MATLAB- Simulink

Kun-Yen Chiu

Example 3.3 Inverted pendulum control

Step 1. Used MATLAB to transfer the transfer function from state space

Step 2. Open Simulink

Home \rightarrow Simulink \rightarrow Blank Model (create new model) \rightarrow save it!!

Once you save the model, you can search the function blocks from library Browser

🍋 simulink_file - Simulink academic use

You will need the following function blocks: Signal Builder Add Constant Product Gain Step Transfer Fcn Scope (see output result)

Step 3. Create Block Diagram

Output Result

Problem 2: ODE45 Reference ODE Solvers: Standard Syntax

- To use standard options and variable time step

 [t,y]=ode45('myODE',[0,10],[1;0])
 ODE integrator:
 23, 45, 15s
 ODE function

 Time range
- Inputs:
 - ODE function name (or anonymous function). This function takes inputs (t,y), and returns dy/dt
 - Time interval: 2-element vector specifying initial and final time
 - Initial conditions: column vector with an initial condition for each ODE. This is the first input to the ODE function
- Outputs:
 - t contains the time points
 - y contains the corresponding values of the integrated variables.

More info:

https://www.mathworks.com/help/matlab/ref/ode45.html

Problem 2 reference

%% Problem 2

clc

tspan = [0 10]; %time interval from 0 - 10 iniCon = [0;0;0;0]; %initial condition [t, y] = ode45(@sys, tspan, iniCon) y1_y(:, 1) % y y2<mark>=</mark>y(:, 2) % y' y3=y(:, 3) % angle y4=y(:, 4) % angle' %%plot(t, xxxxxxx Plot it Yourself xxxxxxx) pulse= rectangularPulse(0,0.1,t); function dx = sys(t, x)%initial parameter g=9.8; 1=0.5; m=0.01; M=2; pulse = rectangularPulse(0,0.1,t); A=[0 1 0 0 ; 0 0 -m*g/M 0;0 0 0 1; 0 0 g/l 0]; %system matrix B=[0; 1/M; 0; -1/(M*1)];k=-100; % Try different value of K C=[0 0 1 0]*x; % here can change the value of C Gc=(0-(C+pulse))*k; u = Gc*heaviside(t); $dx = A^*x + B^*u;$

