106 學年第一學期 普通物理 B 期末考試題

[Wolfson Ch. 15-19] 2018/1/9, 8:20am – 09:50am

(i)答案卷第一張正面為封面。第一張正、反兩面<u>不要寫任何答案</u>。

(ii)依空格號碼順序在第二張<u>正面</u>寫下所有填充題答案,不要寫計算過程。

(iii)依計算題之題號順序在第二張<u>反面</u>以後寫下演算過程與答案,<u>每題從新的一頁寫起</u>。

Constant: gravitational constant g = 9.81 m/s²; ideal gas constant R = 8.31 J/K·mol; Specific heat: iron =447

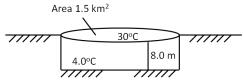
J/kg*K; water = 4180 J/kg*K; ice = 2050 J/kg*K; Thermal conductivity: water = 0.61 W/m*K; Heat of fusion: L_f of water = 334 kJ/kg; Stefan-Boltzmann constant σ = 5.7*10⁻⁸ W/m²*K⁴

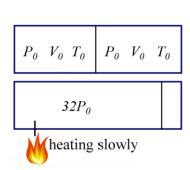
Part I. Filling the blank (5 points per blank)

• A lake with a flat bottom and steep sides has surface area 1.5 km^2 and is 8.0 m deep. On a summer day, the surface water is at 30°C and the bottom water at 4.0°C. What's the rate of heat conduction through the lake? [1] W.

• At what water depth is the pressure two atmospheric pressure? [2] m; What's the pressure at the bottom of the 11-km-deep Marianas Trench, the deepest point in the ocean? [3] Pa; Take atmospheric pressure as 101 kPa and the density of seawater as 1030 kg/m³.

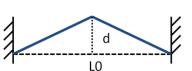
• A 1.0-kg iron tea kettle sits on a 2.2-kW stove burner. If it takes 5.9 mins to bring the kettle and the water in it from 21°C to the boiling point, how much water is in the kettle? [4] kg.


• A rod of length L0 is clamped rigidly at both ends. Its temperature increases by ΔT . Due to thermal expansion, it cracks to form two straight pieces with equal length, as shown in the figure. Find an expression for the distance d shown in the figure, in terms of L0, ΔT , and the linear expansion coefficient α [5].


• A can of height h and cross-sectional area A0 is initially full of water. A small hole of area A1<< A0 is cut in the bottom of the can. Find an expression for the time it takes all the water to drain from the can. (Hint: Call the water depth *y*, use the continuity equation, and integrate) [6].

• A chamber filled with monoatomic ideal gas ($\gamma = 5/3$) has insulating (絕熱的) walls and is divided into two parts by a frictionless insulating piston (活塞). Initially, the two parts have equal volumes V_0 , equal temperatures T_0 and equal pressure P_0 . A small heating bar is inserted on the left part and heat is supplied slowly to the gas on the left until its pressure reaches $32P_0$. As a result, the right part will be compressed adiabatically to $32 P_0$. In terms of V_0 , and P_0 , find (a) The final volume of the **right** part. **[7]** (b) The change of internal energy of the **left**

part. [8] (hint: the change of internal energy $\Delta E_{int} = \frac{3}{2}nR\Delta T$)


- An air conditioner extract heat from the room at a rate of 5 kW, and delivers heat to the outside at a rate of 6 kW. If the electricity cost is 2 dollars/kW·h, what is the total cost if the AC runs for 5 hours [9] dollars.
- 3 atoms are confined in a box. Find the probability that 2 atoms are on the right side of the box as shown in the figure. There is no interaction between the atoms. [10].
- The second law of thermodynamics leads us to conclude that [11]
- (A) The total energy of the universe is constant.
- (B) Disorder in the universe is increasing with the passage of time.
- (C) It is theoretically impossible to convert work into heat with 100% efficiency.

(D) The total energy in the universe is increasing with time.

• 200 g of ice at -10° C is added to 1.0 kg of water at 15°C. When in thermal equilibrium, how much ice is left in the mixture? [12] g.

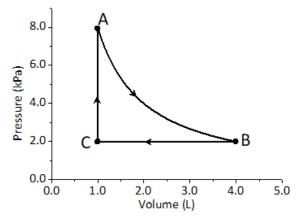
- Which one of the following statements is correct? [13]
 - (A) When we add heat Q to 0°C ice, it melts (融仕) and becomes 0°C water. During this process, its volume decreases. The change of internal energy, E_{int}(water) E_{int}(ice), is less than the heat Q we added.
 - (B) At the same temperature, one mole of hydrogen molecules (H₂) has more kinetic energy (translational + rotational + vibrational) than that of one mole of helium atoms (He).
 - (C) Real gas is more like ideal gas at high temperature and high pressure.
 - (D) When the universe expands, its entropy does not change since it is an isolated system.

• The Sun radiates energy at the rate $P=3.9 \times 10^{26}$ W, and its radius is 7.0×10^8 m. Treating the Sun as a blackbody (e=1). Find its surface temperature. [14] K.

• What is the molar specific heat at constant volume C_v of an ideal gas consisting of 2 moles of O₂ and 3 moles of Ar at room temperature? [15] *R*.

Part II Problems (10 points per problem)

(1**)** A 1.00-kg copper block at 400 K is dropped into 1.00 kg of water at 300 K. The specific heat of copper is 386 J/kg·K and that of water is 4180 J/kg·K. (a) Find the final temperature when the two are in thermal equilibrium. (b) Find the entropy change for the copper and for the water.


[2] Based on four simplifying assumptions in kinetic theory of the ideal gas, and assume N molecules confined in a rectangular box with length L, please deduce following parameters:

- (a) Average Force $\overline{F}_l = \frac{mv_{xi}^2}{L}$ due to the ith molecule by delivering momentum between collisions. v_{xi} is the velocity of the ith molecule along x direction.
- (b) Pressure $p = \frac{mN}{V} \overline{v_x^2}$; m is the mass of one molecule; V is the volume of box; $\overline{v_x^2}$ is the average of the squares

of all the x velocity components of the N molecules.

(c) In order to get PV = NkT; what is the average molecular speed \bar{v} in terms of temperature T? k is Boltzmann's constant.

(3 **)** Monoatomic ideal gas $(C_V = \frac{3}{2}R)$ undergoes a cyclic process $A \rightarrow B \rightarrow C \rightarrow A$ in the *p*–*V* diagram as shown in the figure. Point A (*p* = 8.0 kPa, *V* = 1.0 L) initially has temperature 300 K. The gas undergoes an isothermal process to reach B (*V* = 4.0 L) and is then cooled at constant pressure to C (*V* = 1.0 L). (a) What is the temperature at C? (b) How much heat is absorbed during CA? (CA is a constant-volume process) (c) How much work is done to the gas during one cycle?

Part I Answer Sheet, Note: 有效位數錯誤者, 扣1分。

A [01] 10 B [01] -3.0x10 ⁶ A [02] 110x10 ⁶ B [02] 10 A [03] (A0/A1)(2h/g) ^{1/2} B [03] 110x10 ⁶ A [04] -3.0x10 ⁶ B [04] 2.3 A [05] 5.8x10 ³ B [05] (L0/2)(2\alpha\Delta T + \alpha^2 \Delta T^2)^{1/2}
A [03] $(A0/A1)(2h/g)^{1/2}$ B [03] $110x10^6$ A [04] $-3.0x10^6$ B [04] 2.3 A [05] $5.8x10^3$ B [05] $(L0/2)(2\alpha\Delta T + \alpha^2\Delta T^2)^{1/2}$
A (04) -3.0x10 ⁶ B (04) 2.3 A (05) 5.8x10 ³ B (05) $(L0/2)(2\alpha\Delta T + \alpha^2\Delta T^2)^{1/2}$
A [05] 5.8x10 ³ B [05] $(L0/2)(2\alpha\Delta T + \alpha^2\Delta T^2)^{1/2}$
A F ($(1, 2, 2)$ D F ($(1, 2)$ D ($(1, $
A $[06]$ 2.3 B $[06]$ (A0/A1)(2h/g)^{1/2}
A [07] 24 B [07] (1/8)V ₀
A [08] $(L0/2)(2\alpha\Delta T + \alpha^2\Delta T^2)^{1/2}$ B [08] $(177/2) P_0V_0$ $(177/2) nP_0V_0$ gets
4 points.
A [09] 1.9 B [09] 10
A [10] 10 B [10] 3/8 or 0.375
A [11] 3/8 or 0.375 B [11] B
A [12] B B [12] 24
A [13] B B [13] B
A $[14]$ $(1/8)V_0$ B $[14]$ 5.8x10 ³
A $[15]$ (177/2) P ₀ V ₀ (177/2) nP ₀ V ₀ B $[15]$ 1.9
gets 4 points.

Part II 有效位數錯誤扣 1 分。(One point is taken off for wrong significant figures.)

 $\begin{bmatrix} A1 = B2 \end{bmatrix} (a) : 3 \text{ points (b): } 3 \text{ points, (c): } 4 \text{ points}$ (a) $\overline{F}_{l} = \frac{\Delta p}{\Delta t} = \frac{2mv_{xi}}{2L/v_{xi}} = \frac{mv_{xi}^{2}}{L}$ (b) $p = \frac{\overline{F}}{A} = \frac{\Sigma \overline{F}_{l}}{A} = \frac{\Sigma^{mv_{xi}^{2}}/L}{A} = \frac{mN}{AL} \frac{\Sigma v_{xi}^{2}}{N} = \frac{mN}{V} \overline{v_{x}^{2}}$ (c) $p = \frac{mN}{3V} \overline{v^{2}} = \frac{2}{3} N \left(\frac{1}{2}m\overline{v^{2}}\right) = NkT \rightarrow \frac{1}{2}m\overline{v^{2}} = \frac{3}{2}kT \rightarrow \overline{v} = \sqrt{3kT/m}$

[A2 = B3**]** (a) and (b): 3 points, (c): 4 points, AB and BC each account for 2 points. (a) PV = nRT for BC. Since P is constant, T is proportional to V. $T_C = 300/4 = 75$ K (b) $Q = \Delta E_{int} = nC_V\Delta T = n(3/2)R(T_A-T_C) = (3/2)(P_AV_A-P_CV_C) = (3/2)(8000*1.0*10^{-3}-2000*1.0*10^{-3}) = 9.0$ J (c) AB: $W = \int -pdV = -nRT \int \frac{dV}{V} = -nR \times ln\left(\frac{V_B}{V_A}\right) = -nRT \times ln4 = -P_AV_Aln4 = -8 \times ln4 = -11.1 J$ BC: $W = \int -pdV = -2kPa(V_C - V_B) = -2000 \times (-3.0 \times 10^{-3}) = 6.0 J$ Total work = -11.1+6.0 = -5.1 J, the negative sign means the gas actually does positive work to the environment.

 $\begin{bmatrix} A3 = B1 \end{bmatrix} (a) 5 \text{ points (b) 3 points if only one of } \Delta S_{water} \text{ and } \Delta S_{copper} \text{ is correct, 5 points if both are correct.} \\ (a) <math>T_{final} = \frac{m_1 C_1 T_1 + m_2 C_2 T_2}{m_1 C_1 + m_2 C_2} = \frac{1 \times 4180 \times 300 + 1 \times 386 \times 400}{1 \times 4180 + 1 \times 386} = 308.454 \ K \cong 308 \ K \\ (b) \Delta S_{copper} = \int_{400K}^{T_{final}} \frac{dQ}{T} = mc \int \frac{dT}{T} = mc \times ln \left(\frac{T_{final}}{400K}\right) = 1 \times 386 \times ln \left(\frac{308.454}{400}\right) = -100.32 \cong -100 \frac{J}{K} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 386 \times ln \left(\frac{308}{400}\right) = -100.9 \cong -101 \frac{J}{K} \\ \text{This is also OK.} \\ \Delta S_{water} = \int_{300K}^{T_{final}} \frac{dQ}{T} = mc \int \frac{dT}{T} = mc \times ln \left(\frac{T_{final}}{300K}\right) = 1 \times 4180 \times ln \left(\frac{308.454}{300}\right) = 116.16 \cong 116 \frac{J}{K} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \text{This is also OK.} \\ \frac{M}{M} \\ \text{If one use 308 K from (a), the answer becomes: } 1 \times 4180 \times ln \left(\frac{308}{300}\right) = 110 \frac{J}{K} \\ \frac{M}{M} \\ \frac{M}{M}$

Student calculate the total entropy change, instead of water and copper respectively. It is also OK!