Chapter 5

Performance of Feedback Control Systems



5.1 Introduction

e Control systems are inherently dynamic

- performance is specified in terms of both the transient response and the
steady-state response

* Feedback control systems

—ability to adjust the transient and steady-state performance

* Transient response

—response that disappears with time

» Steady-state response

- response that exists for a long time following an input signal initiation



Design Specs

» Design specifications (specs)

—including several time response indices for a specified input
command, as well as a desired steady-state accuracy

 Specifications are
—>seldom a rigid set of requirements (why?)

—often revised to effect a compromise. Therefore, specifications are,
but

—an attempt to quantify the desired performance
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5.2 Test Input Signals

e Control systems are inherently time-domain systems
—>Time-domain performance specifications are important indices

* If the system is stable, the response to a specific input signal will
provide several measures of the performance (stability will be
discussed later)

e Actual input signal of the system is usually unknown
— standard test input signals are normally chosen.



Reasons for Using Test Signals

1. A reasonable correlation between the response of a system to a

standard test input and the system’s ability to perform under
normal operating conditions.

2. Allows the designer to compare several competing designs.

Many control systems experience input signals that are very similar
to the standard test signals.



Standard Test Input Signals  Forr(t) instead of u(t)

Table 5.1 Test Signal Inputs

Test Signal r(t) R(s)

Step r(t) = A, t >0 R(s) = A/s
=0,r<0

Ramp r(t) = At,t > 0 R(s) = A/s?
=0,t<0

Parabolic r(t) = A%t > 0 R(s) = 24/s°
=0,r<0

rt) r(r) r(r)
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0 [ —» 0 [ —>» 0 f—»

(a)

(b)

(c)

Response to one test signal is
related to the response of
another test signal (why?)
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5.3 Performance of 2nd Systems
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Step response Impulse response
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1. What is the relationship between the step and impulse responses?

2. In chapter 2, we examined the natural response of a 2nd system; here we examined
the forced response of the system

3. If you are given a TF, then we can only focus on the forced response; the natural
response is missing because the TF assumes the zero initial conditions



Standard Performance Measures

* Defined in terms of the step response of the closed-loop system
— step input signal is the easiest to generate and evaluate
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* Settling time

—>the time required for the system to settle within a certain percentage
of the input amplitude ( band of =6 )



Settling Time as Four Time Constants

* For the second-order system with closed-loop damping constant (o,
—Ts= the response remains within 2% of the final value

ety < 0,02,
{w, T, = 4.
4 |
by = T = {w, (time constant 7 — 1/§w,,)

* General definition of the settling time
- four time constants of the dominant roots of the characteristic equation



Summary of Performance Measures

* Transient response

- swiftness: rise time and peak time
—closeness: P.O. and settling time
 Steady-state response
—>Steady-state error

* For the closed-loop 2nd system
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Compromise Between Swiftness and Closeness
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5.4 Effects of A Third Pole and a Zero

e Effect of a third pole

—a 3rd-order system can be approximated by the 2nd-order system
when the real part of the dominant roots is less than one tenth of the
real part of the third root

1
(s + 245 + 1) (ys + 1)

I'(s) =

1/v] = 10[{w,|.
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Comparison of two third-order systems with a second-
order system (dashed line) illustrating the concept of
dominant poles



e Effect of a zero

— affects the transient response of the system
* The zero is near the dominant complex poles
- pole-zero cancellation; much impact

* The zero is far from the dominant complex poles
- little impact
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Example 5.1 (First Design Example)

* Find K and o) such that Controller Process

+
R(s) K i ] Y(s)
P.O.<=5% R .
s+p S
Ts<= 4 seconds

*PO<=5% m) P.O. = 100 ¢7/VI-E <=5%

m) (= 0.707 (P.O. = 4.3%)
cTs<=4 W) (w, =1

G.(s)G(s) B K o wn:
1 + G(5)G(s) sS+ps+ K 5+ 2o,s + 0,
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5.5 S-Plane Root Location and Transient
Response

* Transient response of a closed-loop feedback control system

- Determined by the location of the poles and zeros of the transfer
function

- Poles determine the response modes
—>Zeros determine the weightings



* Step response of a system without repeated roots
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steady-state output exponential terms. damped sinusoidal terms



* Impulse response of a stable system
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Important Relationship between Root
Location and Transient Response

* Control system designer will envision the effects on the step and
impulse responses of adding, deleting, or moving poles and zeros of

the TF
* Poles determine the particular response modes

e Zeros establish the relative weightings of the individual mode

functions o
weightings

M N
y(t) =14+ D Ae " + > Dre " sin(wit + 6)
=1 k=1

Response modes



5.6 Steady-State Error of Feedback Control
Systems

* Feedback
—attendant improvement in the reduction of the steady-state error

 Steady-state error of a stable closed-loop system is usually several
orders of magnitude smaller than the error of an open-loop system

- useful to determine the steady-state error of the closed-loop system
using unity feedback for the three standard test inputs

e Consider a unity negative feedback system:




Steady-State Error of Step Input

1
ES) =1 e.mop *W
hm e(z) = e = I s—— G.(s)G(s) R(s)
2 — B S(A/s) B A
SS s—0 1 + G((S)G(S) 1 + LILI}) G((S)G(S)
M
K] (s + 2)
G.(5)G(s) = —= , Loop transfer function G.(s)G(s)

0
sV IT s+ po) determines the steady-state error



Steady-State Error of Step Input (N=0)

e System type is defined as the number of integrations in the loop
transfer function, i.e., N

KH %)
G.(5)G(s) = :
g~ H + Di)
B A
* Type-zero system (N=0) €s = 1 K,
A A 7 position error constant

e.. = [+ GANG = M Q
+ G (0)G(0) 1+K1:I,:"/;1—:I]Pk K, = lim G, (5)(1( )

P s—0



Steady-State Error of Step Input (N>0)

A | AsN
e, = lim = lim

=0 1+ K2/ Y TIp) =0 " + K[Tz/ TIpe

O‘

* For the prototype 2nd-order system, the steady-state error of a step
input is zero (why?)



Steady-State Error of Ramp Input
1

E(s) = R
) =13 6.69606) W
1
- A EERTTO R
s(A/s?) , A . A
e = lim = lim = lim

s—0 14+ G.(5)G(s) s=0 5 + 5G.(5)G(s) s—0 sG.(5)G(s)

Define velocity constant K, = lim sG.(s)G(s)

s—0

* For a type-1 system (N=1)
A

A
e, = lim =
=0 sKTT (s + z)/[sSTL(s + pi)] ‘ Css = KHZI/HPA K,

* For a type-0 system (N=0)—2>steady-state error= infinite
* For a type-N system with N>1-> steady-state error=0



Steady-State Error of Acceleration Input
1

Bt} = 1 + & (5 )G (5) Ay
i (1) = e = lin) s 75 6y RO)
s(A/s) A

Define acceleration constant K, = l'ig}) s G.(s)G(s)

* For a type-2 system (N=2)
A A

KHZI/HPA - Ka‘

 For a type-N system with N<2 = steady-state error= infinite

2] =
(’SS

* For a type-N system with N>2-> steady-state error=0



Steady-State Error and System Type

Table 5.2 Summary of Steady-State Errors

Number of

Input

Integrations
in G.(s)G(s), Step, r(t) = A,

Ramp, r(t) = At,

Parabola, r(t) = At?/2,

Type Number  R(s) = A/s R(s) = A/s? R(s) = A/s®
0 A - 0
Css —
ST 3
1 e = 0 A %
K,
2 e = 0 0 A

a




Concept of Error Constants

* Error constants, Kp, Kv, and Ka, describe the ability of a system to reduce or
eliminate the steady-state error.

* Error constants are utilized as numerical measures of the steady-state
performance.

* The designer determines the error constants for a given system and
attempts to determine methods of increasing the error constants while
maintaining an acceptable transient response.

* However, an increase in error constants may result in an attendant
decrease in the system damping ratio, thereby leading to a more oscillatory
response to a step input.

- seek a compromise that provides the largest error constant based on the
smallest allowable damping ratio



Nonunity Negative Feedback

* We have addressed the steady-state error for unity feedback (error
constant analysis). How about nonunity feedback?

- Approach 1: transform a nonunity feedback into a unity feedback
and use the error constant analysis

- Approach 2: derive the steady-state error directly without using the
error constant analysis



Example 1 NOﬂUﬂIty FGEdbaCk (using approach 1)

* For a system with a nonunity feedback, the units of the output are
usually different from the output of the sensor.

—> Constants K, and K, account for the conversion of one set of units to
another set of units (from rad/s to volts)

; Controller Process
R(s)
Y(s)

Desired Volts + Volts ‘ _

. j— K Gls) > G(s) +—> Speed

| ‘lf o (rad/s)

(rad/s)
Sensor
Volts
K, o




Example 1 NOﬂunlty FGEdbaCk (using approach 1)

Controller Process

)1  —_ K o ki G.(s) > G(s)
adls ) Sensor
Volts K, -
* Select K, such that K, =K,

* Move the block for K; and K, past the summing node.
e Obtain the equivalent block diagram for a unity feedback system

(@ e E( (5) . o
R(s) , K, Volts G.(5)G(s) Y(s)

(rad/s) (rad/s)




Example 2 NOﬂUﬂIty FeedbaCk (using approach 2)

) KZ Controller Actuator Process
H(S — E (s)
¢ Z(: Ul
75 =+ 1 R(s) et e G(5) L2 6w =0 e > Y(s5)

A Sensor
lim H(s) = K5

_)O B(s)
h H(s) <

Y(S) - T(S)R(S) E(s) = 1+ 7s(1 — KiG.(5)G(s))
E(s) = R(s) — Y(s) = [1 — T(s)]R(s) » VT TR A1+ KGU(9)Gs)
Ki G.(5)G(s) (15 + 1)K, G(5)G(s) 1

R(s)

- — e = lim s E(s) = ,
1 + H(s)G.(s)G(s) 75 + 1+ K|G.(s)G(s) s=0 I+ K lim G(s)G(s)

I(s)



Example 3 NOnUﬂlty FeedbaCk (using approach 1)

Controller Actuator Process
E,(s) Z(s) U(s)
R(s) > G(s) e G,(s) — G(s)
Sensor
B(s)
H(s) =

Y(s) Tle) — G.(s)G(s)

R(s) (5) =77 H(s)G.(s)G(s)

() _ 2 G.(s)G(s)

Rs) 18 =1z “here 20) = 16 9)G(s)(HG) = 1)

Z(s) is the equivalent loop transfer function of a unity feedback control system



Example 3 NOﬂUﬂIty FGEdbaCk (using approach 1)

* Error constants can be defined in terms of Z(s)

K, = lim Z(s), K, = lim sZ(s), and K, = lim s* Z(s)



5.7 Performance Indices

* A performance index

—to be calculated or measured and used to evaluate the system
performance

* Optimum control system

—>the system parameters are adjusted so that the performance index
reaches an extremum, commonly a minimum value



T
* Integral of squared error ISE = / e?(1) dt.
0
e Other performance indices:

T
IAE = / le(t)|dt, The general form of the performance integral is
0

¢ & T
ITAEzf te()| dt ) [ = / fle(r), (1), y(1). 1) dt.
0 J 0

T
ITSE = / te*(1)dr.
0



Summary of Chapter 5

e Control system performance is measured in terms of the transient and steady-
state response

* Transient response

- Determined by poles and zeros (poles dictate the response modes and zeros
dictate the weightings)

- Performance measures for swiftness: rise time and peak time

- Performance measures for closeness: P.O. and settling time

- Design method: location of poles and zeros in the s-plane (tentative)
e Steady-state response (of a stable system)

—>Determined by the input and system type

- Performance measure: steady-state error

- Design method: error constant analysis



