted range.
Section 28.2 Circuit Elements in AC Circuits
	18.	INTERPRET In this problem, we want to find the rms current in a capacitor connected to an AC power source.
DEVELOP The amplitude of the current in a capacitor is given by Equation 28.5:
[image: ]
Using Equation 28.1, the corresponding rms current is [image: ]
EVALUATE Substituting the values given in the problem statement, we find the rms current is
[image: ]
ASSESS The capacitive reactance is [image: ] In this circuit, the current in the capacitor leads the voltage across the capacitor by 90°.
	19.	INTERPRET We are to find the rms current in each element of an RLC circuit connected across the given emf source.
DEVELOP Apply the equations in Table 28.1 and convert them to rms values using Equations 28.1 and 28.2. 
EVALUATE The equations in Table 28.1 (expressed in rms values) give 
[image: ]
ASSESS These values are realistic for RLC circuits.
	20.	INTERPRET This problem is about the capacitive reactance of the given capacitor at various angular frequencies.
DEVELOP From Equation 28.5, we see that the capacitive reactance is
[image: ]
EVALUATE  (a) For f = 60 Hz, the capacitive reactance is 
[image: ]
to two significant figures.
(b) For [image: ] the capacitive reactance is
[image: ]
(c) Similarly, for [image: ] the capacitive reactance is
[image: ]
ASSESS One can see that a capacitor has the greatest effect (largest reactance) at low frequency.

	21.	INTERPRET This problem deals with the minimum safety voltage of an capacitive circuit.
DEVELOP Take the minimum safe voltage to be equal to the peak voltage, and use Equation 28.5 to find the peak voltage.
EVALUATE (a) For a frequency f = 60 Hz, the minimum safe voltage is 
[image: ]
(b) For f = 1 kHz, the minimum safe voltage is 
[image: ]
ASSESS The results are given to two significant figures. The safe voltage is based on the peak voltage, which seems reasonable. Notice that the capacitor has the greatest effect (largest reactance) at low frequency.
	22.	INTERPRET This problem is about the capacitance of a capacitor that’s connected across an AC power source. 
DEVELOP The fact that the capacitor and the resistor both pass the same current implies that 
[image: ]
Therefore, the capacitance is [image: ]
EVALUATE Inserting the values given, we obtain 
[image: ]
ASSESS Since [image: ] the greater the value of resistance R, the greater the capacitive reactance, and thus the smaller the capacitance. 
	23.	INTERPRET We are to find the frequency of an inductive circuit given the rms inductance, emf, and current.
DEVELOP Apply Equation 28.7, [image: ] and Equation 28.2, ω = 2πf. Because 
[image: ]
we can use the rms values instead of the peak values in these expressions.
EVALUATE Combining the expressions above gives
[image: ]
ASSESS The inductance and frequency are inversely proportional.
Section 28.3 LC Circuits
	24.	INTERPRET We are to find the resonant frequency of an LC circuit. 
DEVELOP Using Equations 28.2 and 28.10, the resonant frequency can be written as
[image: ]
EVALUATE Substituting the values given for capacitance and inductance, the resonant frequency is
[image: ]
ASSESS The mechanical analog of the LC circuit is the mass-spring system whose angular frequency is [image: ] Thus, the correspondence between the two systems is: [image: ] and [image: ]

	25.	INTERPRET Given the oscillation period of an LC circuit and its capacitance, we are to find the inductance.
DEVELOP The inductance and capacitance are related to the frequency of an LC circuit by Equation 28.10, [image: ]. The angular frequency is related to the oscillation period T as ω = 2πf = 2π/T.
EVALUATE Solving the expression above for the inductance and inserting the given quantities gives
[image: ]
ASSESS The inductance and capacitance are inversely proportional for a given frequency.
	26.	INTERPRET You're helping your sister build her radio and need to determine what variable capacitor to use so as to cover the AM radio band. 
DEVELOP The frequency of your sister's radio receiver will be set by the LC circuit. Recall that the inductor that she wound around the cardboard tube has an inductance of 450 μH. The LC circuit oscillates at the angular frequency [image: ] so you need to find the minimum and maximum capacitance in order to cover the minimum and maximum frequencies [image: ]of the AM band. 
EVALUATE The minimum frequency is 550 kHz, which corresponds to a capacitance of 
	[image: ]
The maximum frequency is 1600 kHz, which corresponds to a capacitance of 
	[image: ]
So your sister needs a variable capacitor with a range of 22 to 190 pF.
ASSESS The capacitance is small, but it is typical for small electronic applications.
	27.	INTERPRET We are to find the inductance and peak voltage of an LC circuit given its oscillation period and peak current.
DEVELOP Using Equation 28.2, the oscillation frequency is 
[image: ]
The inductance can be calculated from Equation 28.10: [image: ]
EVALUATE (a) The inductance is
[image: ]
(b) Figure 28.11 and the expressions for the electric and magnetic energies for the LC circuit in the text imply that [image: ] so 
[image: ]
ASSESS The results are given to two significant figures, as warranted by the data.
	28.	INTERPRET We are to find the inductance needed to make an LC circuit that has the desired resonance frequency with the given capacitance. 
DEVELOP The resonance frequency of an LC circuit is [image: ] (see Section 28.4) so [image: ] from Equation 28.2. The desired frequency is [image: ] and capacitance is [image: ]
EVALUATE Solving for L gives
[image: ]
ASSESS This is a very small inductor. At high frequencies, small inductances such as this can have a large effect—so much so that it becomes important to design circuits so as to minimize the inductance of individual lead wires! 
Section 28.4 Driven RLC Circuits and Resonance
	29.	INTERPRET We are to find the capacitance of the given RLC circuit, then find its impedance at the two given frequencies.
DEVELOP The capacitance can be found from the relation between resonance frequency and the inductance and capacitance: 
[image: ]
Knowing the capacitance, use Equation 28.12 to find the impedance, using [image: ] and [image: ].
EVALUATE (a) From the expression for resonance in an RLC circuit,
[image: ]
(b) At resonance, [image: ] so [image: ] 
(c) At 3 kHz, [image: ] 
so 
[image: ]
to two significant figures.
ASSESS The impedance is frequency dependent, so its value is different for different frequencies.
	30.	INTERPRET We are to find the impedance of an LRC circuit at a given frequency.
DEVELOP From Equation 28.12, we know that [image: ] where [image: ] and [image: ] The given frequency is [image: ] The values of the circuit elements are [image: ] [image: ] and [image: ]
EVALUATE  Inserting the given values into the expression for the impedance gives
[image: ]
ASSESS Note that, at this frequency, the capacitor has almost no effect compared to the other two circuit elements.
	31.	INTERPRET  For a series RLC circuit, we are to find the frequency at which the impedance is a minimum and the value of that impedance.
DEVELOP From Equation 28.12, we know that the impedance Z is [image: ] where [image: ] and [image: ] The frequency at which Z is minimum will be when [image: ] At that resonance frequency, the impedance is[image: ] The component values in this circuit are [image: ] [image: ] and [image: ]

EVALUATE (a) The minimum-impedance frequency is
[image: ]
(b) At this frequency, the impedance is [image: ]
ASSESS At resonance, the effects of the inductor and the capacitor cancel out, leaving only resistance.
	32.	INTERPRET We are to find the peak current through an RLC circuit at resonance, for three values of R in the circuit. We shall use the fact that, at resonance, Z = R.
DEVELOP The peak voltage is [image: ] The value of R is [image: ] Since Z = R at resonance, the peak current will be [image: ]
EVALUATE For resistance [image: ] Similarly, for resistance R, [image: ] and for resistance 2R, [image: ]
ASSESS At frequencies off the resonance peak, these calculations become somewhat more complicated. But at resonance, Z = R so everything becomes easy.
Sections 28.5 Power in AC Circuits and 28.6 Transformers and Power Supplies
	33.	INTERPRET We are to find the power consumption of a device given its rms current and the current phase.
DEVELOP The average power consumed by an AC circuit is given by Equation 28.14, [image: ].
EVALUATE Inserting the given values into the expression above gives
[image: ]
ASSESS The maximum power for this would be (120 V)(4.6 A) = 552 W, which would require operating at a different frequency. Thus, at 25° phase, the power is about 90% of its maximum value.
	34.	INTERPRET We shall use the average power of a lamp, as well as the rms voltage and the power factor, to calculate the rms current that it draws. 
DEVELOP Use Equation 28.14,[image: ] with cosφ = 0.85 being the given power factor. [image: ] and [image: ] so we simply solve for [image: ]
EVALUATE Solving for the rms currant gives
[image: ]
ASSESS The power factor actually matters with fluorescent lamps. With incandescent lamps, the impedance is almost entirely resistive, so the power factor is almost exactly one.
	35.	INTERPRET We are to compare the power consumption of two circuits that have the same current and voltage; but one that is purely resistive and the other has voltage leading current. The difference in the power usage by these two circuits will be due to the difference in power factors between the two circuits.
DEVELOP The average power consumption of a circuit is (Equation 28.14) [image: ] In the first circuit, the power factor is cosφ = 1, since the circuit is purely resistive. In the second, φ = 20°. In each case, [image: ] and [image: ]
EVALUATE For the first circuit, 
[image: ]
For the second circuit,
[image: ]
ASSESS This is a fairly direct application of a power calculation.
	36.	INTERPRET The problem concerns isolation transformers that are used for safety.
DEVELOP The turns ratio is defined in Equation 28.15: [image: ] 
EVALUATE Since the input and output voltages have the same magnitude, the turns ratio is 1. 
ASSESS It might seem like a waste to have a transformer that doesn't "transform," but the isolation transformer can provide an ungrounded power supply separate from the main utility line. An ungrounded power supply is said to be "floating," i.e., the voltage is alternating but the zero of the voltage is not specified, as it is for a grounded power supply. If a patient were to touch a live wire in a medical device connected to an isolation transformer, he or she would provide a "ground." However, since this is the only connection to ground for the medical device, there is no circuit and therefore no current flows through the patient. 
	37.	INTERPRET You're trying to determine what transformer you need to run your American-bought stereo in Europe.
DEVELOP You need a step-down transformer that goes from Europe's 230 V to the 120 V used by your stereo. The number of turns in the primary and secondary coils are related by Equation 28.15: [image: ] Power, [image: ]is ideally conserved in the transformer, so the currents in the primary and secondary coils should be related by: [image: ]
EVALUATE (a) Given the number of turns in the primary, the number of turns in the secondary is
	[image: ]
(b) Given the maximum primary current, the maximum secondary current will be
	[image: ]
This is below the threshold of your stereo, so the transformer will work.
ASSESS The emf per turn in the secondary is set by the number of turns and the current in the primary. Therefore, to lower the voltage, the secondary should have less turns than the primary, as we have found. By contrast, the reduced voltage of the secondary require more current in order to conserve power. (Of course, some power will be lost in the transformer to resistive heating in the coils.)
PROBLEMS
	38.	INTERPRET We are to find the rms inductor current for two different reactive circuits.
DEVELOP Apply Equation 28.7, [image: ]
EVALUATE (a) Inserting the given values into the expression for rms current gives
[image: ]
(b) A similar calculation with European values gives 330 mA.
ASSESS The result is reported to two significant figures.
	39.	INTERPRET This problem is about capacitive and inductive reactances, and how they depend on the frequency.
DEVELOP From Equations 28.5 and 28.7, the capacitive and inductive reactances are
[image: ]
EVALUATE  (a) From the above equation, the frequency of the applied voltage is 
[image: ]
(b) Equating [image: ] implies
[image: ]
(c) Doubling ω doubles [image: ] and halves [image: ], so [image: ] would be four times [image: ] at [image: ]
ASSESS Capacitive reactance [image: ] is inversely proportional to ω, whereas the inductive reactance [image: ] is proportional to ω. A larger capacitor has lower reactance and a larger inductor has higher reactance.
	40.	INTERPRET This is an exercise in dimensional analysis. We are to show that the units of capacitive and inductive reactance are ohms.
DEVELOP Inductance is defined as the ratio of flux to current (Equations 27.3), and capacitance as that of charge to potential difference (Equation 23.1).
EVALUATE Thus, the units of inductive reactance [image: ] are [image: ](the middle step follows from Faraday’s law), and for capacitive reactance [image: ] the units are [image: ] (the middle step following from the definition of current).
ASSESS The units work out as expected.
	41.	INTERPRET We're asked to express the time-varying potential of an alpha wave in the human brain.
DEVELOP To use Equation 28.3, [image: ]we need to convert the rms voltage to the voltage amplitude, as well as the frequency to the angular frequency: 
	[image: ]
EVALUATE Plugging the given values into the voltage equation gives 
	[image: ]
ASSESS We may also write the angular frequency as rad/s, but radians are dimensionless, so it's not obligatory.
	42.	INTERPRET In this problem a capacitor is connected across an AC generator. We are given the AC voltage function and asked to find the peak current across the capacitor and the voltage and current at a specified time.
DEVELOP The current across the capacitor is given by Equation 28.4:
[image: ]
from which we can find the peak current and the current and voltage at any given time. The voltage across the capacitor is just that supplied by the emf source, so 
[image: ]
where we have used Equation 28.2, ω = 2πf.
EVALUATE (a) The above equation shows that the peak current is
[image: ]
(b) The voltage at t = 6.5 ms is (remember that [image: ] is in radians) 
[image: ]
(c) Similarly, the current is
[image: ]
The magnitude of the current is 7.7 mA.
ASSESS In a capacitor, the current leads the voltage by 90°.
	43.	INTERPRET We are to find the frequency at which the given inductor and capacitor will have the same reactance given that at 10 kHz the reactance of the inductor is ten times that of the capacitor.
DEVELOP From Equations 28.5 and 28.7, the capacitive and inductive reactances are
[image: ]
respectively. We are given that [image: ] or [image: ]. The reactances are equal when [image: ], so we can solve for ω in terms of ω1.
EVALUATE The frequency at which the reactances are equal is
[image: ]
ASSESS Reducing the frequency increases the capacitive reactance and decreases the inductive reactance.
	44.	INTERPRET In this problem an inductor and a lamp are connected across an AC emf source. We are given the AC voltage and asked to find the rms current across the lamp.
DEVELOP In a series circuit, the same current flows through the inductor and lamp. Since the ratio of the rms quantities for a given circuit element equals that of the peak values, Equation 28.7 gives 
[image: ]
EVALUATE Substituting the values given, we find the rms current to be 
[image: ]
to two significant figures.
ASSESS The current in the inductor and the lamp lags the voltage by 90°.
	45.	INTERPRET This problem involves a capacitive circuit consisting of two capacitors connected in parallel across a emf source. We are given one capacitance and are asked to find the other, and we are also asked to find frequency at which the rms current decreases to the given value.
DEVELOP Capacitors in parallel add, so the reactance of the combination is 
[image: ]
and, from the generalized version of Ohm’s law (Equation 28.12 with Z = XC) the rms current is [image: ], which allows us to find C2 (C1 = 2.2 nF).
EVALUATE (a) At a frequency of 1.0 kHz, 
[image: ]
Thus,
[image: ]
(b) Dividing the rms currents at the two frequencies, we get [image: ], or 
[image: ] 
ASSESS The results are reported to two significant figures, as warranted by the data.
	46.	INTERPRET The problem concerns a device that uses capacitors to measure electric signals in the body. We want to know what's the minimum capacitance needed to measure beta waves in the brain.
DEVELOP The reactance is inversely proportional to the capacitance: [image: ] (Equation 28.5). We have to remember to convert the frequency to angular frequency.
EVALUATE Given the maximum reactance for a certain frequency, the minimum capacitance for the electrode is
	[image: ]
ASSESS We can check if this makes sense. Imagine the electrodes are placed over 1-mm-thick cotton fabric with a dielectric constant of near unity [image: ]Then by Equation 23.4, the area of the electrodes would roughly be
	[image: ]
This seems reasonable for the size of an electrode, so the capacitance we found is plausible.

	47.	INTERPRET This problem asks for the inductance that satisfies the resonance condition for a given range of capacitances and frequencies. 
DEVELOP Using Equations 28.2 and 28.10, the resonant frequency can be written as
[image: ]
which can be solved to give 
[image: ]
EVALUATE Using either condition, [image: ] with [image: ] or [image: ] with [image: ] we find the inductance to be 
[image: ]
ASSESS For a given inductance L, the capacitance is inversely proportional to [image: ] Thus, lower capacitance covers the higher end of the frequency band.
	48.	INTERPRET This problem involves an LC circuit for which we are to find the peak inductor current given the peak capacitor voltage. We are also to find the delay between the peak voltage and peak current.
DEVELOP From Example 28.3, we find that the peak current and voltage in an LC circuit are related by
[image: ]
From the discussion accompanying Equation 28.6, we find that the voltage peak across an inductor precedes the current peak by ωΔt = 90° = π/2.
EVALUATE (a) Inserting the given values into the expression for peak current gives
[image: ]
(b) Solving for Δt, we find that the voltage peaks 
[image: ]
before the current peaks, where we have used Equation 28.10, [image: ].
ASSESS The period of the voltage waveform is 4Δt = 18 μs. 
	49.	INTERPRET This problem involves an LC circuit in which an oscillation occurs that transfers energy back and forth between electric and magnetic fields. One eighth of a cycle after the capacitor is charged, we are to find the fraction of their peak values of the capacitor charge, energy, and the inductor current and energy.
DEVELOP The electric energy stored in the capacitor is given by [image: ] where [image: ] (see Equation 28.9). Similarly, the magnetic energy stored in the inductor is [image: ] where 
[image: ]
The quantities are to be evaluated at [image: ] (i.e., at [image: ] of a cycle). Note that phase constant zero corresponds to a fully charged capacitor at t = 0.
EVALUATE  (a) From Equation 28.9, we obtain [image: ]
(b) From the equation for electric energy, the ratio is 
[image: ]
(c) The ratio of the current is [image: ] The direction of the current is away from the positive capacitor plate at t = 0.
(d) From the equation for magnetic energy, [image: ]
ASSESS At one-eighth of a cycle, half of the total energy is magnetic and half is electric. This is illustrated in Figure 28.11.
	50.	INTERPRET This problem involves an LC circuit with one capacitor charged to 200 V and which is initially in an open-circuit state. We are to manipulate the two switches shown in Figure 28.25 to transfer all the energy to the other capacitor. To do this, we will need to store the energy temporarily in the intermediate inductor.
DEVELOP The energy in the inductor is proportional to the current squared, whereas that in the capacitor is proportional to the voltage squared (see Table 28.2). The energy initially stored in the first capacitor is [image: ] In an LC circuit, the current peaks 1/4 cycle after the voltage peaks, so we need to close switch B for 1/4 cycle to transfer all the energy from the 2000-μF capacitor to the inductor. Next, we can open switch B and close switch A for another 1/4 cycle to transfer the energy from the inductor to the 500-μF capacitor.
EVALUATE (a) As explained above, we first close switch B for one quarter of a period of the LC circuit containing the 2000-μF capacitor, or 
[image: ] 
This transfers 40 J to the inductor. Then open switch B and close switch A for one quarter of a period of the LC circuit containing the 500-μF capacitor, or
[image: ]
This transfers 40 J to the second capacitor from the inductor. Finally, open switch A to maintain the charge on the 500-μF capacitor. 
(b) When the second capacitor has 40 J of stored energy, its voltage is 
[image: ]
ASSESS The time to transfer the energy from the inductor to the second (smaller) capacitor is ½ that it takes to transfer the energy from the large capacitor to the inductor. This illustrates the more rapid response of smaller capacitors.
	51.	INTERPRET This problem is about an LC circuit with damping due to the resistance. We want to find the number of oscillations the circuit completes before the peak voltage is reduced by half. 
DEVELOP For a damped LC circuit, Equation 28.11 gives the charge as a function of time. Because [image: ], the voltage as a function of time can be written as 
[image: ]
The peak voltage decays with time constant 2L/R. Half the initial peak value is reached after a time [image: ] (when [image: ]).
EVALUATE Since the period of oscillation is [image: ] the number of cycles that occur within time t is 
[image: ]
ASSESS This oscillation is underdamped. The larger the resistance, the more rapidly the oscillation decays.

	52.	INTERPRET This problem involves a damped LC circuit. Given the resistance, the inductance, and the time it takes for the circuit to dissipate half its energy, we are to find the capacitance.
DEVELOP If only half the energy is lost after 15 cycles, the damping is small and the energy varies like the square of Equation 28.11, namely 
[image: ]
The energy time constant is[image: ]which is one half the charging time constant. After 15 cycles, [image: ] and the fraction of energy remaining is 
[image: ]
Solve this for the capacitance C using Equation 28.2 [image: ].
EVALUATE Take logarithms to get 
[image: ]
from which we find
[image: ]
ASSESS This is a typical capacitance for a damped LC circuit.
	53.	INTERPRET This problem is about a series RLC circuit at resonance. We want to find the smallest resistance that still keeps the capacitor voltage under its rated value when the circuit is at resonance. 
DEVELOP In a series RLC circuit at resonance, the peak capacitor voltage is
[image: ]
where [image: ] is the resonant angular frequency.
EVALUATE The condition that [image: ] implies
[image: ]
ASSESS Our results shows that [image: ] is inversely proportional to R. This means that a larger resistor would be required if the capacitor has a lower voltage rating.
	54.	INTERPRET We're asked to plot the voltage across a capacitor in an RLC circuit.
DEVELOP The peak voltage across the capacitor is the peak current times the capacitive reactance: [image: ] Combining this with Equation 28.12 for the RLC current gives
	[image: ]
where [image: ] and [image: ] The resonant frequency of the circuit is 
	[image: ]
In terms of frequency, this is [image: ]

EVALUATE Below we plot the peak voltage across the capacitor over the range 3200 to 4000 rad/s.
[image: ]
It's clear that the voltage across the capacitor can exceed its rated voltage of 1200 V. The angular frequency range to avoid is [image: ] or in frequency [image: ]
ASSESS At resonance, a system can oscillate with a much higher amplitude than the source that's driving it. We can verify the range of frequencies we found by solving algebraically where [image: ] Let [image: ]and [image: ] (see Problem 28.73), so the peak voltage across the capacitor can be written as
	[image: ]
Setting this equal to 1200 V and using the quadratic formula, we get
	[image: ]
This means the limits of the frequency range to be avoided are [image: ]which agrees with what we found above.
	55.	INTERPRET This problem involves analyzing a phasor diagram for a driven RLC circuit to find if the driving frequency is above or below resonance. We are also to complete the diagram and use it to find the phase difference between the applied voltage and current.
DEVELOP Our diagram has three phasors, [image: ] and [image: ] representing the voltages across the resistor, the inductor, and the capacitor, respectively. Because the resistor voltage is in phase with the current, [image: ] is in the same direction as [image: ] The resonant frequency is [image: ].
EVALUATE  (a) From the observation that [image: ], we conclude that [image: ]which means the frequency is above resonance. 
(b) The applied voltage phasor is the vector sum of the resistor, capacitor, and inductor voltage phasors, as shown below. The current is in phase with the voltage across the resistor, which in this case is lagging the applied voltage because 
[image: ]
by approximately 50° (as estimated from the figure).
[image: ]
ASSESS Our circuit is inductive since [image: ] Note that a positive φ means that voltage leads current, and a negative φ means voltage lags current. At resonance, [image: ] and φ = 0.

	56.	INTERPRET We are to show that the current in an RLC circuit at twice the resonance frequency is the same as the current at half the resonance frequency, provided these are half the current at resonance.
DEVELOP At resonance, XL = XC, and Equation 28.12 takes the form
[image: ]
Taking the ratio of the peak current to the current at resonance gives
[image: ]
where [image: ] is the resonance frequency.
EVALUATE Since this expression does not change when [image: ] is replaced by its reciprocal, the assertion in this problem is true. (That is, [image: ] and [image: ] give the same [image: ])
ASSESS Thus, we have found that if
[image: ]
then
[image: ]
	57.	INTERPRET We are to find the power factor and the power dissipation in a series RLC circuit.
DEVELOP From the geometry of Figure 28.16, we find that the power factor of the circuit is
[image: ]
The average power in the circuit is given by Equation 28.14:
[image: ]
EVALUATE (a) Substituting the values given, we find the power factor is 
[image: ]
(b) The above equation gives [image: ] 
ASSESS  Note that the average AC power is given by the same expression as the DC power if the rms current is used. The power factor must be between zero and 1. A purely resistive circuit has a power factor of 1, while a circuit with only capacitance or inductance has a power factor of zero.
	58.	INTERPRET We are to find the resistance and the resonant frequency of a series RLC circuit given the power factor and the impedance at 60 Hz.
DEVELOP  From the geometry of Figure 28.16, we find that the power factor of the circuit is
[image: ]
from which we can find the resistance R. The reactance of the circuit can be expressed in terms of the inductance, the resonant frequency, and the given values by using Equation 28.12:
[image: ]
EVALUATE (a) Solving for R gives
[image: ]
(b) Since [image: ] we can discard the unphysical solution (with [image: ]) to find [image: ] or [image: ]
ASSESS An alternative way to show the relationship between the power factor and the impedance and resistance is to use Equations 28.12 and 28.13 and the trigonometric identity [image: ]
	59.	INTERPRET You want to know the percentage of power your company loses during transmission over its electric lines.
DEVELOP For AC circuits, the average power produced is given in Equation 28.14: [image: ] where [image: ]is the power factor. The power lost in the transmission lines is [image: ]at any given time, but the average power lost will be 
	[image: ]
where we have used the fact that the resistance is constant over time, as well as the definition of root-mean-squared: [image: ]
EVALUATE (a) For a power factor of 1.0, the percentage of power lost in the transmission lines is 
	[image: ]
(b) For a power factor of 0.60, the same percentage is 
	[image: ]
ASSESS In this problem, the current is constant, so the power lost will be the same in both cases. What does change is the amount of AC power produced at the plant. For a power factor of 1.0, the current and voltage are in phase, and the power in the circuit is maximized. But for a lower power factor, the current and voltage are out of phase, so the plant is producing less power for its end-users, while still losing the same amount in the transmission lines. 
	60.	INTERPRET We are to find the AC current drawn by the given AC-to-DC converter and the cost to run this converter for 10 hours given a power factor of unity.
DEVELOP The DC power output,
[image: ]
is 80% of the average AC power input which is 
[image: ]
(where cosφ = 1 is assumed for the charger). 
EVALUATE (a) Thus,
[image: ]
(b) The cost for 10 h of operation is 
[image: ]
ASSESS For DC power, the rms is not necessary because the power does not fluctuate.

	61.	INTERPRET This problem deals with DC power supplies. If the time constant RC is long enough, the capacitor voltage will only decrease slightly before the AC voltage from the transformer rises again to fully charge the capacitor.
DEVELOP The scenario is depicted in Figure 28.23. From the given DC output, we find the load resistance to be [image: ] In one period of the input AC (T = 1/f), the capacitor voltage must decay by less than 3%, or [image: ]
EVALUATE The above condition implies that 
[image: ]
ASSESS If the capacitance is large enough, the load current and voltage can be made arbitrarily smooth with negligible decay.
	62.	INTERPRET This problem involves a damped RLC circuit whose peak voltage across the capacitor decays as given. We are to find the resistance of this circuit.
DEVELOP For the damped oscillations of an RLC circuit, the voltage decays according to Equation 28.11,
[image: ]
with frequency given by Equation 28.10. If in ten cycles[image: ]the 
peak voltage has decayed from 35 V to 28 V, which gives
[image: ]
Take the ratio and solve for R.
EVALUATE  The resistance is
[image: ]
ASSESS The result is given to two significant figures, as warranted by the data.
	63.	INTERPRET We have an AC generator connected to a series RLC circuit, and we want to know its maximum peak voltage when the circuit is at resonance.
DEVELOP The peak capacitor voltage is [image: ] At resonance, the impedance is Z = R and [image: ] The capacitive reactance is [image: ]
EVALUATE The condition that [image: ] implies 
[image: ]
ASSESS The inductor voltage at resonance is 
[image: ]
which is the same as [image: ] The two voltages cancel exactly at resonance. Note that [image: ] and [image: ] are both higher than [image: ]
	64.	INTERPRET Starting with the charge on the capacitor in an LC circuit, we are to find the current and the voltage, then the energy stored in the capacitor and in the inductor. We are to sum the two to find the total energy and show that it’s constant.
DEVELOP We start with [image: ] and differentiate with respect to time to find the current. We also use 
q = CV to find the voltage. The energy stored in the electric field of the capacitor is [image: ] and the energy 
stored in the magnetic field of the inductor is [image: ]
EVALUATE The current in the LC circuit is
[image: ]
The voltage across the capacitance is 
[image: ]
The electric energy in the capacitor is
[image: ]
The magnetic energy in the inductor is 
[image: ]
The total energy is
[image: ]
ASSESS We have shown that the energy in this circuit is a constant.
	65.	INTERPRET In Example 28.4, we found a frequency at which the current in an RLC circuit is half its maximum value. Here, we are to find a second frequency at which the current will be half the maximum. We shall use Equation 28.12 for Z.
DEVELOP From Example 28.4, we have C = 11.5 μF, R = 8.0 Ω, and L = 22 mH. We also know that [image: ] where [image: ] and [image: ] The current is given by Ohm’s law (Equation 28.12), I = V/Z, and we are looking for a value of ω such that Z = 2R.
EVALUATE Solving for ω gives
[image: ]
The sign of ω is irrelevant. We need to convert to frequency using f = 2π/ω, so [image: ]
ASSESS The 618-Hz answer was given in the example, so the solution we need is f = 1620 Hz.
	66.	INTERPRET This problem involves a pair of capacitors that are connected in parallel and in series across a sine-wave generator that produces a peak voltage that is independent of frequency. We are to find the frequency for the series-connected capacitors such that the peak current is the same as that for the parallel-connected capacitors.
DEVELOP For constant [image: ] (i.e., independent of frequency), the same peak current will be supplied if the capacitive reactances for the two connections are equal (i.e., [image: ]). Recall from Chapter 23 that capacitors in series sum directly (CT = C1 + C2), whereas capacitors in parallel sum as reciprocals ([image: ]). 

Thus,
[image: ]
EVALUATE Thus, for parallel and series combinations of two equal capacitors,
[image: ]
ASSESS Connecting the capacitors in series creates total capacitance four times smaller than connecting them in parallel, so the frequency must be four times higher to have the same reactance.
	67.	INTERPRET We have two capacitors connected first in series and then in parallel with an AC generator, and we want to know their capacitances given that the current drops from 30 mA to 5.5 mA upon going from parallel to series connections.
DEVELOP Equation 28.5 gives the rms current when capacitors are connected to an AC generator, 
[image: ]
For the parallel connection, [image: ](see Chapter 23), so
[image: ]
For the series connection, [image: ], so Equation 28.5 gives
[image: ]
The two equations can be used to solve for C1 and C2.
EVALUATE Simplifying the above two equations leads to [image: ] and [image: ] Eliminating C1 from the second equation and substituting into the first equation, we obtain the following quadratic equation: 
[image: ]
Since the initial two equations are symmetric in C1 and C2, eliminating C2 gives the same equation as the above, but with C2 replaced by C1. Thus, the solutions for C1 and C2 are 
[image: ]
ASSESS The parallel connection yields a greater capacitance, and hence a larger current compared to the series combination. The results are reported to two significant figures, as warranted by the data.
	68.	INTERPRET This problem concerns the time behavior of a simple LC circuit.
DEVELOP The charge on the capacitor as a function of time is given by Equation 28.9: [image: ] where [image: ] The voltage on the capacitor is the charge divided by the capacitance: 
	[image: ]
This form of the equation gives the peak voltage at [image: ] as it should. We can use the capacitor voltage at [image: ] to find the angular frequency, ω:
	[image: ]
With this information, we will be able to determine the time-dependence of the current in the circuit:
	[image: ]
We'll neglect the minus sign here, since we're not concerned with the direction the current flows.


EVALUATE (a) The peak current is the amplitude in the current equation:
	[image: ]
(b) The peak occurs when [image: ]or when
	[image: ]
ASSESS These values seem reasonable. Recall that the voltage and the current in an LC circuit are 90° out of phase with each other (see Figure 28.9).
	69.	INTERPRET This problem involves designing a circuit that gives the desired response to the given input signal.
DEVELOP We want the output voltage to lead the input voltage (by 45°). By inspecting Figure 28.16, we notice that the voltage across a resistor leads the voltage across a capacitor with which it is in series. Similarly, the voltage across an inductor leads the voltage across a resistor with which it is in series. Both circuits can be adapted to the criteria of the black box in this problem. 
EVALUATE Case (1): RC circuit with an AC input. In this circuit, [image: ] and [image: ] In the corresponding phasor diagram shown below, [image: ] lags I by 90°, [image: ] and I are in phase, and V is the vector sum of these (see Table 28.1). We drew I horizontally for convenience in the figure below. The impedance is thus
[image: ]
and the phase angle is 
[image: ]
[image: ]
The current I always leads V, because [image: ] Recall that[image: ]is defined by [image: ] when [image: ]
The result implies that, in a series RC circuit, [image: ] leads the applied voltage, V by an angle [image: ], which may be adjusted to 45° if [image: ] The peak voltage across the entire resistance is [image: ], so if we divide the resistance into two parts, [image: ] with [image: ], then the peak voltage across [image: ] will be [image: ] as desired (rms voltages have the same ratio as peak voltages).
Case (2): RL circuit with an AC input. When a capacitor is replaced with an inductor, the phasors for [image: ] and I are still parallel, but [image: ] leads I by 90°. The voltage V is the vector sum of [image: ] and [image: ] so the impedance is 
[image: ]
and the phase angle is 
[image: ]
[image: ]
In this case, I always lags V, because φ > 0 Negative φ is in the same sense as[image: ]; measured from V.
In a series RL circuit,[image: ]leads V by [image: ] which equals 45° if [image: ] Again, [image: ], so if we divide L into [image: ] with [image: ], the peak voltage across [image: ] is [image: ]. Both circuits are sketched below.
[image: ]
ASSESS We have shown how the circuit can be designed in two different ways to adapt to the criteria of the black box. Our circuit conditions can be verified explicitly. Note that [image: ] is the open-circuit output voltage. If a 
load is connected across the output terminals, the magnitude and the phase of the voltage will be changed accordingly.
	70.	INTERPRET We're asked to find the range of frequencies at which the current in an RLC circuit is half of the maximum current at resonance.
DEVELOP The peak current in general is[image: ] (Equation 28.12), while at resonance, [image: ] Therefore, [image: ] implies [image: ] which reduces to
	[image: ]
The maximum frequency in this range occurs when the left-hand side of the inequality equals [image: ] whereas the minimum frequency occurs when the left-hand side of the inequality equals [image: ]
EVALUATE We can solve for both the maximum and minimum frequencies at the same time by solving for the roots of the equation
	[image: ]
Using the quadratic formula, we have
	[image: ]
Since the frequency is inherently positive, we'll disregard the two negative solutions to the above equation. Notice that the last term in the square root is the resonant frequency squared, and the repeated term is inversely proportional to the decay time constant in Equation 28.11:
	[image: ]
Using these values, the maximum and minimum frequencies are
	[image: ]
ASSESS In terms of frequency, f, the range is 135 to 190 Hz. Notice that the peak in the current is not symmetric around the resonance, since [image: ]
	71.	INTERPRET This problem involves a series RLC circuit for which we are given the current at resonance and at half the resonant frequency. We are asked to find the resistance, the inductance, and the capacitance.
DEVELOP At resonance, the impedance is Z = R and the current is [image: ] and [image: ] Away from resonance, [image: ] and [image: ]
EVALUATE The resonance condition gives
[image: ]
On the other hand, at half the resonant frequency, [image: ] the impedance is 
[image: ]
which gives
[image: ]
With [image: ] and [image: ], we obtain the following conditions:
[image: ]
These equations can be solved for C and L, with the following result: 
[image: ]
ASSESS Below resonance, capacitive reactance dominates, with [image: ]
	72.	INTERPRET This problem involves using a phasor diagram to derive the impedance of the given RLC circuit.
DEVELOP In the parallel RLC circuit, the currents in each element add to give the total current, so we apply phasor currents to the mode law, [image: ]. As illustrated in the phasor diagram below, [image: ] is in phase with V (which is the same across each element, i.e., [image: ] leads V by 90°, and [image: ] lags V by 90°. The peak values are [image: ] and [image: ] The peak total current is [image: ]
[image: ]
EVALUATE The Pythagorean theorem applied to the phasor diagram gives
[image: ]
or
[image: ]
ASSESS The phasor diagram facilitates the analysis of this circuit.
	73.	INTERPRET In this problem we are asked to derive the Q factor of an RLC circuit that satisfies the criteria given in the problem statement.
DEVELOP To derive the expression for Q, we first need to know the power in the circuit. From Equations 28.12 and 28.14 (with rms values), and 
[image: ]
from Figure 28.16, the average power in a series RLC circuit can be written as
[image: ]
The above expression shows the power falls to half its resonance value [image: ] when [image: ] or when [image: ] In terms of the resonant frequency [image: ] this condition becomes 
[image: ]
The solutions of these quadratics, with [image: ] are
[image: ]
The Q factor is then equal to [image: ], where [image: ]
EVALUATE If [image: ] (or [image: ]), we can neglect the first term under the square root sign compared to the second, which gives [image: ] The difference between these two values of ω is [image: ] from which we obtain [image: ]
ASSESS The Q factor measures the “quality” of oscillation. The smaller the resistance, the higher the Q-factor. In the absence of resistance [image: ] the LC circuit can oscillate indefinitely. 

	74.	INTERPRET We want the rms voltage for a triangle wave.
DEVELOP We draw the corresponding triangle wave in the figure below. For simplicity, we've chosen to make the graph symmetric around the [image: ] axis. Each cycle takes the time of one period, T.
[image: ]
The voltage change over half a period is [image: ]so the slope of the line alternates between [image: ] and [image: ] We can characterize the cycle centered at the origin by 
	[image: ]
EVALUATE To find the rms value, we square the voltage and take the average over one period:
	[image: ]
Taking the square root gives [image: ] as was expected.
ASSESS One can certainly simplify the calculation by just doing half a cycle, since the triangle wave is symmetric around its midpoint.
	75.	INTERPRET We are to use the equation for charge on a capacitor in an RLC circuit and the differential equation for an RLC circuit from Kirchhoff’s laws to find an expression for ω.
DEVELOP The given equations are [image: ] and [image: ] We take the derivatives of q, substitute it into the differential equation, and solve the resulting equation for ω.
EVALUATE We first calculate the derivatives of q(t):
[image: ]
Substituting these into the differential equation gives us, after some algebraic steps, 
[image: ]
For this equation to be true for all values of t, the term in parentheses must be zero.
[image: ]
ASSESS This reduces to [image: ] if R = 0.
	76.	INTERPRET We are to find the frequency at which the voltage across a capacitor is maximized, and also the value of that maximum voltage. We shall use both the impedance of the RLC circuit and the impedance of the capacitor alone.
DEVELOP We are given, in Example 28.4, the component values [image: ] and [image: ]. The peak voltage is [image: ] The peak voltage across the capacitor will be [image: ] where [image: ] and [image: ] We want to find the maximum value of [image: ] and the frequency at which it occurs.
EVALUATE 
[image: ]
so we set the derivative equal to zero and solve for ω:
[image: ]
to two significant figures. We substitute this value of ω into the equation for [image: ] to find the peak voltage across the capacitor, [image: ]
ASSESS Although the peak voltage on the capacitor is higher than the peak supply voltage, that’s ok: the voltage across the inductor will be negative when the capacitor hits this voltage so Kirchhoff’s loop law is not violated.
	77.	INTERPRET We are to find the maximum current in an RLC circuit at resonance.
DEVELOP At resonance, the impedance Z is just the resistance R, and the current is the same in all series-circuit elements, so the maximum current in the inductor is just [image: ] The maximum voltage is [image: ] The resistance is [image: ] and we really don’t care what the inductor and capacitor values are.
EVALUATE The maximum current is
[image: ]
ASSESS This current is within the safe limit.
	78.	INTERPRET We are to design an LC oscillator that has the same frequency as a spring-mass system by using our knowledge of the frequency of an LC oscillator.
DEVELOP For a spring-mass oscillator [image: ] and for an LC oscillator [image: ] The mass is m = 5 kg, the spring constant is [image: ] and L =2.5 H. We set the two angular frequencies equal to each other and solve for C.
EVALUATE The capacitance is
[image: ]
ASSESS In either case, the angular frequency is [image: ]

	79.	INTERPRET We are analyzing a filter consisting of an RC circuit.
DEVELOP To determine which frequencies can pass through the filter, we consider the voltage across the capacitor, which will be equal to the output voltage, [image: ] For a given frequency, the peak current through the RC circuit is given by Equation 28.12: [image: ] where in this case [image: ] The peak voltage across the capacitor will be [image: ] Using [image: ] and defining [image: ]we can write the capacitor voltage as
	[image: ]
EVALUATE If [image: ]then [image: ]which implies that [image: ]Therefore, low frequencies are passed from the input to the output. By contrast, for [image: ]we have [image: ] This means there is no output at high frequencies. This, then, is a low-pass filter.
The answer is (a). 
ASSESS Another way to arrive at this is to recall the short-term and long-term behavior of RC circuits from Chapter 25. Over short-times ([image: ]or equivalently [image: ]), the capacitor acts like a short-circuit, so current will flow through the capacitor, and there will be no voltage at the output. Over long-times ([image: ]or equivalently [image: ]), the capacitor acts like an open circuit, so no current flows in the capacitor, which means the input and output have the same voltage. One might have wrongly guessed that the presence of the capacitor implies a high-pass filter, judging from the Application on loudspeakers in the text. But in that case the capacitor is in series with the output, whereas in this case it is in parallel. 
	80.	INTERPRET We are analyzing a filter consisting of an RC circuit.
DEVELOP In the previous problem, we argued that the output voltage is the same as the voltage across the capacitor, which has a peak value of
	[image: ]
EVALUATE If the capacitor's reactance is equal to the resistance [image: ]then [image: ]and the output voltage will be [image: ]
The answer is (c). 
ASSESS Notice that setting the reactance equal to resistance is the same as setting [image: ] or [image: ] as defined in the previous problem. This frequency corresponds to a time in between the short-and long-term behavior of the capacitor, so the input is only partially passed to the output. 
	81.	INTERPRET We are analyzing a filter consisting of an RC circuit.
DEVELOP Since there is no inductance, there is technically no resonance in this circuit. The maximum output voltage is the input voltage [image: ] which occurs when the reactance goes to infinity. This corresponds to zero frequency, or essentially a DC signal.
EVALUATE The output voltage gradually decreases from its maximum at [image: ] to [image: ] at very high frequencies. Thus, there is no resonant peak at [image: ]nor at [image: ] but the latter actually has the wrong dimensions for frequency. Since the output voltage is the same as the voltage across the capacitor, it should have the same frequency as the input, but not necessarily the same phase. Indeed, the capacitor voltage lags behind the current by 90° (see Table 28.1), and the current and input voltage have a phase difference given by Equation 28.13, which in this case is [image: ] So the input and output voltages will differ in phase by [image: ]
The answer is (d). 
ASSESS Specifically, the phase difference between the input and the output is [image: ] where [image: ] As [image: ]the two voltages approach 90° out of phase. Conversely, as [image: ] the two voltages become more and more in phase.

	82.	INTERPRET We are analyzing a filter consisting of an RC circuit.
DEVELOP If the capacitor is replaced by an inductor, the output voltage will now be equal to the voltage across the inductor, which peaks according to
	[image: ]
where we have introduced the term [image: ]
EVALUATE If [image: ]then[image: ] and there's no output voltage. At the other end of the spectrum, [image: ]we have [image: ]which means [image: ]So as opposed to the RC circuit, the LC circuit is a high-pass filter. 
The answer is (b). 
ASSESS Recall the short-term and long-term behavior of RL circuits from Chapter 27. At short times ([image: ]or equivalently [image: ]), the inductor acts like an open circuit, so the input and output terminals are at equal voltage. But over long times ([image: ]or equivalently [image: ]), the inductor begins to behave like a short circuit, so current will flow through the inductor, and there will be no voltage at the output. 
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