Chapter 2

Mathematical Models of Systems



2.1 Introduction

» Systems under consideration are dynamic in nature

- Differential equations
 Linear systems are so important because we can solve them

— Linearization and Laplace transform



2.2 Differential Equations of Physical Systems
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2nd-order linear differential equation with
constant coefficients

d?y(t dy(t
LDy

I

dt? dt

+ ky(t) = r(1)

* M: mass
* k: spring constant of the ideal spring
* b: friction constant



Analogous Systems
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Analogous Variables

* \Voltage—velocity analogy
(also called force—current analogy)

* Force— voltage analogy
—analogy that relates

velocity and current variables
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+ ky(r) = r(1)

v(t) dt = r(t).



2.3 Linear Approximations of Physical Systems

* A great majority of physical systems are linear
—2>within some range of the variables

* A system is defined as linear in terms of the system excitation (input)
and response (output)

* Linear system
—>superposition + homogeneity

* y(t) = mx(t) + b isalinear function? A linear system? A linear
transformation?



Different Perspective

* May be considered linear about an operating point X, y, for small
changes Ax and Ay.

y(t) = mx(t) + b

\(f) = Xg T A\(f) \'([) = Yo T A'\’(T)
yo + Ay(t) = mx, + mAx(t) + b

Ay(t) = mAx(1)

“We are all in the gutter, but some of us are looking at the stars.”
— Oscar Wilde, Writer



Taylor Series Expansion (Linear Approximation)

dg (x(t) — x) d’g (x(1) — xp)?
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2.4 Laplace Transform

 Ability to obtain LTl approximations of physical systems
— Laplace transformation
* Laplace transformation

- Substitute relatively easily solved algebraic equations for the more
difficult differential equations

* Inverse Laplace transformation
—> Heaviside partial fraction expansion

Oliver Heaviside (/'hevisaid/; 18 May 1850 — 3 February 1925) was an English self-taught electrical
engineer, mathematician, and physicist.



Illustration of Laplace Transform

~

dy(1)  dy(1)
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172 + b 2 ky(t) = r(r) (2.18)
) Ay _
M(S“Y(S) —sy(07) — 7(0 )) + b(sY(s) — y(07)) + kY(s) = R(s).
(
: dy
Initial conditions and zero input: 7(f) = 0, and y(0") =y, and 0 = 0,
Al | =0

Ms*Y(s) — Msy, + bsY(s) — by, + kY(s) = 0.

(Ms + b)y, _ p(s)
Y(s) = = = ’
Ms=+ bs + k  q(s)




 (Ms + D)y,  p(s)
 Ms*+bs + k q(s)

* q(s)=0

— Characteristic equation (roots of this equation determine the character of
the time response)

* Critical frequencies

- poles: roots of g(s)=0

—> zeros: roots of p(s)=0

* Y(s) becomes infinite at poles and zero at the zeros.

* Complex frequency s-plane plot of the poles and zeros

— graphically portray the character of the natural transient response of the
system
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Steady-state or Final value of the Response
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Final Value Theorem lim y(r) = lim sY(s),

 All poles of Y(s) strictly in the left half-plane except for at most one
simple pole at the origin

—poles on the imaginary axis and in the right half-plane (not allowed)
—repeated poles at the origin (not allowed)



Damping Ratio and Natural Frequency

* Second-order spring-mass-damper system

(s + b/M)y, _ (s + 2{w,)yo
s? + (b/M)s + k/M s? + 2f{w,s + w,z,'

Y(s) = (2.30)

{ 1s the dimensionless damping ratio

w, 1S the natural frequency

Sl~S2 — _§wn i Wy, Vv §2 o 1 W, — v k/MandgT = b/(z v kM)



Natural Frequency = Frequency ?
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Damping in Frequency Domain
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Damping in Time Domain
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2.5 Transfer Function of Linear Systems

* Transfer function of a linear system

—>the ratio of the Laplace transform (LT) of the output variable to the
Laplace transform of the input variable, with zero initial conditions

—an input—output description of the behavior of a system. It does not
include any information concerning the internal structure of the
system and its behavior

* LTI systems (stationary, constant parameter)—> OK for LT
* Time-varying systems (nonstationary, time-varying parameters) 2 X



Transfer Function of Spring-Mass-Damper
System
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Transfer Function of RC Network
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G _— — — — — .
(5) W(is) RCs+1 7s+1 s+1/7

T = RC, the time constant of the network.



Long-term System Behavior

d"y(t) d" 1y (1)
dt" T - A" + -4 qoy (1)
d"r(1) d"%r(r)
= Dp_1 T + Pp_s T2 + = ==+ pgrlt),

Transform equation: q(S)Y(S) — m(s) = p(S)R(S) m(s) is indecued by initial conditions
Transfer function (zero initial conditions, m(s) = 0):
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Long-term System Behavior
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Long-term System Behavior

m(s) , p(s) n(s)
Y(s) = + = Yi(s) + B(s) + K(s
(‘S) (I(S) ([(S) d(S) l(S) .,(‘S) (‘S)
Y/(s) partial fraction expansion of the natural response
Y;(s) partial fraction expansion of the terms involving factors of g(s)

Y;(s) partial fraction expansion of the terms involving factors of d(s)

y(t) = yi(t) + y2(2) + y3(2).

Natural response (determined by the initial conditions): y,(t)
Forced response (determined by the input): y,(t) +y;(t)
Transient response: y,(t)+y,(t)

Steady-state response: y;(t)



d’y(t)  dy(1)

Example 2.2 L4 4 3y(0) = 2r(0).
dt- dt
o ” dy
initial conditions are y(0) = I.E(O) = 0,and r(t) = 1,t = 0.

[s?Y(s) — sy(0)] + 4[sY(s) — y(0)] + 3Y(s) = 2R(s).

Since R(s) = 1/s and y(0) = 1, we obtain

s +4 2
Y(s) = - t— ,
s+ 4s +3  s(s°+ 4s + 3)

s + 1 s+ 3 s +1 s+ 3 S

Y(s)=[3/2 +_1/2J+[ = + 1/3}+%=H(s)+}§(s)+)§(s).



s +1 s+ 3 s +1 s + 3

Y(s)z[s/2 +_1/2J+[ - P 1/3J+£=Y;(s)+}g(s)+}g(s).

[—

lim y(r) = % Another way of calculating the steady-state response?



Example 2.4

* Velocity-voltage analogy (force-current analogy)
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Z
Sk MisVi(s) + (by + ba)Vi(s) — biVa(s) = R(s),
| Friction b, é(
______ ‘elocity 1i/E(S)
I M) + Bi(YAGs) — Wi(s)) + k= 0.
Friction b; | =] .
My | Velocity [ My + by + b, —b, 1 Yi(s) [ R(s) "~
Force f(i}l i e k —
—b M>s + b, + R4S 0

Assuming that the velocity of M, is the output variable

. (Mos + by + k/s)
W= R(s)  (Mys + by + by)(Mss + by + k/s) — b,? What is the transfer
(Mas® + bys + k) function of X,(s)/R(s)?

(Mys + by + by)(Mys* + bys + k) — by’



Example 2.5 DC Motor

* DC motor moves loads
* An actuator is a device that provides the motive power to the process

* DC motor is an example of an actuator
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Disturbance
/c!{ S)

m

Field
, 1 | 4@
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0(s) -

Vi(s)  s(Js + b)(Lys + Ry)

1. No need for considering the inner structure

Km/ (J Lf )

s(s + b/J)(s + Re/Ly)

2. How to achieve a desired position?
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Output
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Rﬂ'
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+
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1 Iy PN Inertia=J
Friction=»5
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2.6 Block Diagram Models

* Block diagram

—>graphical representation pf the relationship between the outputs
(controlled variables, dependent variables) and inputs (controlling
variables, independent variables)

Process, G(s)

K, Output

V. (%) _’ _’ H(S )
s(Js + /))(LI—.s' - Rf—) ‘

[nputs Outputs
[\|| y) ’ . ’ ‘f y)
System
R5(s) > » (5




Block Diagram Transformations

Transformation Original Diagram Equivalent Diagram
1. Combining blocks in cascade X X, X X X
—{ Gy(5) - G(5) B p| GGy e
or
X X
—pl (1] fr—
2 !\-’lm’il]g a summing point X1+~ i e X3 Xy G + ~ X3
behind a block \/ g \
\ L
(G [ —
3. Moving a pickoff point X X X
ahead of a block > G = > G
X, X
pra—| < G
4. Moving a pickoff point X X5 X
behind a block » G > » G
X, X, 3
‘ G
5. Moving a summing point X X T X
ahead of a block —_— G _’C>—’ G —
+ &
1 X
G
6. Eliminating a feedback loop X, + X X G X,
g 1+ GH




Assumption

* No loading effect is assumed

- Loading and interaction between interconnected components or
systems may occur

—2If the loading of interconnected devices does occur, the engineer
must account for this change in the transfer function and use the
corrected transfer function in subsequent calculations



Example

l[\i\
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Controller Actuator Process
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Example 2.6

Gl(ﬂ

/\'I\v %

GE(S)

H:(S)‘

G;(s)

G4( 5)

’)l\l

loop Gi(s)

H_}(S) -+

H,(s)

Gy(s)H,(s) is a positive feedback loop.



2.7 Signal-flow Graph Models

* Signal-flow graph

—> an alternative method for graphically determining the relationship
between system variables

—>developed by Mason

— advantage: signal-flow gain formula



O
Y
O

Models

* Signal-flow graph |
—a diagram consisting of nodes that are connected ’ G (s)

byI several directed branches and a graphical representation of a set of linear
relations

e Branch (equivalent to a block in block diagram)
—a unidirectional path segment

* Nodes

—input and output points or junctions

* Path

—> a branch or a continuous sequence of branches that can be traversed
from one signal (node) to another signal (node).

T



”Il
1

O -
Models
* Loop O 1
—>a closed path that originates and terminates on -

the same node, with no node being met twice along the path

* Nontouching loops
— Loops do not have a common node



From Cramer’s Rule to Mason’s Gain Formula

aj;nXp + apXxp + r = Xy

a“

1
P']O 2
ar X1 + axpxs + rp = Xs.
apn
x1(1 — ay) + x(—ayy) =y, e :

x1(—an) + x(1 — an) = n.

(1 - ”22)’-1 + PLp) 1 — an [p)

Xy = = e 2,
(1 —an)(1 — axn) — apay A A
(l - (l”)l'z X B (lzll'] ] — an (53

X9 = = rp + ri.

(1 = ay)(1 — axn) — apay A~ A



From Cramer’s Rule to Mason’s Gain Formula

(1 — an)ry + apr; 1 — ay ayy |
¥ = — — = —r +—n a
T —an Y — o) — G A T ETS I
— ap — dy) — apda ' - o
Iy =
(1 — ay)ry + ayn l — ay iy
Y2 = = r; v ——n. 1, a
(1 = ay)(1 — axp) — apay A A @ 12
Nontouching loop 1
el );O oo

A= (l — (l“)(l — (132) — dppdy)y — j = ayy — a» o d11dry — d12da71.

\\\\ \ /
~* Self-loop
A = 1- self-loop gains +nontouching loop gains

a




Mason’s Gain Formula

Simplified version

> kPiik(s) A (s)
o) = SPr(s)Ag
) = =5 (1 - BAOMG)

Pjx(s) = gain of kth path from variable x; to variable x;,
A(s) = determinant of the graph.
Ajix(s) = cofactor of the path Py(s),

Explanations:

N
A(S) =1 — ELH(S) L3 E LM(S)Lm(S) o 2 Ln(S)Lm(S)Lp(S) o m

n=1 n.m n,m,
nontonchinoe nontonchine

A = 1—(sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops)

—(sum of the gain products of all combinations of three nontouching loops)
_+_ s .

The cofactor Ajy(s) is the determinant with the loops touching the kth path removed.



Example 2.7

Paths:
Pi(s) = Gi(s)Gy(s)G3(s)Gy(s) (path 1)

Py(s) = Gs(s)Ge(s)Gq(s)Gs(s) (path 2). .

Self-loops:
Li(s) = Ga(s)Hy(s).  La(s) = Hi(s)Gs(s).
Li(s) = Gg(s)Hg(s), and Ly(s) = Gq(s)H(s).

Determinant:
A(s) =1 — (Li(s) + La(s) + Ls(s) + Ly(s)) +
(Li(5)Ls(s) + Li(s)Ly(s) + Ly(s)Ls(s) + Lo(s)Ly(s5)).

Cofactors: ‘ Transfer function:
Ar(s) =1 = (L5(s) + La(s)). V6) _ e _ AOAG) + P(5)A(S)
Ay(s) = 1 — (Ly(s) + Ly(s)). R(s) “ A(s)
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Caution! O

(T:l (llz

* Calculate T(s)=X,(s)/R(s) |

Path: P=1

Self-loops: di1  axn  apa;.

Determinant: A = | — ayy — ax»n — apay + apay
Cofactor: 1 — ay,

Transfer function: | — d»

Relationship: | — a»

Correct?



