Midterm Exam 1

1 (25 points) Determine the following series are convergent or divergent. Please explain why they are convergent or divergent.

$$i \sum_{n=1}^{\infty} \tan^3 \frac{1}{\sqrt{n}}$$

ii
$$\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!}$$

iii
$$\sum_{n=1}^{\infty} \left(3 + \frac{2}{n}\right)^{-n}$$

iv
$$\sum_{n=2}^{\infty} (-1)^n \sec \frac{1}{\sqrt{2n-1}}$$

v
$$\sum_{n=1}^{\infty} \left(\tanh \sqrt{n+1} - \tanh \sqrt{n}\right) \text{ (Hint: } \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.\text{)}$$

- 2 (10 points) Let $a_n \ge 0$ for all n. Suppose $\sum_{n=1}^{\infty} a_n^2$ converges. Show that $\sum_{n=1}^{\infty} \frac{a_n}{n}$ also converges. (Hint: Cauchy-Schwarz inequality).
- 3 (10 points) Find the value of $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)4^n}$. (Hint: Consider the Taylor series of $\arctan x$)

4 (10 points) Find the Taylor series of $\frac{2x-3}{x^2-2x+1}$ at -1. What is the radius of convergence?

5 Let $f(x) = x \sin^2 x$.

i (5 points) Find the Taylor series of f(x) centered at x = 0. (Hint: Consider $\cos 2x$.)

- ii (5 points) Find the values of $f^{(11)}(0)$ and $f^{(102)}(0)$.
- 6 (10 points) Let $f(x) = (1+x)^{-1/3}$ define on (-1,1). Show that the remainder $R_n(x)$ converges to 0 as $n \to \infty$ for any |x| < 1.

- 7 (10 points) A surface consists of all points P such that the distance form P to the plane z = 1 is twice the distance from P from the point (0, 0, -1). Find an equation for this surface and identify it. (Ellipsoid, elliptic paraboloid, hyperbolic paraboloid, hyperboloid of one sheet or hyperboloid of two sheets.)
- 8 Consider the curve r(t)

$$\mathbf{r}(t) = \begin{bmatrix} \sin t^2 \\ \frac{2}{3}t^3 \\ \cos t^2 \end{bmatrix}, \quad t \in [0, 1]$$

- i (5 points) Find the total length of the curve.
- ii (5 points) Parametrize r(t) by the arc length function s.
- iii (5 points) Find the curvature function $\kappa(s)$ in terms of s.
- iv (5 points) Find the principle normal N(s).
- 9 (5 points) Let $C(t) = (x(t), y(t), z(t)), t \in [a, b]$ be a differentiable curve in \mathbb{R}^3 that is parametrized by the arc length. Let $\mathbf{T}(t)$ denote the unit tangent vector of C at (x(t), y(t), z(t)), and let $\mathbf{N}(t)$ be the principal normal vector of C at (x(t), y(t), z(t)). Define $\mathbf{B} = \mathbf{T} \times \mathbf{N}$. Show that $\frac{d\mathbf{B}}{dt}$ is parallel to \mathbf{N} .