Midterm (I) %% g4
Cheng-Yi Hung

Problem 1. Determine the following series are convergent or divergent. Please explain why
they are convergent or divergent.

F—RAFENEERE - ERHSE > BIFE—RE - BSFRBYHR LA -

1 > 1
_ i —1)"sec
—— NG v ;:; ) V2n —1
. i (n!)3 > ST
2 (3n)! v Z;tanh n+1—tanhvn
o0 2 —_n
34 2
111 ; ( + n)
Solution:

i Use the fact that

. tan 1
lim —"* =1
n—oo
We have -
tan® —=
lim —Y" =1
n—o0 \/—ni3
= 1
By the limit comparison test, since T
converges as well.

oo
converges, we obtain thatz tan®
ii Use the ratio test. We have

1
n=1 \/ﬁ
N3 | 3
i 19— i (n+1)H)* (3n) _ (n+1) :i<1
n—oo | @y, noo (3n+3) ()3 noo (3n+3)Bn+2)3n+1) 27
= (n)? .
Hence the series 18 convergent.
— (3n)!
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iii Use the ratio test. We have

3+ :2)"

1m
B

e (Bn+2)/n \" 1
—JEEO((3n+4)/(n+1)> 3+ o

im (142) (1 2\ ! e®
= 11m —_ —_ =
n—o00 n 3n+4 3+n_+1 3

Qp+1
G,

lim

n—o0

—n

Note: We can use L’hospital’s rule to find that

2 n
lim 1— =23
n—00 3n—%4

Or use the definition of e and some change of variables.

oo 2 —MNn
Hence the series Z (3 + —) is convergent.

n
n=1

iv Notice that

lim se¢c — =1

n—oo  /2n —1

(because it is a continuous function and tends to sec(0) = 1.)

Meaning that lim (—1)" sec does not exists. Hence, (by test for divergence)

1
n—00 Van—1

1
the series Z " sec ——= diverges.

van —1
v Observe that it is a kind of telescoping series. We have
k
Ztanh vn +1—tanhvn

:_M—tanh 1) + tanh{v/3) — tanh(v/2) + - + tanh(Vk + 1) — tanh(vk)
= tanh(vVk + 1) — tanh(1)

Since
‘ VI _ o~ VEFI
Jim tanh (VET) = Jim e = 1
We obtain

Ztanh vVn+1—tanhy/n =1 — tanh(1).
n=1

Hence the series is convergent.
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Problem 2.

n=1

o
a
Let a,, > 0 for all n. Suppose E a? converges. Show that g — also converges.
n

n=1

Solution: Use Cauchy-Schwarz inequality. We have

IA

(£5) <(9) (5

n=1
(o] o0 1
Since both of the series Z a? and Z 3 are convergent, (by assumption and the p-series)

n=1
k

Qp, . .
we obtain that the series E — is convergent as well, by the comparison test.
n

n=1

n=1

(="

Problem 3. Find the value of Z m
n n

Solution: Recall that the Taylor series of arctanx at 0 is given by

e (_1)nl‘2n+1

arctanz = 22——1—1’ lz] <1
n

Compare with the desired series, we see that

o0

Since ‘%‘ < 1, we obtain that

>

n=1

n

2n+14”

1
arctan (2)

2x—3
x2—2z+1

Problem 4. Find the Taylor series of at —1. What is the radius of convergence?

Solution: /£ &: BAEZRYAKEHE L = -1 BELEM AL 2=0-
Let z =2 + 1. Observe that

2 — 3 B
22 —2x+1

We can rewrite it as

Page 3 of 11



1 oo
(%) Since 1 = E x" for |x| < 1, we have
-
0

=20

L e . 1 1 1 Z\"
1—x Zn:ﬁ :nzgn—i—l)a:.Soz~mzz~2(n+1)(§>

Combine these two results, we obtain

1_—1§ a ;1 ' ﬁ B _i G)n— %'i(wr 1) (g)n = —i22”(5+n)z"

n= n= n=

at —1 is

Change z = x + 1 back, we therefore obtain that the Taylor series of 2 o +1

— f: 27275 + n)(x 4+ 1)"

As for the radius of convergence, look at the argument (%) above. To make this true, we
require |§’ < 1. Hence the radius of convergence is 2.

Problem 5. Let f(z) = xsin’x.
i Find the Taylor series of f(x) centered at z = 0.
ii Find the value of f11(0) and £1°2(0).

Solution: E e E - HMF B E > /‘?EU:%*"J AR ERBEE B
ERBEE  RERGL — o - (THBRNEHIERFIEHAENE % BARTAREE )
P’ %

BARF LB E > RiB K \éﬁﬂgﬁ*%ﬁﬁ 4—?91 SRR P (e A a5y 7
B ARG Y TR ER > BHNFZTRAHES ﬁ?’hiumia‘w 238345 -
o (—1)”5{,’2”

i Recall that cosz = Z . Since sin® z = 1(1 — cos(2z)), we have

— (2n)!

L, a (e
iz =5-2) (2n)!

So

n22n—1$2n+1

o was (F) (22 — (=1)
oSz =g =50 (2n)! :_nzl (2n)!
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ii Notice that 2-541 =11 and 2-% + 1 =102, we have

SN (—1)°22°-1 A1)(0) _ 09
S S N — 2911 = 5632
11! 2-5)! /

And since 12! is not an integer, f(19%(0) = 0.

Problem 6. Let f(z) = (1 + 2)~'/3 defined on (—1,1). Show that the remainder R, (z)
converges to 0 as n — oo for any |z| < 1.

R RRIER S BRI AS B AR A o LT A EENIRA ©

Solution: Let @ € R. We tend to show that for the function f(z) = (1 4 x)*, the
remainder R, (z) converges to 0 as n — oo for any |z| < 1. In our case, « = —1/3.
First, observe that

FO@) =a(a—1) - (o —n)(1+£)* "

Then we know

Rn(x) — /Om Mf(n"‘l)(t)dt = a, /Ox ((:E;t)n dt

n! 1+ t)ntl-a
where
ala—1)--(a—n)
n!
Now, we claim that «,, is bounded. Notice that when n > § = 2 <2

oy =

(8% a—n (0%
o= =——1<1
1 n n

So ap < ayq for all m > n when n > ¢ is large enough. This proved that «, is bounded
when n is large. Let M be one of upper bounds of «,,. This M is independent of n.
Now we discuss the convergence of R, (z) for different .

e Suppose that 1 > z > 0. In the formula of R,(z) we have 0 <t <z < 1, so

W <1 and (1 +t)a < 2%,

Therefore
’ (‘CC - t)n « ¢ n
R.(z) = oy <—7dt§M-2 (x —t)"dt
0 0

Since 0 < z < 1 we have

Aax—ﬂMﬁ:_%x_wwl

n+1

r xn—i—l
= —0asn— oo
o n-+1

and thus we obtain R, (z) — 0 as n — oo.
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e Suppose 0 > z > —1. Since —2=" _ is continuous on (x,0), by generalized M.V.T.

(]_+t)n+1 [
(for integral), there exists € (z,0) such that

f (@) (=) o xlz—r)t
/0 (14 t)ntize it = (14 )ntizo /0 Ldt = (1 + )t

Now, observe that

—1l<r<0 = —r>rx>0
—l<ae<r = 1> —x>—r
— 1l>—-xz>-r>rz>0

Hence we see | —x — rz| > | — x + r|, namely, we have
v — 7| < |z +rof

Apply this result to our formula of R,(z), we obtain

Yo ()
n ———dt
a /0 (1+t)n+lfa
x(x —r)"
(1+T.)n+1 «
Manrl
‘ 1+ 7))«
M:L,n+1
' 1+ x)t-@

| R ()] =

IN

<

as n — oQ.

Hence R, (z) — 0 as n — oo for ant |z| < 1.

BARRM R —AF k- FBEAS AR AR E R O H BB EREE -

Solution: Let a € R. We tend to show that the remainder R, (z) of the function f(z) =
(1+x) converges to 0 as n — oo for any |z| < 1. In our case, « = —1/3. For = € R with

|z| < 1, choose t so that 0 < |t| < |z| < 1. So |x —t| < |1 + | since
o forz >0, 0one has [z—t| =2—t<1<1+4+t=|1+1|.

o for x <0, one has |[z—t| =t—x <t+ 1= |1+ t|, since —z < 1.

Thus, by continuity, |

T t| attains its maximum g < 1 for ¢ on the closed interval between
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zero and x. Then:

Rl =] [ S

n!
x— )"
( n!> / (M)(t)‘dt

(z —1)"

L+ Ha—n)- <z> (141!
(%)n' (a)'|Q|”-/Om!a/n—1|.|1+t|a_1dt

®3) «Q
<n- “g" - (lo| +1) - C — 0 as n — oo,

dt

On the above arguments, we use the following facts:

(1) () = (n+ DI, A+ 5o and () = 252(°)

2) [55]" < lal”

(3) |a/n —1] < || + 1 as n large enough, and C' := ‘ / |1+ ¢|*dt| is independent of
0

n, namely, has no n in its formula.

BH—ERAEN: n- (D) |g" ARZEG AT 07

Problem 7. A surface consists of all points P such that the distance from P to the plane

z = 1 is twice the distance from P to the point (0,0, —1). Find an equation for this surface
and identify it.

Solution: The distance L, from P = (x,y, z) to the plane is given by L; = |z — 1|. And
the distance Lo from P to the point (0,0, —1) is given by

L2:\/x2+y2+(z+1)2

Since L; = 2L,, we have

|z —1] =222 + 2 + (2 +1)2

Square both sides and then simplify it, we will obtain that
5\ 2

42* + 4y® + 3 (z+§> =

Hence it is an ellipsoid centered at (O, 0, —%) .
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Problem 8. Consider the curve r(t) given by
sin ¢
r(t)=| 2* |, tel0,1]
cos t?
i Find the total length of the curve.
ii Parametrize r(t) by the arc-length function s.

iii Find the curvature function x(s) in terms of s.

iv Find the principal normal N(s).

Solution: T E o #H > TR INE—EE > — B AT E THRITHE
T o

i Since r(t) = (sint?, 2t*, cost?), we first have
r'(t) = (2t cost?, 2%, 2t sint?)

So

' (t)] = \/(2t cos t2)2 4 (2t2)2 + (2t sin12)2 = 2tV/12 + 1
Hence the total length of the curve is

L= /01 v’ (t)| dt = /012t\/t2+1dt= %(\/é— 1)

by letting u = t> + 1 = du = 2tdt.

ii The arc-length function s(t) is given by

s(t):/o |r'(w)|dw:/0 Qw\/w2+1dw:§( 17— 1)

{(s) = \/(gs + 1)2/3 1

And we can reparametrize this curve using s,
sin ((%5 + 1)2/3 — 1>

()= |3 (/(
cos ((—s + 1)2/3 — 1>

Hence we have

s—|—1)2/3—1)3 : 36[0,2(\/@—1)}

N

3

N

Page 8 of 11

i




iii Since now the curve is parametrized by arc-length, we know x(s) = |T'(s)| = |r"(s)].
So we only need to compute |r”(s)|. First, we see

(% +1) 1/3608((§8+1)2/3—1)
1/2 2
T(s)=r'(s)= | (3s+1)"* (( +1)%° - 1) , s¢ {o,gwé— 1)]
(% 1) 13sm<( 3+1)2/3—1)

And differentiate it again, we obtain

+
+

5 1)2/3 1) —81n((§3—|—1)2/3—1>
3 ~2/3 2/3 YA
5o +1 : (2 ) (st 1)
o +1)7P -1 ) —cos ((3s+1)"" 1)
Let A= (2s+ 1)2/3 Then we can rewrite T'(s) as
1 A— .
24-1  [(2y/A0A—D |24 ' Efﬁfl(z Pi—%m — 1)
2
24/ A(A=1) 24 -1 A7 sin(A —1) —cos(A—1)

Check (carefully) that the vector

—3A 7 cos(A—1) —sin(4A — 1)
LAY (A 1)1
A7 sin(A —1) — cos(A — 1)

2 /A(A—1)
24— 1

is a unit vector (having length=1). Since we know 4f = kN(s), we hence obtain that

_ 2/3
K(s) = 24 -1 ,  where A = (§s + 1)
2A/A(A—-1) 2

iv. By the computation above, we also know that

—3A ' cos(A—1) —sin(A—1) 3 2/3
1A (A —1)712 ,  where A = <§s + 1)
$Asin(A —1) — cos(4 — 1)

2. /AA-1)

N =541

Problem 9. Let C(t) = (z(t),y(t),2(t)), t € [a,b] be a differentiable curve in R? that is
parametrized by the arc length.

Let T(t) denote the unit tangent vector of C' at (x(t),y ( ), ( )), and let N( ) be the
principal normal vector of C' at (z(t),y(t), 2(t)). Define B = T x N. Show that 28 is parallel
to N.
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Solution:

Method 1:

(a) Note that since ¢ is the arc length parameter, both T(¢) and N(¢) are a
unit vector. So is B(t). Since B(t) - B(t) = 1, differentiate both sides we

obtain p p
—(B(t) - B(t 2 B(t) ) - B(t) =
(B0 B0) =2 (£B0) B0 ~0
Hence ‘gg’ is perpendicular to B.

(b) From definition we know B =T x N. Thus B - T = 0. Differentiate both
sides, we obtain

%(B(t)-T(t)) = (%B(t)) -T(t) +B(t) - <%T(t)) =0

But £T(t) = T'(t) is parallel to N(¢), which is perpendicular to B(t), we

see p
B(t)- ( =T()) =
- (5T0) =0
and hence p
—B(t) ) - T(t) =
(5B0)) 1) =0
Meamng, is perpendicular to T.

(c) Since B, N, T are perpendicular to each other, and by (a) and (b) we
know dB is perpendlcular to B and T already, we know that dB has to be
parallel to N. (Because is thus parallel to the direction of B x T, which
is exactly the same as the parallel direction of N.)

Method 2: Use the Frenet-Serret formulas, which said

dT/dt = kN
dN/dt = —~T + 7B
dB/dt = —N

By definition of B, differentiate both sides we obtain

dB dT dN

Slnce = N and dN = —krT + 7B, we have
dB
E =7T x B

Hence is parallel to N.
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Solution: It is easy to see that for n € N,

(=1)"1-4-7---(1=3(n—1))
3n

F() = (1+) o8
Thus () is bounded on (—1,1) except possibly near the point z = —1,

To avoid this problem, we can choose a small € > 0 so that I. = [—1+¢,1—¢] C (=1, 1).
Then by extreme value theorem, since f((x) is continuous on the interval I., which is
a finite closed interval, f(™(x) attains its maximum M, somewhere in I.. Thus, from
Taylor’s inequality, we have

M.
(n+1)!

|z — 0]"™ = 0 asn — oo

| R ()] <

for all x € I.. This is true for all small € > 0. Hence we are done.

Remark 1.1. Use the language of set theory, we can then say the set S on which R,
converges to 0 as n — oo is given by

S = U I

£>0 small

Actually, it is not hard to see S = (—1,1).

Remark 1.2. :Z fA4435 694 AR - RAS W M, X RAZETH) - MAEE A c A&
n%% e FFLE c B 0 6905 1% - B8 M, € BB - ITAB K ERLH
& o B - ZEEA R TR B — BT B AT H AR 0 BN power series fE B & Fd]
ey Ui st B FBE AR LR EEE 0 BER ERMERLZRERHL
R LA A 1S M & 04 35 B 3R B A TP o 3 R &AL ey RAB > B ehiRAaik o
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