Chapter 8

Frequency Response Methods



* In conventional control system analysis

— 2 basic methods for predicting and adjusting the performance of a
system without finding the solution of the system’s differential
equation

—>Root locus and frequency response methods
* Why not solve the system’s differential equation?
—>No powerful computers in the past to solve high-order systems

- Even if computers are available, these 2 methods can provide much
insight into system’s design and analysis



8.1 Introduction

What
* Frequency response of a system

— steady-state response to a sinusoidal input signal
e 3 parameters of a sinusoid

- amplitude, frequency, and phase

* Frequency response of LTI

- A sinusoid that differs from the input only in amplitude and phase
angle
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For the steady state: y(;) = [;‘f: [q — (L AwT(jw)|sin(of + ¢)

= A|T(jow)| sin(wt + ¢), where ¢ = /T(jw).



i) = % [a‘s * BJ _3
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= A|T(jw)| sin(wt + ¢), where ¢ = /T(jw).

AoT(jo)|sin(wt + ¢)

* the steady-state output signal depends only on the magnitude and
phase of T(jw) at a specific frequency

 Steady-state response described above is true only for stable systems



3W Questions: what, why, and how

Why
1. The ready availability of sinusoid test signals for various ranges of
frequencies and amplitudes

—> experimental determination of the system frequency response is easily
accomplished.

- unknown transfer function of a system can be deduced

2. Design of a system in the frequency domain |orovides the designer with
control of the bandwidth of a system, as well as some measure of the
response of the system to undesired noise and disturbances.

3. The magnitude and phase angle of T(jw) are readily represented b
graphical plots that provide significant insight into the analysis an
design of control systems.



Disadvantage of frequency response analysis
and design

* Indirect link between the frequency and the time domain

* Indirect link between the frequency response and the corresponding
transient response

- except for 2nd-order systems



Laplace and Fourier Transforms

° LT

2 00 O+ ]
F(s) = Z{f(1)} = / f(t)e™ dt f() = £YF(s)) = 217]/_ F(s)e" ds,

o FT

Flow) = F{f(r)} = /_ f(t)e 7" dt ft) = FHF(w)} = - /—x F(w)e!® dw.

Questions to be asked:
* T(jw)=T(s) with s=jw, why?
e LT and FT are closely related. Why not use the LT? Why use the FT at all?



8.2 Frequency Response Plots

* Transfer function of a system G(s)
- Sinusoidal steady-state transfer function G(jw)

Cartesian representation G(jw) = G(5)|y—jo = R(®) + jX(w).
R(w) = Re[G(jw)] and X(w) = Im[G(jw)].
Polar representation

G(jw) = |G(jw)|®®) = | G(jw)| /¢ (w).

X(w)
R(w)

¢(w) = tan™ and |G(jw)|* = [R(w)]* + [X(w)]*



3 types of Frequency Plots

1. Polar plot (Nyquist plot)

— The locus of real and imaginary parts for various values of w
2. Logarithmic plot (Bode plot)

- The magnitude and phase plots versus w

3. Log-magnitude—phase plot (Nicholos plot): a plot of magnitude
versus phase for various values of w

- These 3 plots can be obtained using the below equations:
Cartesian representation (.1(]0)) — (__;(.S’) ‘S=jw — R(w) T ]X(w)

) = | G(jw)| /¢ (w).

Polar representation (;(](1)) — | G(}a))



Example 8.1 i

* Transfer function

G m— - — -
(5) Vi(s) RGCs +1

* Sinusoidal steady-state transfer function

, | 1 1
G(jw) = = . s
Ge) jo(RC) +1  j(o/w) + 1 “I'7 RC
: : I — j(w/w)
G(jw) = R(w X(w) =
() = Rw) + jX(w) = (2 57
Find the real and 1 j(w/w))

imaginary parts 1 + (w/a)l)z - 1 + (w/wl)z'



Cartesian representation

. . 1 — j(o/w) Y
G(]O)) - R((U) T ]X(w) - 2 Negative w
(w/w1)” + 1 T
_ 1  J(@/w) ‘ / \
1+ (w/w)*? 1+ (0/w)? w:_oo/, = = “.1\ ] R(w)
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P'-\:' Bt

Polar representation

: B 1 R ’
GG)| = o @ b(e) = —tan (/).



Example 8.2 GOm0 = Gle) = = o o

Polar representation

el K : B 1 Im(G]
| (]w)|—(w2+w472)'/2 and  ¢(w) = —tan” — . \ o

g —kT/2
| - / Re[G]

A | 135°

|
e = —k/2

Cartesian representation




Limitations of Polar Plots

1. Addition of poles or zeros requires the recalculation of the

frequency response

individual poles and zeros

Ex8.1: G(s) = ﬁ
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Calculation is tedious and does not indicate the effect of the
Ex 8.2: G(s) =

Re[G]



Logarithmic Plots or Bode plots

* In honor of H. W. Bode who used them extensively in his studies of
feedback amplifiers (This explains why it is called Bode plots)

—> Addition of poles or zeros requires no recalculation of the frequency
response

—>Bode plot can indicate the effect of the individual poles and zeros
* Transfer function in frequency domain

G(jw) = | G(jw)|e®).

Logarithmic gain = 20 log,y| G(jw)|. decibels (dB)

This explains why it is also called logarithmic plots



Example 8.3

. l l
* Transfer function of Ex8.1 C(jw) = jw(RC) + 1 a jor + 1

* Logarithmic gain:

| 1/2 ;
20 log| G(jw)| = 20 log( ) = —101log(1 + (w7)?).

| + ((m')2

0w << 1/7. 20log| G(jw)| = —101og(1) = 0 dB,

w > 1/, 20 logG (jw) = —20 log(wT)

o = Lf7, 20 log| G(jw)| = —101log2 = —3.01 dB.
N\

break frequency or corner frequency

T = RC.



20 log| G(jw)| = —101log(1) = 0dB,
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* A linear scale of frequency is not the most convenient or judicious
choice

—>we consider the use of a logarithmic scale of frequency

w > 1/7, 20 log| G(jw)| = —20log(wr) = —201log 7 — 20 log w.
e A decade A linear function in log w

—an interval of two frequencies with a ratio equal to 10

* Difference between the logarithmic gains, for @« = 1/7. over a
decade of frequency is ( @, = 10w, )

20 log| G(jwy)| — 201og| G(jw,)| = —20log(wi7) — (=20 log(w,7))
T
= —20 log i
wHT
| 1
= —201log — = +20dB;
=10

Slope=-20db/decade
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* A decade
—an interval of two frequencies with a ratio equal to 2
* Show that the slope of the asymptotic line is -6 dB/octave



Advantage of the Bode Plots

* The conversion of multiplicative factors into additive factors

0 P
K [T (1 + jom) TTI(1 + éfwn)je + (joo/@,)?)]
G(jw) = Iﬁ_:u R

(./.“’)N H ( I + ijm) H [(l + (2(:,\,/(0”}\ )j‘“ ¥ (j(‘)/“)n,\)z)]

m=1 k=1
* This transfer function includes Q zeros, N poles at the origin, M poles
on the real axis, P pairs of complex conjugate zeros, and R pairs of
complex conjugate poles.




Transfer function
P

0
KbU(l + jor) H (1 + (2g/wp)jo + (jo/w,)?)]

G(jw) =

(jo)¥ H(I + Jme)H[(l + (24 /on)jo + (jo/w,)?)]

m=
Magnitude plot: adding the contribution of each individual factor.

Q
20 log| G(jw)| = 20 log K + 20 log|1 + jor|
i=1

M
—20 log| (jw)™| =20 log|1 + jwm,|

m=1
2 w \? 2 w \2
bl+§ljw+(j> b‘l+é:kjwwL(]—).
Wy, Wpi Wy, Wy,

Phase plot: summation of the phase angles due to each individual factor of the transfer function.

R

k=1

d(w) = +2tan Hom) — N(90°) — Etan Ywr,)
i= m=1
2§kwn,‘ P 1 Zglwn,

zan —2. 2 ztan 5 -



4 Building Blocks of Bode Plots

Constant gain K},

Poles (or zeros) at the origin (jw)

& op

Poles (or zeros) on the real axis (jor + 1)

g

Complex conjugate poles (or zeros) [1 + (2{/w,)jo + (jo/w,)?]

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude 20 logqo| G(jw)| Phase ¢(w)
1. Gain, 40 90°
G(jo) = K
@ 20 ~ 45°
% 20 lng K _.?;JD
Z v g O
Z =
= a
= -20 —45°
'Eﬁ
—40 —90°

Frequency (rad/s) Frequency (rad/s)



4 Building Blocks of Bode Plots

1.
2.
3.
4.

2

Constant gain K},
Poles (or zeros) at the origin (jw)
Poles (or zeros) on the real axis (jor + 1)

Complex conjugate poles (or zeros) [1 + (2{/w,)jo + (jo/w,)?]

Pole at 40 90°
the origin, &
G(jw) = 1/jo g 2 2 45°
o =
2 0 3 0
= =
=T =
< 20 " —a5e
—40 =y
0.01 0.1 1 10 100 0.01 0.1 1 10

Frequency (rad/s) Frequency (rad/s)

100



4 Building Blocks of Bode Plots

1. Constant gain K},
2. Poles (or zeros) at the origin (jw)
3. Poles (or zeros) on the real axis (jor + 1)

4. Complex conjugate poles (or zeros) [1 + (2{/w,)jo + (jo/w,)?]

3 Pole, 40 90°
G(jw) = -
(1 + jw/w,)™ g 20 5 45°
o 3
2 0 g 0
S -20 - —45°
_40 —QQ°
Frequency (rad/s) Frequency (rad/s)

How about the Bode plot of zeros?



4 Building Blocks of Bode Plots

1. Constant gain K},
2. Poles (or zeros) at the origin (jw)
3. Poles (or zeros) on the real axis (jor + 1)

4. Complex conjugate poles (or zeros) [1 + (2{/w,)jw + (jo/w,)’]

3 Zero, 40 90°
G(jw) = -
1 + ]w/w] % 20 = 45°
3 <
g 0 ¥
s —20 —45°
—40 —-90°
0.1w ) 10w, 0.lw, | 10w,

Frequency (rad/s) Frequency (rad/s)



4 Building Blocks of Bode Plots

1.

2.
3.

Constant gain K},
Poles (or zeros) at the origin (jw)

Poles (or zeros) on the real axis (jor + 1)

4. Complex conjugate poles (or zeros) [1 + (2{/w,)jo + (jo/w,)?]

4 Two complex 40
poles, -

0.1 <¢<1, g 20
G(jw) = Sl T 3

j2lu — u*)™! £ 0

u=w/w, éﬂ _ap

—40

0.01 0.1 1 10

Frequency ratio, u

How about the role of the damping ratio?
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900

00

—0(°
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1
Frequency ratio, u

10

100



Resonant peak A,

My, = |G(jo,)| = (22V1 = 57,

occurs at the resonant frequency o,

w, = w,V1 — 27,

¢ < 0.707,

As zeta = 0, resonant frequency becomes natural

frequency

As zeta =2 1, frequency response is similar to that of two
poles located at the resonant frequency

¢ < 0.707,

Magnit

Phase (deg)

20

{=0.05
0.10
0.15
" 020
0.25
0
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—10 0'4. 0.5.0 ¢
| 08
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0.1 02 03 04 0506 08 1.0 2 3 4 56 8 10
u = ew, = Frequency ratio
(a)
0

03,
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L 0.10
015
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03 04 0506 08 1.0

(]
)
E =
LN
=2}
oo
(=]

u = wlw, = Frequency ratio

(b)



Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude 20 log, ,|G(jw) Phase ¢(w)
1. Gain, 40 o0
e g 20 5 4
Summary of Magnitude Response
| ” Frequency (rad/ =
.}‘rn, 40
Gljw) )

e A Pole i

Magnitude (dB)

Ph

—-20db/decade at corner frequency

* A zero W s o
—>+20db/decade at corner frequency P 1.

* Two complex poles
—>-40db/decade at natural frequency

* Two complex zeros g AN e
—+40db/decade at natural frequency " " By




Minimum and Nonminimum Phase Systems

* Minimum phase transfer function
—all its zeros lie in the left-hand s-plane.
* Nonminimum phase transfer function

—at least one zero in the right-hand s-plane.

i i 4 $ —

G:(S) —

Gi(s) = s+ p s+p

Minimum phase Nonminimum phase

Phase (deg)

180° (=3

-

* Physical meaning of a nonminimum phase system
—Go in the wrong direction in order to get it right

. Nonminimum phase

Minimum

phase

Frequency (rad/s)




G = . T=
Unity feedback
0.5 s + 0,05 ...’. 0.5 5 + 0.05
4% + 2 5% + 5 8% + 2 54 + 0.5 5 +0.05
Type 1, nonminimum phase Stable, nonminimum phase

Step Response

1.2 ' ‘ ‘ ' ' num=conv (-0.5, [1 -0.1]);
dec=conv ([l 0], [1 11);
dec=conv (dec, [1 11]);

G=tf (num, dec)
T=feedback (G, 1)
step (T)

Amplitude

'06 1 1 | 1 1
0 10 20 30 40 50 60
Time (seconds)



Nonminimum Phase Systems

* Difficult to design and hard to get good performance
Example of nonminimum phase problems

1. Control an aircraft to a higher altitude

- Kick the elevators (Ff[R/F) to give a downforce

- Center of mass goes down before going up

2. Parallel park

—>Move away from a curb before you can move close to it
3. Lifel



Example 8.5 (Sketching a Bode plot)

1. A constantgain K =5
- 5(1 + j0.1w) 2. A pole at the origin
w) = : -
V@) = 2ol + 050) (1 + J0.6(a/50) + (a/50)7) ‘ A palcatas =2
4. Azeroatw = 10
5. A pair of complex poles at @ = w, = 50
20
14
10
2 @
2
2 o0
&
]
=
-10
-20
0.1 0.2 |

Frequency (rad/s)
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3.3 Frequency Response Measurements

* How to measure the frequency response of a system

— A sine wave can be used to measure the frequency response of a
system (how?)

— A wave analyzer can be used to measure the amplitude and phase
variations as the frequency of the input sine wave is altered

— A transfer function analyzer can be used to measure the loop
transfer function and closed-loop transfer functions

= A typical signal analyzer instrument: DC to 100 kHz



Example

L ®=20,000

Magnitude (dB)

100

1000 *
W= 2_-15(]
Frequency (rad/s)
(a)

T(s)

10,000

100,000

Phase (deg)

/ w = 2””{}0

——————— +45°

|
|
_-13 |
|
|
|

10 wo S 1000 %
=300 ®=2450

Frequency (rad/s)
(b)

10,000 100,000

- (S/"-"n)2 b (2(/0)")8 +1

(s/p1 + 1)(s/pp + 1)



* Given transfer function

—>Bode plot (section 8.2)

* Given a Bode plot

— Transfer function (section 8.3)



8.4 Performance Specs in Frequency Domain

+ w>

n

s(s + 2{w,)

R(s) Y(s)

Figure 8.24 A second-order closed-loop system.

Characterization of transient response (2"9 system)
* Time domain—2> rise time, settling time, PO, ...
* Frequency domain—> ?



_________ Resonant peak
20 log M,,,, P
= i
s —3—m———————— — —
e | |
B0 ' '
o) I I
=i I I
< | |
I I
I I W
O (U,. (UB
Resonant bandwidth
frequency

Figure 8.25 Magnitude characteristic of the second-order system.

* Bandwidth is the frequency at which the frequency response has declined 3 dB
from its low-frequency value

* Resonant peak is the maximum frequency response attained at resonant
frequency



Transient Response Relationships

e Bandwidth increases
—> Rise time decreases

General rules of specs:

* Resonant peak increases * Small resonant peak

(relative stability)
—>Damping ratio decreases * Large bandwidth

(large natural frequency->small time
9 PO increa SesS constant->swift response)

* Example of frequency-domain specs
I. Relatively small resonant magnitudes: M, < 1.5, for example.

2. Relatively large bandwidths so that the system time constant 7 = 1/({w,,) 1s sufficiently
small.

* Frequency response specs and their relation to the actual transient
performance

— Usually determined by dominant roots



Steady-State Relationship ~ ~ f L

 Steady-state error for a ramp input is specified in terms of Kv, the
velocity constant

s—0 s—()

?
K, = lim sG(s) = lim s( Wh ) _ %n  related to bandwidth
() [ B - i L ®
s(s 2L

» frequency response characteristics represent

the performance of a system quite adequately
- with some experience, they are quite useful for
the analysis and design of feedback control systems.

FIGURE 8.26
Normalized
bandwidth, wg/wp,,

wp
® Linear approximation

1| @wp

n

versus ¢ fora ?2—1.195’:—].85
second-order 09"

system (Equation

8.46). The linear 0.8

approximation 0.7

wg/wp =

~1.19 + 1.85 i

. 01 02 03 04 05 06 07 08 09 1
is accurate for )
03=<¢=0..8. 5



8.5 Log-magnitude—phase Diagram

1. Polar plot (Nyquist plot) OK

— The locus of real and imaginary parts for various values of w
2. Logarithmic plot (Bode plot) OK

- The magnitude and phase plots versus w

3. Log-magnitude—phase diagram (Nicholos plot)

— a plot of logarithmic magnitude in dB versus phase angle for a range
of frequencies w



num=5;

6, (jw) = > dec=conv ([1 0], (0.5 17);
1 ~ jw(05jw+1)(w/6+ 1)
Jw(Y.ojw w dec=conv (dec, [1/6 1]);
G=tf (num, dec) ;
16 Nichols Chart nichols (G)
60 T T T
0.1 System: G
[ 40 y :
30 Gain (dB): 0.955
20 Phase (deg): -165 i
0.3 . Frequency (rad/s): 2.55
20 0.6 z 0 =
£
1O S 20 Bode Diagram
10 - 2 50 . ; .
w
o0 2 /¥ g 40 . ]
= < Related to stability )
e 0 o -60 7 e
4 36 ) o o
S -80 1 2
~10 3 &
. 100 | 1 =
7
_120 1 1 1
-20 / -270 -225 -180 -135 -90
o 1 Open-Loop Phase (deg)
S 135 1
-30 )
o -180 1
(7]
]
e
—40 o 225 -
-270  -225 —180 —135  —90
Phase, degrees -270 : ' '
107" 100 10" 102 10°

Frequency (rad/s)



Open-Loop Gain (dB)

Addition of a zero at -1

Nichols Chart Nichols Chart
60 T T T 40 T
40 [
20 | y
20 [ .
Qv e T ] e | s -
£
-20 1 S
8.-20 B i
-40 + 1 S
c
-60 | 1 Q40 1
)
-80 r 7
-60 [ §
-100 [ .
_120 1 1 1 _80 1 1
-270 -225 -180 -135 -90 -180 -135 -90 -45
Open-Loop Phase (deg) Open-Loop Phase (deg)

* Difficult to use for design
- Bode plot is often used rather than polar plot and Log-magnitude—phase diagram



