Assignment 3a

Due by October 24, 2019

This project is to implement image convolution with different kernels. The convolution of the function f with a *kernel* w is defined as

$$g(x,y) = (w * f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$
(1)

Let f(x, y), $0 \le x \le m$, $0 \le y \le n$ be a gray image and $w_1(s, t)$, $w_2(s, t)$, $w_3(s, t)$, $-1 \le s, t \le 1$ be three 3×3 kernels defined as follows.

	1	0	-1			1	0	1			$\begin{bmatrix} -1 \end{bmatrix}$	-1	-1]	
$w_1 =$	0	0	0	,	$w_2 =$	0	-4	0	,	$w_3 =$	-1	8	-1	
	1	0	1			1	0	1				-1	-1	

Do image convolution with the above three kernels on images described below.

- (a) 480×480 arrayR.raw (a microarray image)
- (b) 480×640 gelm1.raw (an electrophoresis gel image)
- (c) 512×512 mandrill.raw
- (d) 512×512 peppers.raw

Report each image associated with the results of 3 convolution results by slightly and uniformly rescaled the results.

You have to turn in image displays together with part of source codes, for example, C/C++, Matlab, Java, Python, and etc.