Chapter 6

Stability of Linear Feedback Systems



6.1 Concept of Stability

* Closed-loop feedback system that is unstable is of minimal value
(exceptions: aircraft)

* Closed-loop feedback is used to

—Stabilize an unstable systems or adjust performance of a stable open-
loop system

* Absolute stability

— Stable/not stable

 Relative stability (given a stable closed-loop system)
— Characterize the degree of stability



Relative Stability for Aircraft Design

* The more stable an aircraft was, the more difficult it was to maneuver
(that is, to turn)

* A acrobatic aircraft is less stable than a commercial transport; hence
it can maneuver



Stability Criterion

* A system is stable (in the absolute sense) if a bounded input yields a
bounded response

—all transfer function poles lie in the left-half s-plane

—or all the eigenvalues of the system matrix A in state variable
representation lie in the left-half s-plane.

* Given that all the poles (or eigenvalues) are in the left-half s-plane

- Examine the relative locations of the poles (or eigenvalues) for
relative stability



Illustration of Stability

* The concept of stability can be illustrated by considering a right
circular cone placed on a plane horizontal surface.

(a) Stable (b) Neutral (c) Unstable
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Stability in terms of Location of Poles

* Closed-loop transfer function
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Stability in terms of Location of Poles

* Output response for an impulse function input (when N =0) is

] :
E Ap e 7 + E B,,,( )f’_“’”’ sin(w,,t + 6,,),

m=1 W)y

 To obtain a bounded response

— poles of the closed-loop system must be in the left-hand portion of
the s-plane. i
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Stability in terms of Location of Poles
(Summary)

 Stable system

—all the poles of the transfer function are in the left-half s-plane

—>bounded inputs yield bounded outputs

* Marginally stable system

—>simple poles on the imaginary axis and all other poles in the left-half s-plane

—only certain bounded inputs (sinusoids of the frequency of the poles) will cause
the output to become unbounded; other bounded inputs lead to oscillatory
outputs

* Unstable system
—at least one pole in the right-half s-plane or repeated poles on the imaginary axis
—>the output is unbounded for any input.



6.2 Routh—Hurwitz Stability Criterion
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‘ Necessary conditions: all the coefficients are nonzero and have the same
sign



* If the necessary condition is satisfied, we still need to proceed further
to ascertain the stability of the system

e Example: ¢(s) = (s + 2)(s* — s + 4) = (s° + s° + 25 + 8)

* Routh—Hurwitz criterion is a necessary and sufficient criterion for the
stability of linear systems.



Routh—Hurwitz Criterion

A" + @y 18"+ a, 8"+ - tas+ap=0
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* Routh array ¢
Sn—l
Sn—Z

Sn—3

 Butterfly notations:

a, a,—» a,—4
a,—1 a,—3 a,—s
bn—l bn—3 bn—S
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Four Distinct Cases for Routh Array
Calculation Procedure

* Routh—Hurwitz criterion states that the number of roots with positive real
parts is equal to the number of changes in sign of the first column of the

Routh array.

* Four distinct cases or configurations of the first column array must be
considered

—each case must be treated separately and requires suitable modifications
of the array calculation procedure

* Four cases: (1) No element in the first column is zero; (2) there is a zero in
the first column, but some other elements of the row containing the zero in
the first column are nonzero; (3) there is a zero in the first column, and the
other elements of the row containing the zero are also zero; and (4) as in
the third case, but with repeated roots on the imaginary axis



Example 6.4

* Consider the characteristic equation

g(s) = s> + s* + 4s° + 24s* + 35 + 63.

* Routh array

5’ 1 4 3
st 1 24 63
5 -20 —60 0. mm) unstable
52 21 63 0
st 0 0 0



Videos for Quick Tips

* https://www.youtube.com/watch?v=WBCZBOB3LCA&t=9s
* https://www.youtube.com/watch?v=oMmUPvn6IP8

* Also please read the textbook for the detailed discussions.



6.3 Relative Stability of Feedback Control
Systems

* Routh—Hurwitz criterion ascertains the absolute stability of a system
by determining whether any of the roots of the characteristic
equation lie in the right-half s-plane

* It is desirable to determine the relative stability

1) measured by the relative real part of each root or pair of roots
2) Damping ratio

* Axis shift

- Determine the relative stability by shifting the axis



Example 6.6

qg(s) = s> + 4s* + 6s + 4.

‘ (Sn o 1)2 + 4(Sn o 1)2 + 6(511 o 1) +4 = 5113 £3 SM2 T oy 1

| = 1 1
Snz I 1 After shifting the roots to the right by
5, 0 0 one unit, we have an unstable system.
5,0 1 0

https://www.youtube.com/watch?v=wGC5C_7Yy-s&t=1s




6.4 Stability of State Variable Systems

 System represented by a signal-flow graph

- Obtain the characteristic equation by evaluating the graph
determinant (Mason’s signal gain formula)

» System represented by a block diagram model

- Obtain the characteristic equation using the block diagram reduction
methods

 System represented by a state-space model

— Obtain the characteristic equation by evaluating the eigenvalues of
the transition matrix A (why?)



Example 6.7 (Mason’s signal flow gain formula)

X1 = —-3x; +x, and x, = +1x, — Kx; + Ku,
.‘\-](\J

» Ly =@, L,=-3"! and L= —-Ks?

A=1—(Li+Ly+Ly) + Lily=1— (s =357 = Ks'2) + (=3572)

2+ 25+ (K—-3)=0. - we require K > 3 for stability.



Example 6.7 (Block diagram reduction)

+

K - L U e KG\(5)Ga(s)
I _’?— OE : J - = KlGi(s)zGSZ(s)'

__________________________

W) A6) =1+ KG(9)Gas) =0,

- AGS) = (s—1)(s+3) +K=s"+25+ (K—3) =0.



Example 6.8 (Eigenvalues of transition matrix)

dx e B0 Lo i
E = B —v O0x+]0 1 |:llz:|.
|« vy 0 0 0
(A 0 0] [-a —-B O]
‘ det(AI — A) det{ 0 A O0f- g —y 0 }
(0 0 A | «a y 0]
A+« B 0|
= det| —p A+vy 0
—« —y A

= /\[A2_+ (@ + yY)A + (ay + )] = 0.

‘ System is marginally stable whena + y > 0 and ay + B> > 0.



