Chapter 9

Stability in Frequency Domain



9.1 Introduction

S domain

 Stability and relative stability
- Routh-Hurwitz criterion

- Root locus

* Terminologies related to design
specs

- Damping ratio, natural
frequency

Frequency domain

 Stability and relative stability
- Nyquist stability criterion
—>Bode plot

* Terminologies related to design
specs

— Gain margin, phase margin,
bandwidth



Work on characteristic equation in the following form:
1+L(s)=0

Y(s)

Note: For multiloop systems,

—H(s) char. eq. can still be expressed as
- 1+L(s)=0
Controller Process
t
R(s) :m 3 G.(s) G(s) » Y(s)
Sensor

H(s) <




9.2 Mapping Contour in s-Pla
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Figure 9.2 Mapping a square contour by F(s) =2s +1 =2(s + 1/2).
Contour map: A contour/trajectory in one plane is mapped/translated into another

plane by a relation F(s).
Positive contour: clockwise traversal of a contour.
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Figure 9.3 Mapping for F(s) = s/(s + 2).
* Typically, we are concerned with an F(s) that is a rational
function of s

* Area enclosed by a contour: the area within a contour to the
right of the traversal of the contour



Principle of the argument (Cauchy’s theorem):

If a positive contour in the s-plane encircles Z zeros and P poles of F(s) and does not
pass through any poles or zeros of F(s), then the corresponding contour in the F(s)-
plane positively encircles the origin N=Z-P times.

Note (See the derivation related to (9.11) in the textbook):

1. N<O means negatively encirclement.

2. In the F(s)-plane, if the origin is “on” the contour, then it is not considered as being
encircled.

Chiu’s Reminiscence:

Bode diagram:

Pole=>-20dB/decade
Zero>+20dB/decade

Nyquist diagram:

Pole>negative encirclement of the origin
Zero—2>positive encirclement of the origin



9.2 Mapping Contours in the s-PLANE
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Figure 9.4 Mapping for F(s) =s/(s + 1/2).
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9.2 Mapping Contours in the s-PLANE

(a) (b)

Figure 9.6 Example of Cauchy’s theorem with three zeros and one pole
within T



9.2 Mapping Contours in the s-PLANE
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Figure 9.7 Example of Cauchy’s theorem with one pole within T..



9.3 The Nyquist Criterion

Jw
A

Nyquist contour

b
///Radius =r
4 7= R
» o
0 Figure 9.8 Nyquist contour is
shown as the heavy line.
A

Nyquist plot: Polar plot using the Nyquist contour




Consider Nyquist plots of F(s)=1+L(s) and L(s);
> N,=Z.-P, and N,=Z,-P,

* Z. (to be determined)

= # zeros of F(s) in the right-half s-plane

= # poles of the closed-loop transfer function in the right-half s-plane
= # roots of the characteristic equation in the right-half s-plane

—> Unstable if N >0

* N,

= # positive encirclement of (0,0) from Nyquist plot of F(s)

= # positive encirclement of (-1,0) from Nyquist plot of L(s)

* P;

= P, (poles of F(s)=poles of L(s))



Nyquist stability criterion

* # positive encirclement of (-1,0) from Nyquist plot of L(s)=Z.-P,
Note:

1.

For a stable loop transfer function, the closed-loop system is stable
if Nyquist plot of L(s) does not encircle point (-1,0) or pass through
that point.

A feedback system is stable if and only if the contour I'; in the L(s)-plane
does not encircle the ( —1, 0) point when the number of poles of L(s) in the
right-hand s-plane is zero (P = 0).

For an unstable loop transfer function:

A feedback control system is stable if and only if, for the contour I'; , the
number of counterclockwise encirclements of the ( —1, 0) point is equal to the
number of poles of L(s) with positive real parts.

A root is on jw if Nyquist plot passes through point (-1,0).



N
FAY

7

Figure 9.9 Nyquist contour and mapping for L(s) =

| Nyquist
' contour

—jw

(a)

Polar plot

(s + 1)(s/10 + 1)

ju
A Negative frequency
—w = —0.76
"15/0/’* "\\ L(s)-plane
‘/ \\
TeT T2 Lps \
[ w = % w=0
\ \
—L / } I ' “/> u
w =10 25 50 5 100
w=32% J25 \
Positive
+ —j50 frequency
w = 0.76
(b)
N=0
P=0
100 Z=N+P=0 (stable)



By convention, we

consider a detour

around the pole at

the origin

s-plane
c Radius €
- D\B .
ZAN 7S > o 1 > u
= A~ -1
T Radius™~ _ Y
y = ¢
Nyquist contour N=0
w=0, Z=N+P=0 (stable)

(a) (b)

Figure 9.10 Nyquist contour and mapping for L(s) = K/(s(ts + 1)).



4 For what value of K is the system stable?
T
N
| N
—K71 *‘ \\
T T B | \ L(s)-plane
\J \
| W= + | >
N = l .
= ,I
//
w++
/
/)
————— -#//
w =0,

Figure 9.11 Nyquist diagram for L(s) = K/(s(t;s + 1) (t,5 + 1)). The tic mark shown to the left of the origin is the -1 point.
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Figure 9.12 Nyquist plot for L(s) = G(s)G(s)H(s) = — =3 when(a)K=1, (b)K=2, and (c) K =3.
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Figure 9.13 Nyquist contour plot for L(s) = K/(s?(ts + 1)).



Figure 9.15 Nyquist diagram for

L(s)-plane L(s) = K,/(s(s - 1)).
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L(s)-plane

Stable or unstable?

P=1
W= == - * -KiKy<-1
w= +0 N=-1
Z=N+P=0 (stable)
« -K,K,=-1
N=0
Z=N+P=1 (unstable)
* -KiK>-1
N=1
w=0_ Z=N+P=2 (unstable)

Figure 9.16 Nyquist diagram for L(s) = K;(1 + K,s)/(s(s - 1)).



1 L(s)-plane

(S8

Positive w

P=0
e -2K<-1
N=1
Z=N+P=1 (unstable)
> u e 2K>=-1
N=0
Z=N+P=0 (stable)

FIGURE 9.17 Negative @
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9.4 Relative Stability and the Nyquist Criterion

* For the s-plane, we defined the relative stability of a system as the

property measured by the relative settling time of each root or pair of
roots.

= T, = 47, which is related to the real parts of the roots

- System with a shorter settling time is considered relatively more
stable

* We would like to determine a similar measure of relative stability
useful for the frequency response method.



Gain Margin = 1 = ciosio) = oot

* Gain margin

Ky > K, > K, For stable L(s), gain margin is the
additional gain that can be added before
the system becomes unstable

GM:= 20log 1/|L(jw,.)|, where phase
crossover frequency w, is the frequency
that makes £L(jw,)=-180°

Why? hint: 0 db — 20log | L(jw) |

Figure 9.18 Polar plot for L(jw) for three values of gain.



Phase Margin i = 6w - K

jo(jory + 1) (jor, + 1)

v * Phase margin
— K(ry + 7)) — For stable L(s), phase margin is the

e additional phase lag required before the

system becomes unstable (-180°)

> For system with gain K,, PM=¢4

For system with gain K,, PM=¢,

Gain crossover frequency: the frequency
w,. that makes |L(jw,)|=0 dB

Figure 9.18 Polar plot for L(jw) for three values of gain.




Margins and Crossover Frequencies

* Gain crossover frequency w,

—->The frequency that makes loop gain 0 dB

* Phase crossover frequency w,

—>The frequency that makes loop phase -180°

* Gain margin=20log(1/|L(jw,)|)

- Additional gain to be added before system becomes unstable
* Phase margin= £L(jw,)-(-180°)

- Additional phase lag required before the system becomes unstable



GM and PM in Bode Plot
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GM and PM in Log-Magnitude—Phase Plot
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Figure 9.20 Log-magnitude— phase
curve for L, and L,.

L1: Gain margin=15 dB
Phase magin=43°
L2: Gain margin=5.7 dB
Phase magin=20°

Feedback system of L, is relatively less table than feedback

system of L,

What are the gain and phase crossover frequencies?



Damping Ratio and PM for 2nd-order System

Y.
Wy

L(s) = G.(s5)G(s) = . .
* Loop TF s(s + 2{w,)

* Sinusoidal steady-state TF L(jo) =

2
w,,

jow (Iw T 2§wn) )

2
Wy ..

At gain crossover frequency NPT L mp 5= @) -2
C C n ‘ (l)”~
* PM ¢pm = 180° — 90° — tan 11(:%
2w,
l Iy, e /2 W' i
= 90° — tan 1(2[(49"4 + 1)1 - 2g“]1'“) - { =001y, | =07

,-)
l —

[(4 + 1/¢H12 = 2172

= tan



0.8

0.6 =

Linear approximation Tl
-
-

Damping ratio, {

04 (=001¢y,
0.2 o7l
0.0 = - E : : == :
0° 10° 20° 3° 40° 50° 60° 70°
Phase margin (deg)
{ = 0.0l _ , _
. a suitable approximation for a second-order system and may

be used for higher-order systems if the transient response of the system is
primarily due to a pair of dominant underdamped roots.

* The phase margin and the gain margin are suitable measures of the
performance of the system.

* We normally emphasize phase margin as a frequency- domain specification.



9.5 Time-Domain Performance Criteria in
the Frequency Domain

* Transient performance of a feedback system can be estimated from the
closed-loop frequency response

—>Resonant peak is related to damping ratio

M,, = |T(w,)| = (2(V1 =) <0707

* The open- and closed-loop frequency responses for a single-loop system
are related

—>open-loop TF is used to analyze the properties of closed-loop TF, e.g.,
Nyquist criterion and the phase margin index

Why?

* Because this relationship between the closed-loop frequency response and
the transient response is a useful one, we would like to be able to
determine resonant peak from the Nyquist plots




Constant M circles

What?
* M-circles can determine the closed-loop magnitude response from
open-loop response

How?

Openloop L(jw) = G (jo)G(jw) = u + jv.

[(l i ”)2 + vlllf‘l'

G (jo)G(jw)
| + G.(jo)G(jw)

‘ u + jo

Closed loop M (w) = ‘ %4 5§ %
u + jo

» (1 — M>u? + (1 — M*? — 2M*u = M?.

M* \E M\
» u— =] +v° = =il
1 — M? 1 — M?




M= 0.7

Figure 9.23 Constant M circles.
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Resonant peak and frequency
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Figure 9.24 Polar plot of G (jw)G(jw)
for two values of a gain (K, > K).

Figure 9.25 Closed-loop frequency
response of T (jw) = G, (jw)G(jw)/(1 +
G, (jw)G(jw)). Note that K, > K;.



Constant N circles

e Constant N circles relate the open-loop Nyquist plot to the angles of
the closed—loop system

¢ =/T(jw) = /(u+j)/(1 +u+ jv)

= tan = | =S 1
u | + u

-
‘ u> + '+ u - A 0, N = tan ¢.




Nichols Chart (Log-magnitude—phase diagram (+M and N circles)

Loop gain GG, in decibels
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Loop gain GG decibels

Example 9.7
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Figure 9.27 Nichols diagram for

G (jw)G(jw) = 1/(jw(jw + 1) (0.2 jw + 1)).
Three points on curve are shown for w =
0.5, 0.8, and 1.35, respectively.



9.6 System Bandwidth

e Bandwidth of the closed-loop control system

- excellent measurement of the range of fidelity (frE.JE) of system
response (why?)

Think of this: Magnitude response of output=magnitude response of closed-loop transfer function+ magnitude
response of input

- BW is generally measured at -3 dB if low-frequency magnitude=0 dB
= wg is roughly proportional to peak time (speed of response)
= wpg is inversely proportional to settling time
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Bandwidth and Fidelity
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9.7 The Stability of Control Systems with Time Delays

 Time delay

- time interval between the start of an event at one point and its
resulting action at another point in the system

- Nyquist criterion can be used to determine the relative stability of a
system with time delay

—>Time delay adds a phase shift to the frequency response without
altering the magnitude response

- Pade rational function approximation



* Pure time delay
2> Gys) = e,

* Example
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Pade Approximation

el =1 —sT +

2 3 : TS
(sT)*  (sT) . (sT)*  (sT) M

2! 3! 4! 5!
(,"—ST - ns 2 ny
| dis + d
1 0 ns . ny N (1()”1 i H()dl drlzil() dl”l 2
— = — + 3 5= T 7 |8 +
([15 + ([0 d() d() d() d()
2 2
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d() (’() dd' d(% li()z 2
Solving for ny, dy. ny, and d, yields
— g (f(]T a - doT
np = do, dy = 2.an H]——Z.
Setting d; = 1 and solving yields
ns +n —TIs +1
T ., L 0 2"

€ - ~ = .
(IIS + IIO ?_IS + 1



9.9 PID Controllers in Frequency Domain
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FIGURE

9.52 Bode
plot for a PID
controller using
the asymptomatic
approximation for
the magnitude
curve with

Ky =2,a =10,
andt = 1.
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PID controller is a notch (or bandstop) compensator!



