Open book. 寫下詳細的計算過程。

學號:_____

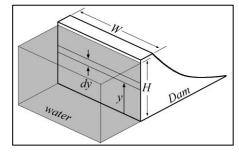
1.

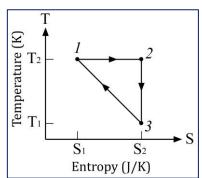
- A dam has a width of W as shown in right figure. The surface of the freshwater behind the dam is filled to a height H of the dam.
 - (a) Find the net horizontal force exerted by the water on the dam.
 - (b) Find the torque exerted by the water about an axis along the bottom of the dam. (20%)

2.

- One mole of a diatomic ideal gas is taken reversibly around the cycle shown in the *T-S* diagram (right figure). The molecules do not rotate or oscillate. Assume that the volume in state 1 is V_1 .
 - (a) Find the heat Q transferred into the gas system for paths $1\rightarrow 2$ and $2\rightarrow 3$, and the full cycle.
 - (b) Find the works done by the gas for the isothermal and adiabatic processes.
 - (c) Find the volumes in state 2 and state 3.
 - (d) Find the change of internal energy ΔU for the full cycle? (40%)

期末考場地分配、考試時間第二次段考相同。





Ans:

(a)

$$p = \frac{dF}{dA} = \rho gh, \text{ where } h = H - y \text{ and } dA = W \cdot dy. \therefore F = \int dF = \int_0^H \rho h(H - y) \cdot W \cdot dy = \frac{1}{2} \rho g W H^2.$$
(b)

$$d\tau = dF \cdot y = \rho gy(H - y) \cdot dA \therefore \tau = \int d\tau = \int_0^H \rho gWy(H - y) \cdot dy = \frac{1}{6}\rho gWH^3.$$

2.

n = 1 and $\gamma = 5/3$.

 $1 \rightarrow 2$ is isothermal at T₂, so $\Delta U = 0 = Q_{12} - W_{12}$. $\Delta S = S_2 - S_1 = Q_{12}/T_2 > 0$, therefore, $Q_{12} = W_{12} > 0$. Gas does positive work W_{12} by adsorbing heat Q_{12} .

2→3: because $\Delta S = 0$, means $Q_{23} = 0$. So 2→3 is adiabatic and $\Delta T < 0$.

Gas does positive work W₂₃.

(a) $\mathbf{Q} = \mathbf{Q}_{12} + \mathbf{Q}_{23} + \mathbf{Q}_{31}$

$$Q_{12}: \Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T} = \frac{1}{T_2} \int_1^2 dQ = \frac{Q_{12}}{T_2}, \text{ so } Q_{12} = T_2(S_2 - S_1)$$

$Q_{23} = 0$

 Q_{31} : dS = dQ/T, so dQ = T×dS and T = M(S - S_2) + T_1, where M = slope = $(T_2 - T_1)/(S_1 - S_2)$. So dQ = $[M(S - S_2) + T_1]$ ×dS

$$Q_{31} = \int_3^1 dQ = \int_3^1 [M(S - S_2) + T_1] \cdot dS = \frac{1}{2}(T_1 + T_2)(S_1 - S_2)$$

 $Q = Q_{12} + Q_{23} + Q_{31} = \frac{1}{2}(T_2 - T_1)(S_2 - S_1)$ = area enclosed by the cycle.

(b) isothermal: $1 \rightarrow 2$, $W_{12} = Q_{12} = T_2(S_2 - S_1) (> 0)$

Adiabatic:
$$2 \rightarrow 3$$
, $W_{23} = \left| \frac{p_3 V_3 - p_2 V_2}{\gamma - 1} \right| = \frac{nR}{\gamma - 1} |T_3 - T_2| = \frac{3R}{2} (T_2 - T_1)$ (> 0)

(c) from (b) $W_{12} = nRT_2ln(V_2/V_1) = T_2(S_2 - S_1)$, where n = 1. So $V_2 = V_1 \cdot exp(\frac{S_2 - S_1}{R})$.

Sine 2 \rightarrow 3 is adiabatic, so $T_2 \cdot V_2^{\gamma-1} = T_3 \cdot V_3^{\gamma-1}$, where $T_3 = T_1$. Therefore, $V_3 = V_2 \cdot (\frac{T_2}{T_1})^{\frac{1}{\gamma-1}} = V_1 \cdot (\frac{T_2}{T_1})^{3/2} \cdot \exp(\frac{S_2 - S_1}{R})$ (d) $\Delta U = Q - W = 0$ for a full cycle.