19-  Chapter 19
The Second Law of Thermodynamics  19-
 	THE SECOND LAW OF THERMODYNAMICS
19


EXERCISES
Sections 19.2 and 19.3 The Second Law of Thermodynamics and Its Applications
	13.	INTERPRET This problem requires us to calculate the efficiency of reversible heat engines that operate between the given temperatures.
DEVELOP The maximum efficiency of a reversible engine, operating between two absolute temperatures, [image: ] is given by Equation 19.3, eCarnot = 1 − Tc/Th. Apply this to each part of this problem to find the corresponding efficiencies.
EVALUATE (a) [image: ]
(b) [image: ]
(c) With room temperature at [image: ]
ASSESS The engine with the largest difference in reservoir temperature has the largest efficiency.
	14.	INTERPRET This problem is an exercise in calculating the thermal efficiency of a heat engine, given the temperature of the hot and cold reservoirs.
DEVELOP Assuming this cosmic heat engine were a reversible engine, its efficiency would be that of a Carnot engine, given by Equation 19.3:
[image: ]
EVALUATE Substituting the values given in the problem, we obtain
[image: ]
ASSESS The engine efficiency is almost 100%. This is too good to be true. 
	15.	INTERPRET This problem involves a reversible Carnot engine that runs between the boiling and melting point of He. We are given the engine’s efficiency and are asked to find the temperature of its cold reservoir (i.e., the melting point of He).
DEVELOP Apply Equation 19.3, which gives the efficiency of a Carnot engine. We are given eCarnot = 0.777 and Th = 4.25 K, so we can solve for Tc, which will be the melting point of He.
EVALUATE The melting point of He is
[image: ]
ASSESS  This agrees with the melting point of He found in the literature, so it seems to be a reasonable result.
	16.	INTERPRET This problem is about a Carnot engine that operates via the Carnot cycle. We are given the thermal energy absorbed per cycle and the work done per cycle by the engine, and we are asked to find its efficiency. 
DEVELOP  By definition, the efficiency of an engine is
[image: ]
where W is the work done by the engine and Qh is heat absorbed from the hot reservoir per cycle. For part (b), the work W is defined as the work done by the gas, so W = 350 J in this case. The heat transferred is Q = Qh − Qc. Because the there is no net change in the internal energy of the engine over a cycle, the first law of thermodynamics gives (note that W in Chapter 19 is defined contrary to W in Chapter 18!)
W = Qh − Qc
For part (c), Equation 19.2 gives 
[image: ]
so we can solve for Th given that Tc = 10°C = 283 K.
EVALUATE (a) From the equation above, the efficiency of the engine is 
[image: ]
(b) The heat rejected each cycle is
[image: ]
(c) The temperature of the hot reservoir is
[image: ]
ASSESS The maximum temperature Th is greater than Tc, as our calculation confirms. Note that Carnot’s theorem applies to the ratio of absolute temperatures.
	17.	INTERPRET We are to find the coefficient of performance of a reversible refrigerator that operates between 0°C and 30°C.
DEVELOP For a refrigerator, the coefficient of performance is given by Equation 19.4, 
[image: ]
Use Equation 19.2, Qc/Qh = Tc/Th to convert this to an expression involving temperature:
[image: ]
which we can solve given that Tc = 0°C = 273 K and Th = 30°C = 303 K.
EVALUATE Inserting the given quantities into the expression for the COP gives
[image: ]
ASSESS Notice that the temperatures are absolute temperatures (i.e., Kelvin).
	18.	INTERPRET This problem requires us to find the work done by a refrigerator to freeze the given quantity of water. The heat of transformation (Chapter 17) is involved in the liquid-to-solid phase change.
DEVELOP The amount of heat that must be extracted in order to freeze the water is (Equation 17.5)
[image: ]
The work consumed by the refrigerator while extracting this heat is given by Equation 19.4, [image: ]
EVALUATE Inserting the given values, we obtain 
[image: ]
ASSESS A COP of 4.2 means that each unit of work can transfer 4.2 units of heat from inside the refrigerator. A smaller COP would mean that more work is required to freeze the water. 
	19.	INTERPRET We want to know if the human body can be considered as a heat engine, which has stringent limits on its efficiency.
DEVELOP If the human body were a heat engine, the maximum efficiency it could attain would be given by the efficiency for a Carnot engine (Equation 19.3): [image: ]
EVALUATE Body temperature is [image: ] So if we assume the ambient temperature is [image: ] the maximum efficiency would be
	[image: ]
So under normal circumstances, the human body is far too efficient at 25% to be a heat engine. 
ASSESS We often say the body "burns" calories, which sounds like it's just releasing random heat from the food we eat. But actually the process is more specific. Energy-storing molecules interact with other molecules to cause precise chemical reactions that result in, for example, a muscle contracting or a neuron producing a current. Not all of the stored energy is converted to useful work, however. Some of it ends up as heat. 
Section 19.4 Entropy and Energy Quality
	20.	INTERPRET This problem requires us to calculate the entropy change involved with melting the given quantity of ice at 0°C.
DEVELOP Because the ice is at 0°C, no temperature change is involved in melting it. Therefore, Equation 19.6 takes the form 
[image: ]
The change in heat is just the latent heat of water, which is given by Equation 17.5 (ΔQ = mLf) and Table 17.1 (Lf = 334 kJ/kg). The temperature is T = 0°C = 273 K.
EVALUATE Inserting the given quantities into the expression for entropy change gives
[image: ]
ASSESS Thus the water has more entropy than the ice, so it has a greater capacity to do work.
	21.	INTERPRET The problem concerns the entropy increase associated with metabolizing a hamburger.
DEVELOP We'll assume the energy in the burger, Q, flows into the body as heat. Therefore, the entropy change from state 1 (burger ingested) and state 2 (burger metabolized) is given by Equation 19.6: [image: ].
EVALUATE The body temperature, [image: ]remains constant throughout, so 
	[image: ]
ASSESS Although we assumed the burger's energy went into heat, the answer would be the same if the body used some of the energy to do work. In either case, the burger's energy is no longer available to do work once it has been metabolized. 
	22.	INTERPRET This problem asks us to calculate the entropy increase upon heating up a given mass of water from 10°C to 95°C.
DEVELOP The change in heat content of the water is given by Equation 16.3, Q = mcΔT, where c = 4.184 kJ/(kg·K) for water (see Table 16.1). For a substance like water with constant specific heat (in this case at constant pressure), we can differentiate this expression to find dQ = mcdT, so (from Equation 19.6) the change in entropy is
[image: ]
The initial and final temperatures are T1 = 10°C = 283 K and T2 = 95°C = 368 K, respectively.
EVALUATE Inserting the given values, we have
[image: ]
to two significant figures.
ASSESS The final entropy of the system has increased.
	23.	INTERPRET This problem requires us to find the mass of a block of lead given its entropy increase associated with its solid-to-liquid phase transition (i.e., melting it). 
DEVELOP The lead starts at its melting-point temperature, so there is no change in temperature associated with the solid-to-liquid phase change. Therefore, Equation 19.6 for entropy change takes the form
[image: ]
The heat change is given by Equation 17.5, ΔQ = mLf, where Lf = 24.7 kJ/kg (see Table 17.1). Insert this into the expression for entropy change and solve for the mass m.
EVALUATE From the above equation, we find the mass of lead to be 
[image: ]
ASSESS As expected, the mass of the block is proportional to the change in entropy.
	24.	INTERPRET We are to find the energy that becomes unavailable during an irreversible isothermal process given the entropy increase.
DEVELOP The energy that becomes unavailable is given by [image: ](see section Entropy and the Availability of Work), where [image: ] is the lowest temperature available to the system. The change in entropy ΔS is [image: ] and the temperature is [image: ]
EVALUATE Inserting the given quantities in the expression for unavailable work gives
[image: ]
ASSESS Since this is an isothermal process, the minimum temperature is the maximum temperature is the temperature.
	25.	INTERPRET We’re asked to find the probability that 6 molecules are distributed in different ways inside a box. This has relevance to the statistical interpretation of entropy.
DEVELOP Considering a single molecule, the probability that it is located on the left-side or the right side of the box is ½. Considering 2 molecules, the probability for one particular left-right arrangement (microstate) is ¼. Another way to say this is that there are 4 different ways to sort the molecules between the two sides. For 6 molecules, there are 26=64 ways to sort, so the probability for one particular arrangement (microstate) is 1/64. We now have to count how many of these microstates match the following macrostates (see Figures 19.18 and 19.19).
EVALUATE  (a) There's only one microstate in which all of the molecules are found on one side of the box, so the probability of this macrostate is 1/64. 
(b) It's a bit harder to find the number of microstates with half the molecules on one side, half on the other. So let's label the molecules A, B, C, D, E, and F, and let's identify a microstate by the 3 molecules on the left-hand side. So for example, (ABC) is the microstate with A, B, C on the left-hand side, and the others on the right. We can switch out C in three different ways: (ABD), (ABE) and (ABF). Similarly we can switch out B in three different ways and switch out A in three different ways. That gives us 10 microstates. We count another 10 microstates if we start with (DEF), and switch out D, then E, then F. The total number is 20 microstates.
So the probability of the macrostate with the molecules split evenly between the sides is 20/64.
ASSESS It is 20 times more likely that the 6 molecules will be spread out evenly between the two sides of the box vs. all on one side. In general, if there are n molecules, the probability that k of them will be on one side and (n–k) on the other side is given by the coefficients from the binomial theorem:
	[image: ]
In the case above, [image: ] and [image: ] so the probability is [image: ]as we found.
PROBLEMS
	26.	INTERPRET This problem is about a Carnot engine, its work, efficiency and power output.
DEVELOP For a cyclic operation, the change in internal energy is zero,[image: ] From the first law of thermodynamics, we have [image: ]Once the work W is known, its efficiency can be obtained as [image: ] For a Carnot engine,[image: ]
EVALUATE  (a) The work done by the engine during each cycle is
	[image: ] 
(b) The efficiency of the engine is
	[image: ]
(c) For a Carnot engine,
	[image: ]
(d) The work from (a) is per cycle, so the mechanical power output of the engine is this divided by the cycle period, which is equivalent to multiplying by the frequency [image: ]:
	[image: ]
ASSESS The cool reservoir temperature is cooler than the hot reservoir temperature [image: ]as expected. And the efficiency can be verified by using Equation 19.3: [image: ]
	27.	INTERPRET This problem requires us to find the thermodynamic efficiency of a nuclear power plant in winter and in summer, when the temperature of its cold reservoir is 0°C and 25°C, respectively.
DEVELOP From Equation 19.3, the thermodynamic efficiency of a Carnot engine is
[image: ]
where the temperatures are in Kelvin.

EVALUATE Inserting the given temperatures for summer and winter gives
[image: ]
[image: ]
ASSESS The plant is more efficient in winter than in summer because there is a greater heat difference. However, as explained in Section 19.3, irreversible processes, transmission losses, etc., make actual efficiencies less than the theoretical maxima.
	28.	INTERPRET You want to calculate the minimum coefficient of performance for a heat pump that's to be installed in a new house.
DEVELOP For a heat pump, what you want is heat, and what you put in is work in the form of electricity, so [image: ]In this case, you are dealing with rates, i.e., the rate that the house needs to be heated, H, and the electric power, P, that the solar voltaic system supplies to the heat pump. The coefficient of performance can therefore be written as [image: ] 
EVALUATE The minimum COP needed to keep the house warm on a cold day is
	[image: ] 
ASSESS This is entirely reasonable for a heat pump. It might seem impossible to obtain more heat energy than you put in, but the heat pump is not generating heat but only "moving" it from outside to inside. (see Figure 19.12).
	29.	INTERPRET This problem involves a nuclear power plant and asks us to calculate the rate of energy extraction, the efficiency, and the highest temperature the plant attains.
DEVELOP From Equation 16.3, [image: ] we see that to raise the temperature of the cooling water by 8.5 K, heat must be exhausted to it at a rate of 
[image: ] 
We take this to be the rate of all the heat rejected by the power plant. Since the rate of work output dW/dt is also given, the heat input to the plant (extracted from its fuel) is
[image: ]
where we have used the first law of thermodynamics (see Problem 19.16). In terms of the rates, the efficiency of the plant is 
[image: ]
If we consider the plant to operate like a Carnot engine, then its highest temperature can be calculated using [image: ] (from Equation 19.2).
EVALUATE (a) Substituting the values given, we obtain
[image: ]
where the negative sign corresponds to the energy being extracted from the fuel.
(b) The plant’s efficiency (from the definition of efficiency in terms of rates) is
[image: ]

(c) With the assumption that the plant operates like an ideal Carnot engine, then
[image: ]
(Note that the energy rate per cycle and the energy rate per second are proportional.) If [image: ] then 
[image: ]
ASSESS The actual highest temperature would be somewhat greater than this, because the actual efficiency is always less than the Carnot efficiency.
	30.	INTERPRET This problem requires us to calculate the efficiency of an electrical power plant, given the temperature of its hot and cold reservoirs. From this, we are to find the power discharged as waste heat and the number of houses we could heat with this waste heat.
DEVELOP The maximum efficiency of the plant as a function of the temperature of its hot and cold reservoirs is given by Equation 19.3
[image: ]
which we are to compare with the actual efficiency which is 
[image: ]
The actual efficiency may also be expressed as e = 1 − Qc/Qh (Equation 19.1). In this chapter, W is defined as the work done by the system (as compared to W in the first law of thermodynamics, Equation 17.1, which is the work done on the system). Thus, W is equal to the net heat, 
[image: ]
where Qc is the heat rejected by the system to the cold reservoir and Qh is the heat absorbed by the system from the hot reservoir. Using this result to eliminate Qh in the expression for the plant’s actual efficiency gives
[image: ]
Differentiating this with respect to time gives the waste power dQc/dt in terms of the power output dW/dt = 800 MW and the actual efficiency of the plant e:
[image: ]
Finally, the number of houses that can be warmed with this waste power is simply the waste power divided by the power requirement of a single house, or 
[image: ]
where Phouse = 18 kW.
EVALUATE (a) The maximum possible efficiency for the power plant is
[image: ]
(b) The waste power is
[image: ]

(c) The number houses that could be heated by the waste power is
[image: ]
ASSESS As expected, the maximum efficiency eCarnot is greater than the actual efficiency e.
	31.	INTERPRET This problem asks us to find the rate (i.e., kg/s) at which all the power plants in the USA use cooling water. We are given the actual efficiency of the power-plants and the temperature rise in the cooling water.
DEVELOP For a cyclic operation, the change in internal energy is zero, [image: ]From the first law of thermodynamics, we have [image: ], where W is the work done by the system (contrary to the definition of     W in Chapter 18), Qh is the heat absorbed by the system, and Qc is the heat rejected by the system. Therefore, the total rate at which heat is exhausted by all the power plants is
[image: ]
The mass rate of flow at which water could absorb this amount of energy, with only a 5°C temperature rise, is
[image: ]
where cwater = 4184 J/(kg·K) (see Table 16.1). This equation can be solved to give the mass rate of cooling water used. 
EVALUATE Solving the equation above for dm/dt, we obtain 
[image: ]
or about 1 Mississippi (a self-explanatory unit of river flow).
ASSESS To absorb the power output of 2 × 1011 W with only an increase of temperature of 5°C, we expect the mass flow rate to be large.
	32.	INTERPRET For this problem, we are to show that the overall efficiency of a two-stage heat engine is the same as a single-stage engine operating between Th and Tc of the two-stage engine.
DEVELOP Let the heat exhausted Qi by the first engine equal the heat input to the second. Then, [image: ] where Qc is the heat exhausted to the environment. For a single-stage engine operating between Th and Tc, the actual efficiency is the total work W1 + W2 divided by Qh, (Equation 19.1), which we can evaluate to compare with the Carnot efficiency of the two-stage engine, which is e = 1 − Tc/Th (Equation 19.3).
EVALUATE The actual efficiency of the single-stage engine is
[image: ]
which is the Carnot efficiency of the two-stage engine.
ASSESS In the last equality, we used Equation 19.2, Tc/Th = Qc/Qh.
	33.	INTERPRET This problem involves finding the COP of a freezer for which the highest and the lowest temperatures are [image: ] and [image: ]. In addition, we are to find how much water at 0°C the freezer can freeze in one hour.
DEVELOP The coefficient of performance (COP) of a reversible freezer is given by Equation 19.4:
[image: ]
where we have used Equation 19.2, Tc/Th = Qc/Qh for the last equality. Once the COP is known, we can solve for Qc and the amount of water the freezer can freeze in one hour, which is [image: ] with Lf = 334 kJ/kg (see Equation 17.5 and Table 17.1).
EVALUATE (a) The COP of the freezer is
[image: ]
(b) The heat rejected in one hour is [image: ], so the water we can freeze is
[image: ]
ASSESS Typical freezers have a COP lower than 8.53. Thus, more electrical energy is needed to freeze the same amount of water.
	34.	INTERPRET We are to use an energy-flow diagram to analyze whether using a refrigerator to cool the low-temperature reservoir of a Carnot can increase its overall efficiency.
DEVELOP In order to lower the temperature of the cold reservoir, the combination must remove more heat from the cold reservoir than it puts into the reservoir. Since both the engine and the refrigerator are at the Carnot efficiency, they are reversible.
EVALUATE As shown in the figure below, the best that this can do is zero work output while the temperatures stay the same. If the temperature of the cold reservoir is to become lower, then the heat extracted from the cold reservoir must be larger, which will require more work than the engine produces.
[image: ]
ASSESS Might as well do nothing at all!
	35.	INTERPRET This problem requires us to find the monthly cost of using all the incoming electrical energy to power a heat pump with COP = 3.1 to heat a house. We are given that the electrical energy costs $180 per month in the winter.
DEVELOP The same electrical energy W used for direct conversion in electric heating would produce heat [image: ]. Using Equation 19.4 allows us to express this as
[image: ]
Thus, the heat pump can produce a factor COP more heat than if the electrical energy is converted directly to heat.
EVALUATE Because the heat pump is a factor COP more efficient, the cost will be reduced by this same factor, so the monthly heating bill would be
[image: ] 
ASSESS The savings are significant, which is why electrical heating is not recommended.
	36.	INTERPRET This problem requires us to find the power needed to run a refrigerator that leaks heat at the given rate to its cold reservoir (i.e., the environment). The refrigerator operates as a reversible heat engine, so we know its COP.
DEVELOP The rate at which heat leaks from the refrigerator is [image: ]. For a reversible refrigerator, the COP is given by Equation 19.4: 
[image: ]
Differentiating this expression with respect to time gives the power needed to run the refrigerator.
EVALUATE The power needed to run the refrigerator is
[image: ]
ASSESS The cooling capacity of the refrigerator is not given, so 340 W is the minimum heat leakage, which means that this power is the minimum power required to run the refrigerator.

	37.	INTERPRET We are to find the minimum COP required to save money if we switch from an oil furnace to an electrically powered heat pump, considering the cost of oil and of electricity. We will do this by calculating the cost of the heat delivered by both the oil-burning heater and the electric heat pump.
DEVELOP The coefficient of performance (COP) is the relationship between the heat sent to the cold reservoir and the work done. Set the heat Qc to be the same for both heating mechanisms, and solve for COP. The cost of oil is [image: ] and the cost of electricity is [image: ] The heat delivered is
[image: ]
(see derivation of Equation 19.4), and we are paying for the work done, so the COP must exceed the ratio of the costs (COP > $electric/$oil).
EVALUATE The COP must satisfy 
COP > $electric/$oil = 2.83
So in order to be cost-effective, the heat pump must have a COP of greater than 2.83.
ASSESS Most heat pumps have a COP much higher than this value, so it’s probably a good idea to switch.
	38.	INTERPRET For this problem, we are to show that the Clausius statement (i.e., the second law of thermodynamics) would be violated by the existence of a perfect heat engine, which would allow the construction of a perfect refrigerator.
DEVELOP If it were possible to construct a perfect heat engine (one which would extract heat and perform an equivalent amount of work), then it could be coupled to a real refrigerator in such a way that the work output of the engine equals the work input to the refrigerator, as shown in the figure below.
[image: ]
EVALUATE The net effect of this arrangement is to produce a perfect refrigerator (a cyclic device whose sole effect is the transfer of heat, [image: ] from a cold reservoir to a hot one), in violation of the Clausius statement of the second law.
ASSESS This completes the proof of the equivalence of the Kelvin-Planck and Clausius statements in Section 19.2.
	39.	INTERPRET We are asked to find the COP, power usage, and operating cost compared to that of an oil-burning heater of a heat pump. We will assume that the heat pump is a Carnot heat pump.
DEVELOP The maximum COP of a heat pump (when its heating, not cooling) is given in Equation 19.4b: [image: ] In this case, [image: ] and [image: ] In general, the COP for a heat pump is the heat supplied divided by the work input. In terms of rates, that can be written as [image: ]where H is the supplied heat rate and P is the electric power consumption. 
EVALUATE  (a) Assuming the heat pump is maximally efficient, 
	[image: ] 
(b) The power consumption needed to supply heat at 20 kW is
	[image: ]
(c) Given the utility rate for electric power, the heat pump's hourly operating cost is
	[image: ]
In comparison, an oil furnace, supplying the same heat, would have an hourly operating cost of 
	[image: ]
ASSESS The cost per kWh of oil is actually less than that of electricity: [image: ]But the heat pump has such a high COP that it cost three times less to heat the house.
	40.	INTERPRET This problem involves a reversible engine that contains a given volume of monatomic gas. The system goes through the four thermodynamics processes indicated in the problem statement, and we are to find net work done by the system and the net heat added to the system over a complete cycle, and the engine’s efficiency as defined by the ratio of the work done by the engine to the heat absorbed over a complete cycle.
DEVELOP The pV diagram for the cycle is as shown below. Let us calculate the work and heat absorbed for each stage of the cycle. For the isothermal expansion AB the change in internal energy of the system is zero (ΔU = 0), so the first law of thermodynamics gives
[image: ]
where QAB is the heat absorbed and WAB is the work done by the system (note that this definition of W is contrary to the definition used in Chapter 18). The second equality above is from Equation 18.4. For the isovolumic cooling BC, the volume does not change so no work is done. The heat absorbed is given by Equation 18.5 and 18.13, which give
[image: ]
For the isothermal compression CD,
[image: ]
and for the isovolumic heating DA, 
[image: ]
For these processes, we are given that [image: ] and [image: ], so we can sum up the contributions to work and heat to find the total for each for a complete cycle.
[image: ]
EVALUATE (a) The net heat added to the system is
[image: ]
The net work done by the system is
[image: ]
(b) The ratio of the work done to the heat absorbed is
[image: ]
ASSESS A Carnot engine operating between [image: ] and [image: ] has efficiency 1 − 300/600 = 50%. This is not a contradiction of Carnot’s theorem, because the engine in this problem does not absorb and exhaust heat at constant temperatures.
	41.	INTERPRET Our engine cycle consists of four paths, two of which are isochoric and two of which are isobaric. We are to determine the efficiency, defined as the work done per unit heat absorbed, and compare the result with the efficiency of a Carnot engine operating between the same temperatures. Finally, we need to explain any difference between the two efficiencies.
DEVELOP Label the states in Fig. 19.22 A, B, C, and D going clockwise from the upper left corner. The work done and the heat absorbed during the isobaric segments AB and CD are
[image: ] 
and
[image: ]
where we have assumed an ideal monatomic gas (see Equation 18.13).
For the isochoric segments, we have 
[image: ]
and [image: ] The net heat added for one cycle is therefore
[image: ]
and the net work done is [image: ]. Note that the first law of thermodynamics, applied to a cyclic process, requires that W = Q when using the definition that W is the work done by the system (which is opposite to the definition used in Chapter 18).
EVALUATE (a) Since the heat absorbed is [image: ] the efficiency is 
[image: ]
(b) The maximum and minimum temperatures are [image: ] and [image: ] so the efficiency of a Carnot engine operating between these temperatures is
[image: ]
This is not a contradiction of Carnot’s theorem, because the given engine does not operate between two heat reservoirs at fixed temperatures.
ASSESS The efficiency of a real engine is always less or equal to that of a Carnot engine. 
	42.	INTERPRET For the given Carnot cycle, we are to find the heat absorbed, the heat rejected, and the work done per cycle. We are then to find the efficiency of the engine and the maximum and minimum temperatures, and show that the efficiency as given in Equation 19.1 equates to the Carnot efficiency of Equation 19.3.
DEVELOP See Figure 19.5 and the accompanying discussion of the Carnot engine. The heat absorbed is in the isothermal expansion is 
[image: ]
where we have used the ideal-gas law (Equation 17.2) pV = nRT for the last equality, state A = (8.000 atm, 1.000 L), and state B = (4.000 atm, 2.000 L). The heat rejected during isothermal compression is
[image: ]
where state C = (2.050 atm, 3.224 L) and state D = (4.100 atm, 1.612 L). Because the internal energy of the engine does not change, ΔU = 0, so the first law of thermodynamics states that
[image: ]
where W is the work done by the system. From these results, we can calculate the efficiency using Equation 19.1, e = W/Qh. The maximum and minimum temperatures may be found from the ideal-gas law (Equation 17.2), 
[image: ]
EVALUATE (a) The heat absorbed is
[image: ]
(b) The heat rejected is
[image: ]
(c) The work done by the engine is
[image: ]
(d) The efficiency is
[image: ]
(e) The maximum and minimum temperatures are
[image: ]
to two significant figures. The Carnot efficiency is thus
[image: ]
which is the same result as for part (d).
ASSESS For a Carnot engine, the actual efficiency is the Carnot efficiency.
These imply a Carnot efficiency of[image: ]exactly as before. Equation 19.1 and Equation 19.3 are identical because[image: ]explicitly.
	43.	INTERPRET This problem is about the increase in entropy as the ice is melted and heated up.
DEVELOP The entropy increase is given by Equation 19.6: [image: ].We consider the entropy increase in two steps. First, the heat needed to melt the lake ice is [image: ]where [image: ]from Table 17.1. The temperature is constant during the melting, [image: ] In the second step, the heat input raises the water temperature according to [image: ]where [image: ]from Table 16.1. Here, the temperature is not constant, so we will have to integrate.
EVALUATE The entropy increase during melting is
	[image: ] 
The entropy increase during warming is
	[image: ]
So the total entropy increase is
	[image: ]
ASSESS As expected, the entropy change is positive in both melting and warming processes.
	44.	INTERPRET You want to know the rate at which your body's entropy increases during normal metabolism. 
DEVELOP The normal calorie intake is about 2000 kcal/day for women and about 2500 kcal/day for men. We'll split the difference and assume a metabolic rate of 2250 kcal/day. Temperature of metabolism rate (or basal metabolic rate) for males is about 1300 kcal/day and for females is about 1200 kcal/day. Q flows into the body as heat. Therefore, the entropy change from state 1 (burger ingested) and state 2 (burger metabolized) is given by Equation 19.6: [image: ].
EVALUATE The body consumes food energy and converts it to work and heat at a constant body temperature of [image: ] so the rate of entropy increase is 
	[image: ]
ASSESS One could say this is the rate at which we create disorder. 
	45.	INTERPRET We are to derive the formula given in the problem statement that describes the entropy change for n moles of an ideal gas that undergoes an isovolumic temperature change from T1 to T2.
DEVELOP From the first law of thermodynamics [image: ] and the properties of an ideal gas [image: ] an infinitesimal entropy change is
[image: ]
Integrate from state 1 [image: ] to state 2 [image: ] and apply the isovolumic constraint to obtain the given formula.
EVALUATE Integrating the expression above gives
[image: ]
For an isovolumic process V1 = V2 so [image: ]
ASSESS Of course, we could have started with [image: ]at constant volume, but we wanted to display[image: ]for a general ideal-gas process, for use in other problems.
	46.	INTERPRET  We are to derive the formula given in the problem statement that describes the entropy change for n moles of an ideal gas that undergoes an isobaric temperature change from T1 to T2.
DEVELOP From the first law of thermodynamics [image: ] and the properties of an ideal gas [image: ] an infinitesimal entropy change is
[image: ]
Integrate from state 1 [image: ] to state 2 [image: ] and use Equation 18.9, CP = CV + R, to obtain the given formula. Note that when the pressure is constant, the ideal-gas law gives [image: ].
EVALUATE Substituting the second equation into the first one yields 
[image: ]
ASSESS The same expression can also be obtained by using [image: ] at constant pressure. Note that [image: ] if [image: ] as expected.
	47.	INTERPRET This problem involves the entropy change in an ideal diatomic gas heated under three different conditions: constant volume, constant pressure, and adiabatically.
DEVELOP From Problem 19.45, the entropy change at constant volume is [image: ], where CV = 5R/2 for a diatomic gas (see discussion after Equation 18.13). From Problem 19.46, the entropy change at constant pressure is
[image: ]
For an adiabatic process, consider the discussion accompanying Figure 19.16. The entropy change is
[image: ]
where we have used the relation for an adiabatic process [image: ] (Equation 18.11b). For a diatomic gas, 
[image: ]
EVALUATE (a) At constant volume, the entropy change is
[image: ]

(b) At constant pressure, the entropy change is
[image: ]
(c) For an adiabatic process, the entropy change is
[image: ]
ASSESS For the adiabatic process, the final volume is less than the initial volume because the final temperature is greater than the initial temperature (see, e.g., Table 18.1), so the entropy decreases, in agreement with the result of the discussion of Figure 19.16.
	48.	INTERPRET This problem involves the entropy change that results from mixing the given amount of hot and cold water. We are to find the entropy change for the hot water, the cold water, and the entire system.
DEVELOP When mixing two liquids that are initially at different temperatures, the thermal energy change in both liquids must be the same, assuming all the thermal energy lost by the hot liquid is gained by the cold liquid. Thus, 
[image: ]
For this problem, mhot = mcold and chot = ccold, because the hot and cold liquids are both water. Thus,
[image: ]
Because the equilibrium temperature of the mixed liquid is the same for the (previously) hot and cold portions, we also have
[image: ]
Combined with the previous expression gives ΔTcold = − ΔThot = 35 K and the equilibrium temperature is Tcold + ΔTcold = (10°C + 273 K) + 35 K = 318 K. For this problem, the entropy change given by Equation 19.6 takes the form
[image: ]
From the argument above, we have dQ = mcdT, so Equation 19.6 gives
[image: ]
where m = 0.250 kg and c = 4184 J/kg, so we can solve for the entropy change for each case.
EVALUATE (a) For the hot water, T1 = 353 K and T2 = 318 K, so the entropy change is
[image: ]
(b) For the cold water, T1 = 283 K and T2 = 318 K, so the entropy change is
[image: ]
(c) The total entropy change is the sum of these two, so
[image: ]
ASSESS Note that the results are given to three significant figures because we assumed the data were valid to three significant figures. The total entropy of the system has increased, which conforms with the second law of thermodynamics. 
	49.	INTERPRET You want to find the entropy change in going from one state to another state that lie on the same adiabat. 
DEVELOP We're told that the system goes from state[image: ] to state [image: ]where the two states are related by the adiabatic equation: [image: ]Our first inclination would be that the entropy change would be zero, since there is no heat exchange in the adiabatic process that connects these two states. However, we're told that the system goes between the two states in two segments: one a constant pressure process (going from [image: ] to [image: ]) and the other a constant volume process (going from [image: ] to [image: ]). See the figure below.
[image: ]
This is an ideal gas, so the temperatures of the three endpoints are: [image: ] [image: ]and [image: ] From Table 18.1, the differential heat flows for these two processes are:
	[image: ]
Recall that [image: ] 
EVALUATE For the constant pressure process, the entropy change is
	[image: ]
For the constant volume process, the entropy change is
	[image: ]
The total entropy is the sum:
	[image: ]
where we have used the mathematical identity: [image: ] The total entropy change is zero as we expected, since the system could have gone from state 1 to state 2 by an adiabatic process for which [image: ] 
ASSESS As explained in the text, the entropy is a state variable, which doesn't depend on how a system arrived at a particular state. Note that this separates entropy from the heat, Q, absorbed or expelled by a system. You can't say that a system contains a particular amount of heat, but you can say that it contains a particular amount of entropy.
	50.	INTERPRET This problem asks about the energy quality resulting from a thermodynamic process (an adiabatic free expansion in this case) during which entropy has increased. The system consists of a given quantity of ideal gas, and we are given the initial and final volume occupied by the gas.

DEVELOP From the discussion accompanying Figure 19.16, we know that the change in entropy during the adiabatic free expansion is
[image: ]
where V2 = 10V1. The energy made unavailable is[image: ]
EVALUATE Substituting the values given in the problem statement, the energy that becomes unavailable to do work in the free expansion of an ideal gas (T remains constant), is
[image: ]
ASSESS This is the work that could have been recovered from a reversible isothermal expansion. However, due to the irreversible nature of the process, we give up the possibility of extracting this work.
	51.	INTERPRET This problem asks for the entropy change of the pan-water system, when thermal equilibrium has been reached after a hot pan has been plunged into the given amount of cold water.
DEVELOP Assume all the heat lost by the pan is gained by the water. The equilibrium temperature is given by Equation 16.4, or
[image: ]
Using the result of Exercise 48, the change in entropy for the pan is
[image: ]
Similarly, the change in entropy for the water is
[image: ]
The sum of these two terms is the change of entropy of the pan-water system.
EVALUATE The entropy change of the pan and water together is 
[image: ]
to two significant figures.
ASSESS The entropy change for the pan is negative, while that of the water is positive. The total entropy change is positive, in accordance with the second law of thermodynamics.
	52.	INTERPRET This problem is about the efficiency of an engine operating between two temperatures.
DEVELOP We assume the engine is reversible and operates between the two given temperatures (Th = 420 K and Tc = 273 K). The efficiency can then be computed using Equation 19.3, [image: ].
EVALUATE (a) Substituting the values given in the problem statement, we find the efficiency to be 
[image: ]
(b) The total heat the block of ice can absorb as it melts at 273 K is
[image: ]
Then the melt-water temperature will rise and the engine’s efficiency will drop. While running at the original efficiency, the engine exhausts heat at the rate 
[image: ]
(combine the first law with the definition of efficiency). Thus, it can operate between the original temperatures for a time 
[image: ]
ASSESS For real engines in which [image: ] heat is exhausted at a greater rate. This shortens the duration for which the engine can maintain its efficiency.
	53.	INTERPRET We will calculate the efficiency of the Otto cycle, on which gasoline engines are modeled. 
DEVELOP The engine absorbs heat [image: ]during combustion, and expels heat to the environment [image: ]during the exhaust segment. Both these processes are at constant volume, so [image: ]and the efficiency is:
	[image: ]
We can find the respective temperature changes assuming the gas mixture in the engine is ideal: [image: ] 
EVALUATE  (a) The hot temperature change is between point 2 and point 3 in Figure 19.24:
	[image: ]
where we use the values for the pressure and volume given in the figure. The cold temperature change is between point 1 and point 4 in the figure, but the pressures aren't given in this case. However, point 1 and point 2 are on the same adiabat [image: ], so: [image: ]and similarly for point 4 and point 3: [image: ] Therefore, the cold temperature change can be written:
	[image: ]
From these temperature changes, the efficiency of the Otto cycle is:
	[image: ]
(b) The minimum temperature occurs at point 1 at the end of the exhaust segment:
	[image: ]
The maximum temperature occurs at point 3 at the end of combustion:
	[image: ]
(c) A Carnot cycle working between minimum and maximum temperatures would have an efficiency of (Equation 19.3):
	[image: ]
So, the Carnot cycle efficiency is greater than that of the Otto cycle: [image: ]as we'd expect since the Carnot cycle has the maximum efficiency for an engine.
ASSESS If we assume [image: ]just for argument sake, then [image: ] while [image: ] In this light, gasoline engines are woefully inefficient. Much of the combustion energy is lost as exhaust heat. 
	54.	INTERPRET This problem is about the efficiency of the Otto cycle as a function of the compression ratio. 
DEVELOP As argued in the previous problem, the efficiency of the Otto cycle is: [image: ]We will write this in terms of the compression ratio, [image: ]where [image: ] and [image: ] are the volumes before and after the adiabatic compression in Figure 19.24. In this case [image: ]but we'll derive the expression for the general case first.
EVALUATE The hot temperature change is between point 2 and point 3 in the figure:
	[image: ]
The cold temperature change is between point 1 and point 4 in the figure:
	[image: ]
Since [image: ]for points 1 and 2 and for points 3 and 4, we have [image: ]and [image: ] Therefore, the efficiency reduces to 
	[image: ]
ASSESS Since the efficiency increases for larger r, one might assume engineers would try to maximize the compression ratio. In practice, however, the compression ratio cannot be too large, otherwise the fuel pre-ignites, which results in "knocking" that reduces engine performance. 


	55.	INTERPRET Find the maximum efficiency of a power plant, given the temperature range of its cycle. We will calculate the Carnot efficiency, and compare this with the actual efficiency.
DEVELOP The high temperature[image: ]The low temperature is[image: ]The Carnot efficiency is given by[image: ]
EVALUATE The maximum efficiency is[image: ]
ASSESS The actual efficiency of this plant is given as 25%, which is considerably lower due (at least in part) to having to evaporate moisture out of the wood-chip fuel.
	56.	INTERPRET We are to find the final temperature and entropy change for a system in which two objects at different temperatures are brought into thermal contact and allowed to come to thermal equilibrium.
DEVELOP To find the final temperature, use Equation 16.4, which may be expressed as
[image: ]
The entropy change is [image: ] (Equation 19.6), so we can integrate to find the change in entropy for the water and for the copper. The initial temperature and the mass of the copper are [image: ] and [image: ] The initial temperature and the mass of the water are [image: ] and [image: ] The specific heats cW and cCu can be found in Table 16.1.
EVALUATE (a) Inserting the given quantities gives
[image: ]
(b) The change in entropy for the water and copper are, respectively:
[image: ]
[image: ]
The total change in entropy is [image: ].
ASSESS The entropy of the copper actually decreases, but this decrease is more than offset by the increase in entropy of the water. This is an irreversible process, and entropy always increases in irreversible processes.
	57.	INTERPRET We are asked to calculate the entropy change in an object whose heat capacity is inversely proportional to its temperature. 
DEVELOP By definition, the heat capacity relates the heat flowing into an object to the change in its temperature: [image: ]In this case, [image: ]We can plug this into Equation 19.6 for the entropy change: [image: ]
EVALUATE Performing the integration from [image: ] to [image: ]:
	[image: ]
ASSESS For [image: ] the entropy change is positive. For [image: ]the entropy change becomes constant: [image: ]
	58.	INTERPRET This problem deals with a Carnot engine for which the temperature of the heat reservoir varies with time. We are to express instantaneous temperature of the hot reservoir as a function of time and find the time it takes for the engine’s power to reach zero. 
DEVELOP In time dt, the engine extracts heat [image: ] from the block, and does work dW = Pdt. Equation 19.1 gives the definition of the actual efficiency e: 
[image: ]
where for the second equality we have used e = eCarnot = 1 − Tc/Th. The power is also assumed to be proportional to Th − Tc, so this equation becomes
[image: ]
Integrating this expression yields Th as a function of time t. For (b), note that the power output becomes zero when Th = Tc.

EVALUATE (a) Integrating from t = 0 and Th0 to t and Th gives
[image: ]
or 
[image: ]
(b) The power output is zero for Th = Tc. This occurs at time 
[image: ]
ASSESS We find the instantaneous temperature of the hot block to decrease exponentially with time. At t = 0, [image: ] However, for [image: ] Th becomes very small. Note that the expression for[image: ]was originally assumed to be valid for [image: ] or for times [image: ] If we allow [image: ] then [image: ] becomes work input to an “engine” which acts like a refrigerator that cools the block.
	59.	INTERPRET You have an infinite heat reservoir, but a finite cool reservoir. The question is how much work can you obtain with an engine placed between the reservoirs before the cool reservoir is "exhausted." 
DEVELOP The infinite heat reservoir will maintain its temperature, [image: ]no matter how much heat, [image: ] you extract from it. The cool reservoir, on the other hand, will not maintain its initial temperature, [image: ]as heat from the engine is expelled into it. The temperature will rise in the cool reservoir according to [image: ] But once the cool reservoir temperature is equal to [image: ]no more work can be extracted.
EVALUATE You can assume that the engine cycles fast enough that during a single cycle the cool reservoir temperature is approximately constant. To maximize the amount of work that you extract, place a Carnot engine between the reservoirs so that the work extracted during one cycle is:
	[image: ]
where [image: ] for a Carnot engine. To find the total work, integrate this expression from [image: ] to [image: ]
	[image: ]
If we let [image: ]then [image: ]
ASSESS The work is proportional to the heat capacity, as you might expect. The heat capacity is a measure of how much heat the cool reservoir can accept, so the larger the heat capacity, the more work that can be extracted. You might worry that the work could be negative for some value of [image: ] For [image: ]the work is approximately [image: ] which is positive. For [image: ] [image: ]and the work is approximately [image: ]which is positive as well. Therefore, the work extracted is positive for all possible temperature differences.
	60.	INTERPRET You want to know how much the temperature of a river will increase when heat exhaust from a power plant is absorbed by the water. 
DEVELOP Since the plant has an efficiency of [image: ] the rate at which it is generating waste heat must be:
	[image: ]
where the dots here signify that these are rates, e.g. [image: ] The rate at which water is flowing past the plant is given by the volume rate: [image: ] To better understand how the heat flows into the flowing water, it might help to "freeze" both flows and just imagine what is happening over a short period of time, [image: ]In this case, the plant expels a finite amount of heat, [image: ]into a volume of water [image: ]See the figure below.
[image: ]
This volume of water will rise in temperature according to: [image: ]where [image: ]is the density of water and c is the specific heat. You can use the equations formulated here to check that the temperature rise is below the environmental regulation.
EVALUATE Solving for the temperature change of the water:
	[image: ]
The temperature rise is below the regulated limit.
ASSESS The river makes for a good reservoir, since the flow will constantly bring cool water that has yet to be heated by the plant's exhaust.
	61.	INTERPRET We're asked to find the entropy change when hot and cold water are mixed together. Since the hot and cold water can't be unmixed, Equation 19.6 doesn't apply directly, but you can find a reversible process that mimics this irreversible mixing. 
DEVELOP Before mixing, imagine cooling the hot water and warming the cold water until they are both at [image: ]which is the final temperature when the water volumes are irreversible mixed. After the temperatures are equilibrated, the two water samples can simply be added together. This is a reversible process, since we could easily divide the mixed water in half and re-warm one sample and re-cool the other to the original temperatures. But as the final state is the same as in the irreversible mixing case, we claim that the entropy change applies to both system paths.
EVALUATE The differential heat flow in both the warming and cooling processes is [image: ]The entropy change, therefore, in cooling the hot water from [image: ] to [image: ] is
	[image: ]
Similarly, the entropy change in warming the cold water from [image: ] to [image: ] is
	[image: ]

Adding these entropy changes together for the total gives:
	[image: ]
This is positive when [image: ] or equivalently when [image: ]Since the sample masses are equal, the final temperature will be at the midpoint between the temperature extremes: [image: ]Therefore, 
	[image: ]
This shows that the total entropy change is positive, as we would expect.
ASSESS Using the final equation above, we can rewrite the total entropy as:
	[image: ]
What this shows is that for a given [image: ] the entropy change will be greater the smaller that [image: ] is. In other words, the entropy change is greater when the initial temperature difference is made greater. This is what we would expect.
	62.	INTERPRET We are to find the change in entropy for a sample of copper at low temperatures, where the specific heat changes with temperature.
DEVELOP The specific heat of copper at low temperatures is given as [image: ] From Equation 19.6, we have [image: ]and from Equation 16.3 we have [image: ] We find the change in entropy by integrating from T1 = 25 K to T2 = 10 K. The mass of the copper is m = 40 g.
EVALUATE 
[image: ]
ASSESS This change is negative because the temperature goes down. To satisfy the second law of thermodynamics, somewhere in this cooling process, the entropy of something else must have gone up by more than 0.15 J/kg.
	63.	INTERPRET We are to find the entropy change for a sample of gas with the given temperature change, where the specific heat of the gas changes with temperature.
DEVELOP We are given an equation for the molar specific heat: [image: ] where [image: ] [image: ] and [image: ] The amount of gas is 2 moles, and the temperature changes from [image: ] to [image: ] From the definition of the molar specific heat (see discussion preceding Equation 18.3), Q = nCpΔT, which we use to express the heat change in terms of temperature and specific heat. Insert this into Equation 19.6 to find the entropy change.
EVALUATE 
[image: ]
ASSESS The entropy increases as the temperature increases, as we would expect.
	64.	INTERPRET We're asked to consider the statistics of N molecules distributed among two halves of a closed box. This is the general case of Figures 19.18 and 19.19, as well as Problem 19.25. 
DEVELOP The molecules have equal probability of being in the left-side or right-side of the box. If each molecule were different from the rest, then we could distinguish each arrangement (or microstate) of the molecules in the box. But the molecules are identical, so they can be switched (or permutated), and the overall macrostate will be the same.
EVALUATE  (a) Let's assume that [image: ] is the number of microstates for N molecules. If we now add one more molecule to the box, then for each of the [image: ]microstates, the new molecule can either be put in the left-hand or right-hand side of the box. That means the new number of microstates is [image: ]. Since a single molecule in the box has [image: ] microstates, the number of microstates for any N must be [image: ] 
(b) Of the 2N microstates, we'll call [image: ]the number that have half of the molecules on one side of the box. We showed in Problem 19.25 for N=6 how one can do permutations of the molecules to find all the combinations where the molecules are split equally between the two sides. For any even N, the number of combinations that will have N/2 on one side of the box is given by the coefficients from the binomial theorem:
	[image: ]
(c) The probability of a given macrostate is the number microstates that match the macrostate divided by the total number of microstates. So, the probability of having an equal number of molecules on each side of the box is:
	[image: ]
There's only one microstate with all of the particles on one side of the box [image: ]so the ratio of these probabilities is:
	[image: ]
(d) For N=4, this probability ratio is
	[image: ]
For N=100, the factorials become unwieldy. We can use Stirling's approximation for large n: [image: ]
	[image: ]
So the probability ratio is approximately
	[image: ]
ASSESS This says that for 100 molecules, it's 1030 times more likely that the molecules will be evenly distributed in the box versus all of them on one side. One can imagine how impossible it would be for a room full of 1023 molecules to suddenly evacuate one side for the other. 

	65.	INTERPRET We will consider the energy consumption of a typical refrigerator.
DEVELOP To get a sense of how the refrigerator works, we can look at Figure 19.6. In the course of a day, an amount of heat, [image: ] is drawn from the fridge's cold interior. But this requires work to be done, [image: ] Specifically, electricity is needed to pump refrigerant through the system.
EVALUATE Both the heat drawn from the fridge interior and the work done by the electrical energy are expelled as heat: [image: ] So, the work effectively ends up as waste heat rejected to the kitchen environment.
The answer is (d).
ASSESS This might sound wasteful: turning high quality electrical energy into heat that gets dumped out of the backside of your fridge. But according to Clausius' statement of the second law of thermodynamics, it's impossible to construct a perfect refrigerator whose sole effect is to transfer heat from a cooler object to a hotter one. An external energy source is needed. However, it's not necessary to use electrical energy. For example, solar refrigerators use sunlight to evaporate water and thus draw heat from the fridge interior. 
	66.	INTERPRET We will consider the energy consumption of a typical refrigerator.
DEVELOP The COP for a refrigerator is defined as what we want (heat drawn from fridge contents) divided by what we put in (work from electricity), i.e., [image: ]
EVALUATE We're told that it takes 10 MJ of electrical energy to draw 30 MJ of heat from the fridge contents, so [image: ]
The answer is (c).
ASSESS This is a typical COP for a refrigerator. However, refrigerators are often rated not by COP, but by the average amount of electrical energy, W, they use in a year. Guidelines are adjusted for the volume of the fridge interior, which is easier to measure than, say, the amount of heat drawn from the fridge contents, which probably varies widely. 
	67.	INTERPRET We will consider the energy consumption of a typical refrigerator.
DEVELOP We're told the coal-fired power plant has an efficiency of [image: ] In contrast to the COP, the efficiency is defined as what we want (electrical energy to do work) divided by what we put in (heat from the burning of coal), i.e., [image: ]
EVALUATE To make 10 MJ of electrical energy, the power plant has to burn enough fuel to generate [image: ]
The answer is (b).
ASSESS Notice what this says: it takes 25 MJ of heat from coal burning to extract 30 MJ of heat from the fridge contents.


	68.	INTERPRET We will consider the energy consumption of a typical refrigerator.
DEVELOP As we argued in Problem 16.5, the heat drawn from the fridge interior and the work from the electricity are both expelled as heat into the relatively warmer environment: [image: ]
EVALUATE Over the course of a day, the refrigerator expels [image: ]of heat into the surrounding kitchen.
The answer is (c).
ASSESS It might be interesting to compare this to the waste heat expelled by the power plant in order to supply the 10 MJ of electricity the refrigerator needs. In the plant's case, the exhaust is [image: ]
19-
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
image367.png

image265.png

image286.png

image270.png

image256.png

image307.png

image298.png

image313.png

image309.png

image301.png

image291.png

image368.png

image296.png

image297.png

image308.png

image299.png

image224.png

image233.png

image235.png

image239.png

image219.png

image223.png

image359.png

image205.png

image218.png

image217.png

image214.png

image264.png

image255.png

image241.png

image280.png

image258.png

image242.png

image370.png

image232.png

image245.png

image251.png

image247.png

image155.png

image175.png

image173.png

image177.png

image141.png

image152.png

image362.png

image163.png

image161.png

image159.png

image211.png

image187.png

image194.png

image196.png

image200.png

image206.png

image178.png

image361.png

image171.png

image174.png

image102.png

image97.png

image116.png

image123.png

image113.png

image111.png

image85.png

image101.png

image363.png

image165.png

image137.png

image125.png

image124.png

image133.png

image138.png

image128.png

image132.png

image58.png

image68.png

image364.png

image28.png

image51.png

image39.png

image25.png

image33.png

image43.png

image72.png

image63.png

image87.png

image91.png

image30.png

image81.png

image60.png

image64.png

image66.png

image62.png

image56.png

image37.png

image26.png

image19.png

image10.png

image13.png

image9.png

image8.png

image12.png

image6.png

image349.png

image346.png

image342.png

image329.png

image340.png

image338.png

image15.png

image366.png

image360.png

image328.png

image335.png

image285.png

image323.png

image290.png

image302.png

image292.png

image273.png

image38.png

image282.png

image275.png

image266.png

image267.png

image333.png

image326.png

image312.png

image327.png

image311.png

image293.png

image21.png

image288.png

image306.png

image295.png

image314.png

image231.png

image228.png

image225.png

image210.png

image221.png

image216.png

image41.png

image198.png

image203.png

image208.png

image230.png

image261.png

image268.png

image274.png

image257.png

image249.png

image253.png

image23.png

image252.png

image262.png

image260.png

image238.png

image162.png

image164.png

image168.png

image170.png

image169.png

image147.png

image16.png

image172.png

image154.png

image153.png

image131.png

image197.png

image190.png

image186.png

image192.png

image189.png

image182.png

image17.png

image195.png

image185.png

image176.png

image181.png

image112.png

image110.png

image99.png

image100.png

image106.png

image98.png

image20.png

image89.png

image79.png

image90.png

image83.png

image145.png

image136.png

image139.png

image127.png

image118.png

image140.png

image14.png

image122.png

image109.png

image104.png

image126.png

image50.png

image46.png

image59.png

image32.png

image35.png

image49.png

image4.png

image54.png

image18.png

image357.png

image350.png

image347.png

image354.png

image358.png

image355.png

image353.png

image348.png

image2.png

image365.png

image351.png

image325.png

image337.png

image322.png

image372.png

image324.png

image320.png

image321.png

image339.png

image24.png

image317.png

image315.png

image345.png

image343.png

image352.png

image336.png

image331.png

image341.png

image344.png

image334.png

image5.png

image330.png

image304.png

image281.png

image287.png

image271.png

image272.png

image278.png

image284.png

image316.png

image318.png

image7.png

image310.png

image305.png

image371.png

image319.png

image289.png

image294.png

image303.png

image222.png

image227.png

image236.png

image34.png

image213.png

image212.png

image229.png

image226.png

image240.png

image215.png

image220.png

image263.png

image259.png

image279.png

image40.png

image269.png

image250.png

image246.png

image254.png

image237.png

image234.png

image22.png

image65.png

image61.png

image69.png

image75.png

image70.png

image86.png

image73.png

image67.png

image71.png

image95.png

image27.png

image29.png

image42.png

image31.png

image76.png

image36.png

image53.png

image45.png

image74.png

image55.png

image108.png

image117.png

image120.png

image47.png

image121.png

image129.png

image144.png

image130.png

image150.png

image135.png

image114.png

image88.png

image94.png

image84.png

image107.png

image93.png

image92.png

image115.png

image96.png

image134.png

image80.png

image78.png

image179.png

image209.png

image199.png

image356.png

image180.png

image193.png

image202.png

image201.png

image191.png

image188.png

image207.png

image160.png

image151.png

image158.png

image369.png

image157.png

image167.png

image204.png

image166.png

image142.png

image146.png

image143.png

image149.png

image248.png

image243.png

