
Midterm (I) 參考解答
Cheng-Yi Hung

這是第一次期中考的參考解答。僅為參考，並非唯一標準。配分請依照助教或老師決定。

Problem 1. Determine the following series are convergent or divergent. Please explain why
they are convergent or divergent.

i
∞∑
n=1

tan3 1√
n

ii
∞∑
n=1

(n!)3

(3n)!

iii
∞∑
n=1

(
3 +

2

n

)−n

iv
∞∑
n=2

(−1)n sec 1√
2n− 1

v
∞∑
n=1

tanh
√
n+ 1− tanh

√
n

Solution:

i Use the fact that
lim
n→∞

tan 1
n

1
n

= 1.

We have

lim
n→∞

tan3 1√
n

1√
n3

= 1

By the limit comparison test, since
∞∑
n=1

1√
n3

converges, we obtain that
∞∑
n=1

tan3 1√
n

converges as well.

ii Use the ratio test. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

((n+ 1)!)3

(3n+ 3)!
· (3n)!
(n!)3

= lim
n→∞

(n+ 1)3

(3n+ 3)(3n+ 2)(3n+ 1)
=

1

27
< 1

Hence the series
∞∑
n=1

(n!)3

(3n)!
is convergent.
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iii Use the ratio test. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
3 + 2

n+1

)−n−1(
3 + 2

n

)−n

= lim
n→∞

(
(3n+ 2)/n

(3n+ 4)/(n+ 1)

)n

· 1

3 + 1
n+1

= lim
n→∞

(
1 +

1

n

)n(
1− 2

3n+ 4

)n

· 1

3 + 1
n+1

=
e1/3

3
< 1

Note: We can use L’hospital’s rule to find that

lim
n→∞

(
1− 2

3n+ 4

)n

= e−2/3

Or use the definition of e and some change of variables.

Hence the series
∞∑
n=1

(
3 +

2

n

)−n

is convergent.

iv Notice that
lim
n→∞

sec 1√
2n− 1

= 1

(because it is a continuous function and tends to sec(0) = 1.)

Meaning that lim
n→∞

(−1)n sec 1√
2n− 1

does not exists. Hence, (by test for divergence)

the series
∞∑
n=2

(−1)n sec 1√
2n− 1

diverges.

v Observe that it is a kind of telescoping series. We have

k∑
n=1

tanh
√
n+ 1− tanh

√
n

= ������tanh(
√
2) − tanh(1) +������tanh(

√
3) −������tanh(

√
2) + · · ·+ tanh(

√
k + 1)−������tanh(

√
k)

= tanh(
√
k + 1)− tanh(1)

Since
lim
n→∞

tanh(
√
k + 1) = lim

n→∞

e
√
k+1 − e−

√
k+1

e
√
k+1 + e−

√
k+1

= 1

We obtain
∞∑
n=1

tanh
√
n+ 1− tanh

√
n = 1− tanh(1).

Hence the series is convergent.
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Problem 2. Let an ≥ 0 for all n. Suppose
∞∑
n=1

a2n converges. Show that
∞∑
n=1

an
n

also converges.

Solution: Use Cauchy-Schwarz inequality. We have(
k∑

n=1

an
n

)2

≤

(
k∑

n=1

a2n

)
·

(
k∑

n=1

1

n2

)

Since both of the series
∞∑
n=1

a2n and
∞∑
n=1

1

n2
are convergent, (by assumption and the p-series)

we obtain that the series
k∑

n=1

an
n

is convergent as well, by the comparison test.

Problem 3. Find the value of
∞∑
n=1

(−1)n

(2n+ 1)4n

Solution: Recall that the Taylor series of arctanx at 0 is given by

arctanx =
∞∑
n=1

(−1)nx2n+1

2n+ 1
, |x| < 1

Compare with the desired series, we see that

∞∑
n=1

(−1)n

(2n+ 1)4n
= 2

∞∑
n=1

(−1)n
(
1
2

)2n+1

(2n+ 1)

Since
∣∣1
2

∣∣ < 1, we obtain that

∞∑
n=1

(−1)n

(2n+ 1)4n
= 2 arctan

(
1

2

)

Problem 4. Find the Taylor series of 2x−3
x2−2x+1

at −1. What is the radius of convergence?

Solution: 注意: 這題要求的是將級數在 x = −1 這個點展開，並不是 x = 0。
Let z = x+ 1. Observe that

2x− 3

x2 − 2x+ 1
=

2

x− 1
− 1

(x− 1)2
=

2

z − 2
− 1

(z − 2)2

We can rewrite it as
−1

1− z
2

− 1

4
· 1

(1− z
2
)2
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(∗) Since 1

1− x
=

∞∑
n=0

xn for |x| < 1, we have

1. −1

1− z
2

= −
∞∑
n=0

(z
2

)n

2. 1

(1− x)2
=

∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn. So 1

4
· 1

(1− z
2
)2

=
1

4
·

∞∑
n=0

(n+ 1)
(z
2

)n
Combine these two results, we obtain

−1

1− z
2

− 1

4
· 1

(1− z
2
)2

= −
∞∑
n=0

(z
2

)n
− 1

4
·

∞∑
n=0

(n+ 1)
(z
2

)n
= −

∞∑
n=0

2−2−n(5 + n)zn

Change z = x+ 1 back, we therefore obtain that the Taylor series of 2x−3
x2−2x+1

at −1 is

−
∞∑
n=0

2−2−n(5 + n)(x+ 1)n

As for the radius of convergence, look at the argument (∗) above. To make this true, we
require

∣∣ z
2

∣∣ < 1. Hence the radius of convergence is 2.

Problem 5. Let f(x) = x sin2 x.

i Find the Taylor series of f(x) centered at x = 0.

ii Find the value of f (11)(0) and f (102)(0).

Solution: 這題的配分稍微有點重，原則上第一小題只要級數答錯，不管第二小題答
案是否正確，最多只會給一分。(拿錯誤的結論推論得到正確的答案，這是不可能的。)
雖然配分比較重，不過大部分的同學其實都在這題得到蠻高的分數，很多人被扣分是
因為不小心少了係數或負號，這樣的話會視為粗心，我只會稍微扣 2 到 3 分。

i Recall that cosx =
∞∑
n=0

(−1)nx2n

(2n)!
. Since sin2 x = 1

2
(1− cos(2x)), we have

sin2 x =
x

2
− x

2

∞∑
n=0

(−1)n(2x)2n

(2n)!

So
x sin2 x =

x

2
− x

2

∞∑
n=0

(−1)n(2x)2n

(2n)!
= −

∞∑
n=1

(−1)n22n−1x2n+1

(2n)!
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ii Notice that 2 · 5 + 1 = 11 and 2 · 101
2

+ 1 = 102, we have

f (11)(0)

11!
= −(−1)522·5−1

(2 · 5)!
=⇒ f (11)(0) = 29 · 11 = 5632

And since 101
2

is not an integer, f (102)(0) = 0.

Problem 6. Let f(x) = (1 + x)−1/3 defined on (−1, 1). Show that the remainder Rn(x)
converges to 0 as n → ∞ for any |x| < 1.

這題一開始給的解法有誤，我將在後面說明錯誤的地方在哪。以下這個是正確的版本。

Solution: Let α ∈ R. We tend to show that for the function f(x) = (1 + x)α, the
remainder Rn(x) converges to 0 as n → ∞ for any |x| < 1. In our case, α = −1/3.
First, observe that

f (n+1)(t) = α(α− 1) · · · (α− n)(1 + t)α−n−1

Then we know

Rn(x) =

∫ x

0

(x− t)n

n!
f (n+1)(t)dt = αn

∫ x

0

(x− t)n

(1 + t)n+1−α
dt

where
αn =

α(α− 1) · · · (α− n)

n!
Now, we claim that αn is bounded. Notice that when n > α

2
=⇒ α

n
< 2

αn

αn−1

=
α− n

n
=

α

n
− 1 < 1

So αm < αn−1 for all m ≥ n when n > α
2

is large enough. This proved that αn is bounded
when n is large. Let M be one of upper bounds of αn. This M is independent of n.
Now we discuss the convergence of Rn(x) for different x.

• Suppose that 1 > x > 0. In the formula of Rn(x) we have 0 < t < x < 1, so

1

(1 + t)n+1
< 1 and (1 + t)α < 2α.

Therefore

Rn(x) = αn

∫ x

0

(x− t)n

(1 + t)n+1−α
dt ≤ M · 2α

∫ x

0

(x− t)n dt

Since 0 < x < 1 we have∫ x

0

(x− t)n dt =
−(x− t)n+1

n+ 1

∣∣∣∣∣
x

0

=
xn+1

n+ 1
→ 0 as n → ∞

and thus we obtain Rn(x) → 0 as n → ∞.
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• Suppose 0 > x > −1. Since (x−t)n

(1+t)n+1−α is continuous on (x, 0), by generalized M.V.T.
(for integral), there exists r ∈ (x, 0) such that∫ x

0

(x− t)n

(1 + t)n+1−α
dt =

(x− r)n

(1 + r)n+1−α

∫ x

0

1 dt =
x(x− r)n

(1 + r)n+1−α

Now, observe that

− 1 < x < 0 =⇒ −r > rx > 0

− 1 < x < r =⇒ 1 > −x > −r

=⇒ 1 > −x > −r > rx > 0

Hence we see | − x− rx| ≥ | − x+ r|, namely, we have

|x− r| ≤ |x+ rx|

Apply this result to our formula of Rn(x), we obtain

|Rn(x)| =
∣∣∣∣αn

∫ x

0

(x− t)n

(1 + t)n+1−α
dt

∣∣∣∣
= |M |

∣∣∣∣ x(x− r)n

(1 + r)n+1−α

∣∣∣∣
≤
∣∣∣∣ Mxn+1

(1 + r)1−α

∣∣∣∣
<

∣∣∣∣ Mxn+1

(1 + x)1−α

∣∣∣∣→ 0

as n → ∞.

Hence Rn(x) → 0 as n → ∞ for ant |x| < 1.

這裡提供另一個方法。不過這個方法還有地方需要改進，就給有興趣的同學想看看。

Solution: Let α ∈ R. We tend to show that the remainder Rn(x) of the function f(x) =
(1+x)α converges to 0 as n → ∞ for any |x| < 1. In our case, α = −1/3. For x ∈ R with
|x| < 1, choose t so that 0 ≤ |t| ≤ |x| ≤ 1. So |x− t| < |1 + t| since

• for x > 0, one has |x−t| = x−t < 1 < 1 + t = |1 + t|.

• for x < 0, one has |x−t| = t−x < t+ 1 = |1 + t|, since −x < 1.

Thus, by continuity,
∣∣x−t
1+t

∣∣ attains its maximum q < 1 for t on the closed interval between
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zero and x. Then:

|Rn(x)| =
∣∣∣ ∫ x

0

(x− t)n

n!
f (n+1)(t)dt

∣∣∣
≤
∫ x

0

∣∣∣(x− t)n

n!
f (n+1)(t)

∣∣∣dt
(1)
=

∫ x

0

∣∣∣(x− t)n

(1 + t)n
·(α− n) ·

(
α

n

)
· (1 + t)α−1

∣∣∣dt
(2)

≤ n ·
(
α

n

)
· |q|n ·

∫ x

0

|α/n− 1| · |1 + t|α−1dt

(3)

≤ n ·
(
α

n

)
· |q|n · (|α|+ 1) · C → 0 as n → ∞,

On the above arguments, we use the following facts:

(1) f (n+1)(t) = (n+ 1)!
(

α
n+1

)
(1 + t)α−n−1 and

(
α

n+1

)
= α−n

n+1

(
α
n

)
(2)

∣∣x−t
1+t

∣∣n ≤ |q|n

(3) |α/n− 1| ≤ |α|+ 1 as n large enough, and C :=
∣∣∣ ∫ x

0

|1 + t|α−1dt
∣∣∣ is independent of

n, namely, has no n in its formula.

還有一個問題在於: n ·
(
α
n

)
· |q|n 是不是真的會趨近 0?

Problem 7. A surface consists of all points P such that the distance from P to the plane
z = 1 is twice the distance from P to the point (0, 0,−1). Find an equation for this surface
and identify it.

Solution: The distance L1 from P = (x, y, z) to the plane is given by L1 = |z − 1|. And
the distance L2 from P to the point (0, 0,−1) is given by

L2 =
√

x2 + y2 + (z + 1)2

Since L1 = 2L2, we have

|z − 1| = 2
√

x2 + y2 + (z + 1)2

Square both sides and then simplify it, we will obtain that

4x2 + 4y2 + 3

(
z +

5

3

)2

=
16

3

Hence it is an ellipsoid centered at
(
0, 0,−5

3

)
.
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Problem 8. Consider the curve r(t) given by

r(t) =

sin t2
2
3
t3

cos t2

 , t ∈ [0, 1]

i Find the total length of the curve.

ii Parametrize r(t) by the arc-length function s.

iii Find the curvature function κ(s) in terms of s.

iv Find the principal normal N(s).

Solution: 這題的計算十分複雜，需要小心每一個步驟，一個小地方錯了就前功盡棄
了。

i Since r(t) =
〈
sin t2, 2

3
t3, cos t2

〉
, we first have

r′(t) =
〈
2t cos t2, 2t2, 2t sin t2

〉
So

|r′(t)| =
√

(2t cos t2)2 + (2t2)2 + (2t sin t2)2 = 2t
√
t2 + 1

Hence the total length of the curve is

L =

∫ 1

0

|r′(t)| dt =
∫ 1

0

2t
√
t2 + 1 dt =

2

3
(
√
8− 1)

by letting u = t2 + 1 =⇒ du = 2t dt.

ii The arc-length function s(t) is given by

s(t) =

∫ t

0

|r′(w)| dw =

∫ t

0

2w
√
w2 + 1 dw =

2

3
(
√
(t2 + 1)3 − 1)

Hence we have

t(s) =

√(
3

2
s+ 1

)2/3

− 1

And we can reparametrize this curve using s,

r(s) =


sin
((

3
2
s+ 1

)2/3 − 1
)

2
3

(√(
3
2
s+ 1

)2/3 − 1

)3

cos
((

3
2
s+ 1

)2/3 − 1
)
 , s ∈

[
0,

2

3
(
√
8− 1)

]
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iii Since now the curve is parametrized by arc-length, we know κ(s) = |T′(s)| = |r′′(s)|.
So we only need to compute |r′′(s)|. First, we see

T(s) = r′(s) =


(
3
2
s+ 1

)−1/3 cos
((

3
2
s+ 1

)2/3 − 1
)

(
3
2
s+ 1

)−1/3
((

3
2
s+ 1

)2/3 − 1
)1/2

−
(
3
2
s+ 1

)−1/3 sin
((

3
2
s+ 1

)2/3 − 1
)
 , s ∈

[
0,

2

3
(
√
8− 1)

]

And differentiate it again, we obtain

T′(s) =

(
3

2
s+ 1

)−2/3


−1

2

(
3
2
s+ 1

)−2/3 cos
((

3
2
s+ 1

)2/3 − 1
)
− sin

((
3
2
s+ 1

)2/3 − 1
)

1
2

(
3
2
s+ 1

)−2/3
((

3
2
s+ 1

)2/3 − 1
)−1/2

1
2

(
3
2
s+ 1

)−2/3 sin
((

3
2
s+ 1

)2/3 − 1
)
− cos

((
3
2
s+ 1

)2/3 − 1
)


Let A =
(
3
2
s+ 1

)2/3 Then we can rewrite T′(s) as

2A− 1

2A
√

A(A− 1)
·

2
√

A(A− 1)

2A− 1

−1
2
A−1 cos(A− 1)− sin(A− 1)

1
2
A−1(A− 1)−1/2

1
2
A−1 sin(A− 1)− cos(A− 1)


Check (carefully) that the vector

2
√

A(A− 1)

2A− 1

−1
2
A−1 cos(A− 1)− sin(A− 1)

1
2
A−1(A− 1)−1/2

1
2
A−1 sin(A− 1)− cos(A− 1)


is a unit vector (having length=1). Since we know dT

ds
= κN(s), we hence obtain that

κ(s) =
2A− 1

2A
√

A(A− 1)
, where A =

(
3

2
s+ 1

)2/3

iv By the computation above, we also know that

N(s) =
2
√

A(A− 1)

2A− 1

−1
2
A−1 cos(A− 1)− sin(A− 1)

1
2
A−1(A− 1)−1/2

1
2
A−1 sin(A− 1)− cos(A− 1)

 , where A =

(
3

2
s+ 1

)2/3

Problem 9. Let C(t) = (x(t), y(t), z(t)), t ∈ [a, b] be a differentiable curve in R3 that is
parametrized by the arc length.

Let T(t) denote the unit tangent vector of C at (x(t), y(t), z(t)), and let N(t) be the
principal normal vector of C at (x(t), y(t), z(t)). Define B = T×N. Show that dB

dt
is parallel

to N.
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Solution:

Method 1: (a) Note that since t is the arc length parameter, both T(t) and N(t) are a
unit vector. So is B(t). Since B(t) · B(t) = 1, differentiate both sides we
obtain

d

dt
(B(t) · B(t)) = 2

(
d

dt
B(t)

)
· B(t) = 0

Hence dB
dt

is perpendicular to B.
(b) From definition we know B = T × N. Thus B · T = 0. Differentiate both

sides, we obtain

d

dt
(B(t) · T(t)) =

(
d

dt
B(t)

)
· T(t) + B(t) ·

(
d

dt
T(t)

)
= 0

But d
dt

T(t) = T′(t) is parallel to N(t), which is perpendicular to B(t), we
see

B(t) ·
(

d

dt
T(t)

)
= 0

and hence (
d

dt
B(t)

)
· T(t) = 0

Meaning, dB
dt

is perpendicular to T.
(c) Since B,N,T are perpendicular to each other, and by (a) and (b) we

know dB
dt

is perpendicular to B and T already, we know that dB
dt

has to be
parallel to N. (Because dB

dt
is thus parallel to the direction of B×T, which

is exactly the same as the parallel direction of N.)

Method 2: Use the Frenet-Serret formulas, which said

dT/dt = κN
dN/dt = −κT + τB
dB/dt = −τN

By definition of B, differentiate both sides we obtain

dB
dt

=

(
dT
dt

)
× N + T ×

(
dN
dt

)
Since dT

dt
= N and dN

dt
= −κT + τB, we have

dB
dt

= τT × B

Hence dB
dt

is parallel to N.
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以下是第六題原本錯誤的證明:

Solution: It is easy to see that for n ∈ N,

f (n)(x) =
(−1)n1 · 4 · 7 · · · (1− 3(n− 1))

3n
(1 + x)−(1+3n)/3

Thus f (n)(x) is bounded on (−1, 1) except possibly near the point x = −1,
To avoid this problem, we can choose a small ε > 0 so that Iε = [−1+ε, 1−ε] ⊆ (−1, 1).

Then by extreme value theorem, since f (n)(x) is continuous on the interval Iε, which is
a finite closed interval, f (n)(x) attains its maximum Mε somewhere in Iε. Thus, from
Taylor’s inequality, we have

|Rn(x)| <
Mε

(n+ 1)!
|x− 0|n+1 → 0 as n → ∞

for all x ∈ Iε. This is true for all small ε > 0. Hence we are done.

Remark 1.1. Use the language of set theory, we can then say the set S on which Rn

converges to 0 as n → ∞ is given by

S =
⋃

ε>0 small
Iε

Actually, it is not hard to see S = (−1, 1).

Remark 1.2. 這題錯誤的地方在於，原先給的 Mε 並不是固定的。而是會因為 ε 以及
n 變動。事實上當 ε 接近 0 的時候，這個 Mε 會直接發散。所以這樣的估計並不是好
的。另外，這個證明其實跟另一個定理的證明稍微類似，是關於 power series 在閉區間
上的「均勻收斂性」類似。不過因為有些超出範圍，且實際上我們也不是這樣證明的，
所以以後有機會的話再跟各位聊。造成各位的不便，真的很抱歉。
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