
Silvaco, Inc.
2811 Mission College Boulevard April 10, 2019
Santa Clara, CA 95054
Phone: (408) 567-1000
Web: www.silvaco.com

DeckBuild
User’s Manual

http://www.silvaco.com

Notice
The information contained in this document is subject to change without notice.

Silvaco, Inc. MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY
OF FITNESS FOR A PARTICULAR PURPOSE.

Silvaco, Inc. shall not be held liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this
material.

This document contains proprietary information, which is protected by copyright laws of the
United States. All rights are reserved. No part of this document may be photocopied,
reproduced, or translated into another language without the prior written consent of Silvaco
Inc.

AccuCell, AccuCore, Athena, Athena 1D, Atlas, Blaze, C-Interpreter, Catalyst AD, Catalyst
DA, Clarity RLC, Clever, Clever Interconnect, Custom IC CAD, DeckBuild, DevEdit,
DevEdit 3D, Device 3D, DRC Assist, Elite, Exact, Expert, Expert C++, Expert 200,
ExpertViews, Ferro, Gateway, Gateway 200, Giga, Giga 3D, Guardian, Guardian DRC,
Guardian LVS, Guardian NET, Harmony, Hipex, Hipex C, Hipex NET, Hipex RC,
HyperFault, Interconnect Modeling, IWorkBench, Laser, LED, LED 3D, Lisa, Luminous,
Luminous 3D, Magnetic, Magnetic 3D, MaskViews, MC Etch & Depo, MC Device, MC
Implant, Mercury, MixedMode, MixedMode XL, MultiCore, Noise, OLED, Optolith,
Organic Display, Organic Solar, OTFT, Quantum, Quantum 3D, Quest, RealTime DRC, REM
2D, REM 3D, SEdit, SMovie, S-Pisces, SSuprem 3, SSuprem 4, SDDL, SFLM, SIPC, SiC,
Silvaco, Silvaco Management Console, SMAN, Silvaco Relational Database, Silos,
Simulation Standard, SmartSpice, SmartSpice 200, SmartSpice API, SmartSpice Debugger,
SmartSpice Embedded, SmartSpice Interpreter, SmartSpice Optimizer, SmartSpice RadHard,
SmartSpice Reliability, SmartSpice Rubberband, SmartSpice RF, SmartView, SolverLib,
Spayn, SpiceServer, Spider, Stellar, TCAD Driven CAD, TCAD Omni, TCAD Omni Utility,
TCAD & EDA Omni Utility, TFT, TFT 3D, Thermal 3D, TonyPlot, TonyPlot 3D, TurboLint,
Universal Token, Universal Utility Token, Utmost III, Utmost III Bipolar, Utmost III Diode,
Utmost III GaAs, Utmost III HBT, Utmost III JFET, Utmost III MOS, Utmost III MultiCore,
Utmost III SOI, Utmost III TFT, Utmost III VBIC, Utmost IV, Utmost IV Acquisition
Module, Utmost IV Model Check Module, Utmost IV Optimization Module, Utmost IV
Script Module, VCSEL, Verilog-A, Victory, Victory Cell, Victory Device, Victory Device
Single Event Effects, Victory Process, Victory Process Advanced Diffusion & Oxidation,
Victory Process Monte Carlo Implant, Victory Process Physical Etch & Deposit, Victory
Stress, Virtual Wafer Fab, VWF, VWF Automation Tools, VWF Interactive Tools, and Vyper
are trademarks of Silvaco, Inc.

All other trademarks mentioned in this manual are the property of their respective owners.

Copyright © 1984 - 2018, Silvaco, Inc.
 2 DeckBuild User’s Manual

How to Read this Manual
 Style Conventions

Font Style/Convention Description Example

• This represents a list of items or
terms.

• Bullet A

• Bullet B

• Bullet C

This represents a set of directions
to perform an action.

To open a door:

 This represents a sequence of
menu options and GUI buttons to
perform an action.

FileOpen

Courier This represents the commands,
parameters, and variables syntax.

HAPPY BIRTHDAY

Times Roman Bold This represents the menu options
and buttons in the GUI.

File

New Century Schoolbook
Italics

This represents the variables of
equations.

x + y = 1

Note:
This represents the additional
important information. Note: Make sure you save often when

working on a manual.

1.

2.

3.
1. Unlock the door by inserting

the key into keyhole.

2. Turn key counter-clockwise.

3. Pull out the key from the
keyhole.

4. Grab the doorknob and turn
clockwise and pull.
 3 DeckBuild User’s Manual

Table of Contents
Table of Contents . 4

Chapter 1
Introduction . 8

1.1 What is DeckBuild. 9
1.1.1 Features . 9

Chapter 2
Tutorial. 12

2.1 Overview . 13
2.2 Starting DeckBuild . 14
2.3 Searching and Loading an Example . 15
2.4 Running a Simulation . 19
2.5 Plotting TonyPlot Files . 21

2.5.1 Plotting Files from the Deck or Runtime Output . 21
2.6 Quitting DeckBuild . 22

Chapter 3
Functions. 23

3.1 DeckBuild Modes . 24
3.2 Batch Mode Options . 25

3.2.1 Examples . 25
3.2.2 Preference Settings . 26

3.3 Remote Mode . 27
3.3.1 Introduction . 27
3.3.2 Using Remote mode . 27
3.3.3 Remote preferences . 28
3.3.4 Prerequisites . 34

3.4 DeckBuild Controls. 35
3.4.1 The View Menu . 35

3.5 Running Deck . 38
3.6 Stop Points . 43
3.7 History Feature . 45
3.8 PDF report and movie generation . 48

3.8.1 History Scripts . 48
3.8.2 Movie creation . 50
3.8.3 Browsing through history points . 52
3.8.4 PDF report creation . 53

3.9 Go to Line . 54
3.10 Tracking Variables . 55
3.11 Tracking Output Files . 57
3.12 Tracking Resource Usage . 59
4 DeckBuild User’s Manual

3.13 Tools Menu . 60
3.14 Edit Menu. 61
3.15 Help Menu . 62
3.16 File Menu . 63
3.17 Examples . 64
3.18 Cross-referencing runtime output and the deck . 70
3.19 Folding runtime output . 72
3.20 Visualizing VictoryProcess line statements. 73
3.21 Context sensitive help system . 75
3.22 Commands . 81

3.22.1 Deck Writing Paradigm . 81
3.22.2 Commands Menu . 81
3.22.3 Parsing the Deck . 81
3.22.4 Process Simulators . 83
3.22.5 Writing a Process Input Deck . 84

3.23 Preferences . 88
3.24 Application . 91
3.25 Tools . 93
3.26 Editor Settings . 94
3.27 History and File Settings . 95
3.28 Runtime Settings . 97
3.29 Simulation Settings . 100
3.30 Registered Filetypes. 102
3.31 Remote Settings . 102

Chapter 4
Statements. 103

4.1 Overview . 104
4.1.1 DeckBuild Commands . 104

4.2 ASSIGN . 105
4.3 AUTOELECTRODE . 109
4.4 DEFINE and UNDEFINE . 110
4.5 EXTRACT . 112
4.6 GO . 113
4.7 IF, ELSE and IF.END . 115
4.8 LOOP, L.END and L.MODIFY . 116
4.9 MASK . 118
4.10 MASKVIEWS . 120
4.11 SET . 121
4.12 SOURCE. 124
4.13 STMT . 126
4.14 SYSTEM . 127
4.15 TONYPLOT . 128

Chapter 5
Extract . 129

5.1 Overview . 130
5.2 Process Extraction . 131

5.2.1 Entering a Process Extraction Statement . 134
 5 DeckBuild User’s Manual

5.2.2 Extracting a Curve . 136
5.3 Customized Extract Statements . 138

5.3.1 Extract Syntax . 138
5.3.2 DEFAULTS . 182
5.3.3 Examples of Process Extraction . 183

5.4 Device Extraction . 192
5.4.1 The Curve . 192
5.4.2 Curve Manipulation . 194
5.4.3 BJT Example . 196

5.5 General Curve Examples . 197
5.5.1 Curve Creation . 197
5.5.2 Min Operator with Curves . 197
5.5.3 Max Operator with Curves . 197
5.5.4 Ave Operator with Curves . 197
5.5.5 X Value Intercept for Specified Y . 197
5.5.6 Y Value Intercept for Specified X . 198
5.5.7 Abs Operator with Axis . 198
5.5.8 Min Operator with Axis Intercept . 198
5.5.9 Max Operator with Axis Intercept . 198
5.5.10 Second Intercept Occurrence . 198
5.5.11 Gradient at Axis Intercept . 198
5.5.12 Axis Manipulation with Constants . 198
5.5.13 X Axis Interception of Line Created by Maxslope Operator . 199
5.5.14 Y Axis Interception of Line Created by Minslope Operator . 199
5.5.15 Axis Manipulation Combined with Max and Abs Operators . 199
5.5.16 Axis Manipulation Combined with Y Value Intercept . 199
5.5.17 Derivative . 199
5.5.18 Data Format File Extract with X Limits . 199
5.5.19 Impurity Transform against Depth . 199

5.6 MOS Device Tests. 201
5.7 Extracted Results . 202

5.7.1 Units . 202
5.8 Extract Features . 203

5.8.1 Extract Name . 203
5.8.2 Variable Substitution . 203
5.8.3 Min and Max Cutoff Values . 204
5.8.4 Multi-Line Extract Statements . 204
5.8.5 Extraction and the Database (VWF) . 204

5.9 QUICKBIP Bipolar Extract . 205
5.10 Using Extract with Atlas. 208

Chapter 6
Optimizer . 211

6.1 Overview . 212
6.1.1 Features . 212
6.1.2 Terminology . 212

6.2 Using the Optimizer . 213
6.2.1 Parameter settings . 214
6.2.2 Target settings . 214
 6 DeckBuild User’s Manual

6.2.3 Settings of the Optimizer . 215
6.2.4 Running optimizations on curves . 216
6.2.5 Optimizer return values . 217

Appendix A
Models and Algorithms . 218

A.1 Introduction . 219
A.1.1 Physical Models . 219

A.2 Concentration Dependent Mobility. 220
A.3 Field Dependent Mobility Model . 221
A.4 Sheet Resistance Calculation . 222
A.5 Threshold Voltage Calculation . 223

A.5.1 Breakdown Voltage Calculation . 224

Appendix B
DBInternal . 226

B.1 DBInternal . 227
B.1.1 Example . 227

B.2 The Template File . 229
B.2.1 The trial_id Variable . 229

B.3 The Experiment File . 230
B.3.1 Load command . 230
B.3.2 Experiment command . 230
B.3.3 Save Command . 230

B.4 Technical Details . 231
B.5 DBInternal Commands. 232

B.5.1 convert . 232
B.5.2 doe . 232
B.5.3 endsave . 234
B.5.4 get_data . 234
B.5.5 log . 235
B.5.6 monte_carlo . 236
B.5.7 no_exec . 238
B.5.8 option . 238
B.5.9 save . 239
B.5.10 sweep . 241
B.5.11 translate.ise . 244

B.6 DBIT . 245
B.6.1 The General Tab . 246
B.6.2 The Matrix Tab . 248
B.6.3 The Command Menu . 250
 7 DeckBuild User’s Manual

Chapter 1
Introduction

What is DeckBuild Introduction
1.1 What is DeckBuild
DeckBuild is an interactive, graphic runtime environment for developing process and device
simulation input decks.

This is an extremely powerful and flexible tool that is easy to use and provides many
automated features. It allows for transparent transition from one simulator to another,
automatic definition of mesh and mask information, and application of built-in measurement
(extraction) facilities. Before DeckBuild, these tasks often required user intervention and
were extremely time consuming. By automating these tasks, DeckBuild allows you to
concentrate on the real work at hand: accurate simulation.

1.1.1 Features
DeckBuild also offers several powerful features never before available. One of these features,
the optimizer, allows optimization across an entire input deck even between different
simulators. For example, varying an implant dose in SSuprem3 and a diffusion time in Athena
permits optimizing against a Vt curve simulated with Atlas. DeckBuild alsoprovides a
seamless integration with DevEdit and its adaptive meshing capabilities. Also, the Utmost
interface allows Silvaco’s parameter extraction package Utmost III to load data from one of
more device simulation runs to perform SPICE model parameter extraction. DeckBuild offers
real flexibility with the ability to use UNIX system commands within simulation decks.

DeckBuild also contains many other convenience features:

• A built-in tool palette allows interactive plotting of the current structure.
• Full interactive control of the simulator, including a history function that allows you to

back up in the deck and try again.
• The ability to define an arbitrary number of stop points where the simulator is halted

automatically.
• An indication in the input deck of the currently executing line.

Simulators
Many simulators are available in DeckBuild and most are supported by a complete set of
interactive popup windows. By selecting or moving various items on each popup, you can
easily generate correct syntax. A deck is built by going through each desired popup and
clicking on a WRITE button. This causes syntax to appear in the text editor. The deck can be
saved and retrieved for later use. The popups have the additional feature of input-deck
parsing. To do this, highlight a section of the input deck and choose Parse Deck. All
appropriate popups will then re-configure themselves to reflect the syntax. For example, if
you highlight an ATHENA IMPLANT statement and press Parse Deck, the Athena Implant
popup will appear. This popup will reflect the values in the highlighted syntax.

For manual deck editing, DeckBuild has a built-in text editor with syntax highlighting. The
text editor allows easy point-and-click editing, cut and paste to and from any other window,
find/replace, multiple scroll views, and other features.

Auto-Interface

DeckBuild allows and encourages concatenating of decks from different simulators. For
example, a simulation can start with SSuprem3 for fast 1D process simulation, move
into Athena for 2D process simulation, and be followed by any number of separate Atlas
9 DeckBuild User’s Manual

What is DeckBuild Introduction
device tests. Figure 1-1 shows a schematic of this flow. The entire result is saved as a
single input deck.
Notice how process simulation is treated as a serial flow of events, while device
simulations are treated as parallel. This is because of the way the auto-interfacing works.
At the conclusion of each process run, the simulation results are saved, and are used by
the next process simulator. Several process decks then form a serially-linked chain. Device
tests always use the last available process result. Auto-interfacing is one of the most
powerful features in DeckBuild.

Figure 1-1 DeckBuild Flow

Execution Control
DeckBuild provides a diverse set of controls over the running simulation. You can run the
entire deck. You can run it one line at a time. You can run the deck until a predefined line is
reached or halted immediately after the current command. You can even set multiple stop
points in the deck. While the simulation is running, DeckBuild also highlights the currently
executing line in the input deck. The simulator itself can be stopped, quit, killed, paused, and
unpaused.

One of DeckBuild’s unique features is the History function (see Section 3.7 History
Feature). DeckBuild remembers each line of the deck as it is executed and saves a structure
file after each one. As a result, if a problem is discovered, it is unnecessary to redo the entire
deck from the start. For example, if after running part way down an input deck and you
discover a missing statement or an erroneous value, you only need to point and click on the
line from which to start. DeckBuild automatically re-loads the saved history file and allows
the simulation to continue from that point on.

DeckBuild also allows plotting structures created by the simulator in various ways. At any
point in the deck, click a button and DeckBuild automatically causes the simulator to save a
structure file. It then starts up Silvaco’s post-processing tool (TonyPlot or TonyPlot 3D)
using the saved structure as input. This is often useful in conjunction with History to aid in
10 DeckBuild User’s Manual

What is DeckBuild Introduction
fast tuning of a section of input deck. A statement can also be changed then re-executed, and
the change is immediately visualized.

Examples andTutorial

DeckBuild provides full on-line examples that can be loaded up at the press of a button. The
examples are indexed so that you can enter search strings similar to sarch engines. These
examples provide input decks for actual devices and help when learning about DeckBuild.
Chapter 2 Tutorial is a tutorial that explains how to use DeckBuild to perform a simple
simulation.

Advanced Uses

Generic Decks

Most decks have built-in geometric constants that reproduce a single, unchangeable cross-
section of a wafer. DeckBuild’s IC layout interface (MaskViews) makes it possible to write a
single deck that can be used at any location on a wafer without using hard-coded geometry
information. You can create (or read from GDSII or CIF format) device layout and mask
layers using MaskViews. Then, create or modify a deck using DeckBuild to use mask
names with hard-coded geometry values. Finally after making a cutline using
MaskViews, DeckBuild can simulate that cross-section. You can simulate any cross-section
of the device in this manner.

Extraction

DeckBuild contains built-in extract routines for both process and device parameter extraction.
Extract forms a “function calculator” that allows you to combine and manipulate values or
entire curves quickly and easily. You can take one of the standard expressions and modify it
as appropriate to suit your needs or use the custom extract language to create unique
extraction statements specific to the current simulation.

Extract also includes features, such as variable substitution and internal 1D device simulators,
QUICKMOS and QUICKBIP for specialized cases of MOS and bipolar electrical
measurement. All extracted results are displayed in the DeckBuild runtime output
subwindow and stored in a datafile for easy comparison of different simulations.

Optimization
A powerful Optimizer is available within DeckBuild that allows quick and accurate tuning of
simulation parameters. Specify any number of input parameters to vary and any number of
targets to attain. For example, it is possible to find a target threshold voltage of 0.75 volts by
varying gate oxidation time and Vt adjust implant dose.

Optimization parameters may come from any simulator supported by DeckBuild and targets
from any extracted parameter. For example, it is easy to set up a deck that auto interfaces
from SSuprem3 to Athena and then to Atlas. Then, extracted values can be optimized from I-
V curves while using SSuprem3 or Athena diffusion coefficients or both as input parameters.
11 DeckBuild User’s Manual

Chapter 2
Tutorial

Overview Tutorial
2.1 Overview
In this tutorial a brief introduction to Deckbuild and its functionality are given. It will show
you how to:

• Start DeckBuild
• Perform a basic search in the Examples Database and load an example
• Execute an example
• Plot the results
• Quit DeckBuild

If you are new to DeckBuild, please follow this tutorial guide. Once you are familiar with
DeckBuild, you can see the remainder of the manual for details.
13 DeckBuild User’s Manual

Starting DeckBuild Tutorial
2.2 Starting DeckBuild
This section explains how to start DeckBuild and gives an introduction to the DeckBuild
Graphical User Inerface (GUI). To start DeckBuild in Linux, type the following into a
terminal:

DeckBuild &
DeckBuild will launch and the window shown in Figure 2-1 will appear. The upper portion of
the window is the deck editor window, where you can either type in the syntax directly or
display syntax from a loaded deck . The lower portion is the runtime output (RTO). This will
display information generated from the simulation run. The very top is a range of drop down
menus and toolbars.

The appearance of the editor can be adapted to your needs. Please see Section 3.23
Preferences for details.

Figure 2-1 DeckBuild Graphical User Interface (GUI)
14 DeckBuild User’s Manual

Searching and Loading an Example Tutorial
2.3 Searching and Loading an Example
In this tutorial, a standard example is going to be used to illustrate some of DeckBuild's
features. More than 500 examples are shipped with DeckBuild. To access the examples, select
FilesExamples as shown in Figure 2-2.

Figure 2-2 Opening the Examples Window

This will pop up the window shown in Figure 2-3. The search dialog is initially populated
with a hierarchical tree of examples.

By entering a search string, you can search the database of examples. By default, all fields
are considered in the search. This includes the description, title, and section headings.

In this introduction, the standard example 'mos1ex01' will be used. To search for this
example, enter the text 'mos1' into the search box. Figure 2-4 shows the results. 'mos1'
is also a section title and contained in the names of some other examples. Consequently, the
search returns a number of hits.

Every example includes a description. This is displayed in the lower portion of the
Examples search window.
15 DeckBuild User’s Manual

Searching and Loading an Example Tutorial
Figure 2-3 Examples Search Window
16 DeckBuild User’s Manual

Searching and Loading an Example Tutorial
Figure 2-4 Search Results for String 'mos1'

You can refine your search by using additional control parameters, such as adding more
keywords, using commands to exclude keywords, and limit the fields searched. Further
details can be found in Section 3.2.1 Examples.

Example 'mos1ex01' is highlighted in Figure 2-4. Clicking on the Load button will load it
into DeckBuild.

Clicking on another example will highlight it. The description in the lower window will also
change to reflect the new selection. You can also double-click on an example to load it.

Figure 2-5 shows the deck loaded into DeckBuild.

All standard examples are supplied already executed. Therefore, when you load a standard
example, all of the files for that example are placed into the current working directory. This
means that you do not have to execute a standard example to inspect the results.

Copying the result files can consume both time and memory. The dialog shown in Figure 2-4
offers a way to load only the simulation deck without copying all the other files. To do this,
click the Load deck only button. To load a pre-existing deck rather than an example, select
FileOpen from the drop down menus at the top of the window.
17 DeckBuild User’s Manual

Searching and Loading an Example Tutorial
Figure 2-5 DeckBuild with mos1ex01 Loaded
18 DeckBuild User’s Manual

Running a Simulation Tutorial
2.4 Running a Simulation
DeckBuild is incredibly flexible on how to run a deck. You can run line-by-line, run up to a
certain point, jump forward and backwards or any combination thereof. You can also run a
deck from beginning to end.

Figure 2-6 shows the options available when you click on Run. The very same functions are
also provided by default on the Toolbar.

Figure 2-6 Options to Run Deck as Available from the Run Menu

To run the deck through from top to bottom click on the Run button on the toolbar () or
drop down menu.

The deck will immediately be executed and the RTO will be populated with messages from
the simulator (see Figure 2-7).
19 DeckBuild User’s Manual

Running a Simulation Tutorial
Figure 2-7 Running Deck

In certain simulators, history files are generated. DeckBuild automatically inserts SAVE
statements into the deck at regular occurrences to generate these files. A history file preserves
the state of the simulation, so you can later re-run a simulation from any saved point. This is
a great speed up since you only need to edit and re-run portions of the deck rather than re-
executing the entire simulation from the top again after deck was edited.

The presence of a history file is indicated by the yellow dot next to the statement in the editor
window (see Figure 2-7). The accompanying SAVE statement is shown in the runtime output
pane (struct outfile="...../history..").

For more information on re-initializing a simulation using a history file, see Section 3.7
History Feature.

Information on alternative methods of running decks, such as line-by-line and breakpoints
can be found in Section 3.5 Running Deck.
20 DeckBuild User’s Manual

Plotting TonyPlot Files Tutorial
2.5 Plotting TonyPlot Files
When a deck is executed, it generates a number of files, such as structure and log files
(.str and .log). These files are displayed using TonyPlot.

2.5.1 Plotting Files from the Deck or Runtime Output
Wherever a TonyPlot recognizable filename (.str and .log) appears in the deck or the
RTO, you can right-click the filename to plot the file. Figure 2-8 shows the menu that opens
when you right-click on a valid filename. Clicking on Plot ... will cause TonyPlot to launch,
displaying the specified file.

You can also launch TonyPlot from DeckBuild by clicking on the TonyPlot icon () on the
Toolbar or by selecting ToolsTonyPlot.

Figure 2-8 Plotting Files Specified from the Runtime Output
21 DeckBuild User’s Manual

Quitting DeckBuild Tutorial
2.6 Quitting DeckBuild
To quit DeckBuild, select FileExit or click on the X in the top right-hand corner.

A certain number of files are automatically generated during a simulation run (e.g.,
history, runtime, and output logs). These files are saved in a hidden folder in your current
working directory. After the example 'mos1ex01' has been run, DeckBuild will ask you
to confirm if these files will be kept or removed (Figure 2-9).

Figure 2-9 Terminating DeckBuild – Remove Generated File
22 DeckBuild User’s Manual

Chapter 3
Functions

DeckBuild Modes Functions
3.1 DeckBuild Modes
You can start DeckBuild in either an interactive mode or a batch mode. In the interactive
mode, you can create, edit, and run input decks using mouse and keyboard operations. In the
batch mode, DeckBuild runs a previously created input deck. In the interactive mode,
DeckBuild appears as a window containing GUI components. The filename specifies the
file to edit. If not specified, the editor pane will be empty. If specified, DeckBuild loads the
file into the editor pane.

In batch mode, a filename is required. DeckBuild automatically starts the simulation and
executes the entire input deck. DeckBuild quits when the run is complete. In batch mode, you
can save the run-time output of the simulation by specifying the -outfile option.

There is another mode that DeckBuild can be run. This is to update the examples index,
which is used in the examples search dialog. You need to use this mode everytime you install
a Silvaco Software packages over a previously existing install location. Typically, this is the
case when you install an update package. To invoke this mode the option -rebuild_index
has to be used in the following way:

thomasb@lannachn2$ deckbuild -rebuild_index /site/alpha/examples/deckbuild/4.2.1.R

...

................

...........

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/athena_adaptmesh........

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/
athena_advanced_diffusion...................

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/athena_calibration...........

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/athena_complex......................

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/athena_compound.....

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/athena_diffusion..................

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/
athena_elite..

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/
athena_implant...............................

indexing section:/site/alpha/examples/deckbuild/4.2.1.R/athena_misc........

.

.

.

renaming previous index /site/alpha/examples/deckbuild/4.2.1.R/lucene_index --> /site/alpha/
examples/deckbuild/4.2.1.R/lucene_index_old

renaming previous /site/alpha/examples/deckbuild/4.2.1.R/db-examples.xml --> /site/alpha/examples/
deckbuild/4.2.1.R/db-examples_old.xml

renaming /site/alpha/examples/deckbuild/4.2.1.R/lucene_index_new --> /site/alpha/examples/
deckbuild/4.2.1.R/lucene_index

saving /site/alpha/examples/deckbuild/4.2.1.R/db-examples.xml

In case an index is already existing deckbuild will ask you to manually remove it first and will
exit. You will get a message as below:

thomasb@lannachn2$ deckbuild -rebuild_index /site/alpha/examples/deckbuild/4.2.1.R

directory "/site/alpha/examples/deckbuild/4.2.1.R/lucene_index_old" contains a previously created
index and needs to be removed manually
24 DeckBuild User’s Manual

Batch Mode Options Functions
3.2 Batch Mode Options
The following options are used to run decks in batch mode:

• -run starts DeckBuild in batch mode. The input deck filename is required. If none is
specified, DeckBuild displays an error message and exits.

• -outfile <outfilename> is the run-time output file. The file specified by
outfilename is created to store the run-time output of the simulation. DeckBuild writes
each line of the tty subwindow to outfilename as the simulation progresses.

• -ascii enables DeckBuild to run in a non X windows environment. No popups or
windows are created, but an input deck can be run normally. This option requires the use of
an input filename and the -run option. The -outfile option (to store run-time
output) is also helpful. If -outfile is not specified, the run-time output goes to stdout.
For backwards compatibility reasons (VWF), you have to use both -run and -ascii at
the same time to run a job in batch mode.

• -opt <optimizerfile> starts the deckbuild optimizer in batch mode. Please refer to
Chapter 6 Optimizer for further details on how to run an optimization.

• -err[file] <stderr-file> redirects all stderr to the given file
• -out[file] <stdout-file> redirects all stdout to the given file
• -nice nice-increment sets nice value to the given number. Valid numbers are 1 to 19.

Negative numbers can not be given.
• -preferences <preferences-file> loads certain preferences settings from the given

file. Settings that are read are the auto-interface settings as well as the selected installation
path and version of a simulator. Any other settings stored in the preferences file are
ignored.

• -help displays a list of the DeckBuild command line options.

3.2.1 Examples
The following command will start DeckBuild in interactive mode and pre-load the specified
file.

deckbuild filename.in &
DeckBuild can be submitted as a batch command on the UNIX command line. This method
runs an input deck and quits at the end of the deck. You can submit a number of jobs for serial
execution in this manner. The format of the command uses the -run and -ascii options as
follows:

deckbuild -run -ascii filename.in
DeckBuild immediately starts executing the named input deck. DeckBuild exits completely
when the last command in the input deck has been executed. If the runtime output is required
to be stored into a separate file, the following options can be used:

deckbuild -run -ascii [filename.in] -outfile [filename]
Again, DeckBuild executes the specified input deck. But in this case, all runtime output is
appended to the named outfile.

Be careful when saving structure files during batch jobs. Make sure to avoid overwriting
structure files with subsequent runs in the same working directory.
25 DeckBuild User’s Manual

Batch Mode Options Functions
3.2.2 Preference Settings
A large number of control settings and options are configured via Preferences. To configure
these options, select FilePreferences.

Note: DeckBuild automatically changes simulators whenever it encounters an autointerface statement in
the input deck.
26 DeckBuild User’s Manual

Remote Mode Functions
3.3 Remote Mode

3.3.1 Introduction
Deckbuild supports a mode of operation whereby the simulation is carried out on a remote
server machine. This allows you to separate the simulation action from the graphical user
interface. This becomes useful when you are running your simulations on a client/server
environment. Typically, you want to run the simulation on a powerful server machine (CPU,
RAM) while the visualization takes place solely on your workstation. This is particularly
important in case you need 3D graphics acceleration to display large 3D structure files. The
TonyPlot v5 visualization tool utilizes the openGL-2.0 subsystem, which will not generally be
available on remote server environments.

3.3.2 Using Remote mode
To use the remote mode of Deckbuild you need to first configure the machine to connect to as
well as a directory on the server where all the simulation files are created. We will first give
an example on how to connect and then point out the various dialogs and settings that are
needed to define the server setup.

Figure 3-1 GUI widgets to control remote mode

Figure 3-1 displays the components to control the remote mode. The controls consist of a

button showing a remote shell symbol (), a text/pull-down area and a 'Connect' button. By
clicking on the 'Connect' button, deckbuild will login (via the SSH protocol) to the system
indicated in the text area using the displayed username (in this example the machine is called
dent55 and the username is cathomasb.) While the connection is established a progress dialog
is shown to indicate the status. Figure 3-1 also shows load and memory information of the
remote host. The first three numbers indicate the 1min, 5min and 15min load averages (same
as what you get by the top or upload commands on Linux). The remaining two numbers
indicate available and total amount of memory.

Figure 3-2 Progress

Figure 3-2 shows a screen-shot of the progress dialog. During the connection phase the dialog
will indicate various stages of the connection process and will then disappear as soon the
connection was established successfully. In case you want to interrupt the connection phase
you can click on the 'Abort' button, which will close the dialog and immediately abort the
connection process. During the connection phase the system establishes one SSH, one or
several SFTP and a CORBA connection.
27 DeckBuild User’s Manual

Remote Mode Functions
When the connection was established, the looks of the remote mode components will slightly
change to indicate that.

Figure 3-3 Successful server connection

Figure 3-3 shows that the text-area has been grayed out and the 'Connect' button now
changed to read 'Disconnect'. The connection has been established successfully.

Figure 3-4 Hosts and usernames available for connection

The area, which displays the host and username can actually be used to display all available
host names, usernames as well as load and memory information. The information is shown
when you click on the arrow at the right. This is displayed in Figure 3-4, which shows a total
of five machines: banks, lannach-rh55, rhel5-64uka, rhel5-64ukb and ukvs01 as well as their
respective load and memory information. The expanded drop down menu will also allow you
to chose a different username, should you have configured several for a given machine.

3.3.3 Remote preferences
Deckbuild will store connection details like a list of servers and usernames, the authentication
mode (password or public/private key) as well as other related settings in its preferences.
28 DeckBuild User’s Manual

Remote Mode Functions
Figure 3-5 Preferences settings for remote mode

Figure 3-5 displays the settings panel for the remote settings. You can open this dialog by
clicking on the remote shell symbol from the main window or – alternatively – by opening
the preferences panel via Edit →Preferences as shown in Figure 3-6. The content of the
panel is the same no matter how you opened it.
29 DeckBuild User’s Manual

Remote Mode Functions
Figure 3-6 Preferences settings

The top part of the remote preferences consists of the following settings:
• Remote path – This is the path that is used on the server side to run the deck. The

directory must exist on the server. Please note, that this setting is not related to the client
directory structure in any way.

• Known hosts file – The SSH subsystem contains a so-called “known hosts” file, which is
a list of all hosts that were visited (logged in) before. This file is shared with the SSH
system installed on your computer. Therefore, any host that you already logged in via
SSH on the command line is also known to the deckbuild remote mode.

• server options – This field allows you to pass extra options down to the server process
that is started on the remote side. This is useful only for diagnosing problems and is not
needed during regular operation.

• use SFTP – Allows you to use SFTP for downloading and uploading files. The only
reason why you may want to disable SFTP is when you are using NFS to share folders/
files between client and server. You must be using the exact same directory name space on
both client and server in this case. Files are not uploaded/downloaded then but are directly
taken from the filesystem. This will not work on Windows clients unless you are using a
Windows NFS client and run deckbuild from a cygwin shell. It is strongly recommended
to always use SFTP when your client is a windows system.
30 DeckBuild User’s Manual

Remote Mode Functions
Figure 3-7 use SFTP disabled

Note, that, when ‘use SFTP’ is unticked, some of the remote settings do not make sense
and are thus greyed. Particularly, the upload rules (mentioned below) are not used without
SFTP. See Figure 3-7.

The field next to the tick box allows you to define a maximum number of SFTP
connections that are utilized in parallel. It is a good idea to start with a value of 1 and only
increase in case you experience performance problems during up- or download.

Files normally being downloaded are structure files (.STR) or.LOG files that are typically
created during the simulation run. In case the simulation requires an input file (e.g. a
mask) then these input files are uploaded to the server and at the time right before the deck
line requiring the input file is executed.

• enable compression – Will compress all CORBA network traffic between client and
server. It is recommended to bet set to true.

• enable bidirectional GIOP – Will use a single CORBA connection for in- as well as
outgoing data. This is helpful in case there is a firewall between client and server. It is
recommended to bet set to true.

The middle part of the remote preferences consists of the login details that are used. You
can keep an arbitrary number of hosts and username combinations. Usernames are stored
on a per host base, you need to redefine every username for every host that you want to
use it on. Clicking on the 'Add' button will open the dialog shown in Figure 3-8.
31 DeckBuild User’s Manual

Remote Mode Functions
Figure 3-8 Adding a host

Clicking on Edit will allow you to modify a previously added host as shown in Figure 3-9.

Figure 3-9 Editing a hostname

The Remove button will allow you to remove a hostname. If you remove a host then all
corresponding usernames are removed as well.

Figure 3-10 Adding usernames for a host

Figure 3-10 depicts the dialog to add a new user for a selected host. You must enter a name
and optionally a password or the public and private keys when public/private key
authentication is to be used. When you enter a password this will be stored encrypted in
your preferences. To use public/private key authentication the checkbox ‘Use key
authentication’ must be ticked.

Figure 3-11 shows the dialog, which opens when you click on the Edit button. It allows you
to change either the username, password or the keys that are defined for a particular user in
case public/private key authentication is used.
32 DeckBuild User’s Manual

Remote Mode Functions
Figure 3-11 Editing a username

Right below the list of host and usernames (c.f. Figure 3-5 and Figure 3-6) you can select,
which combination of host and username is being used for the connection (when clicking
'Connect' In the main window, c.f. Figure 3-1).

By ticking the 'Connect at start' tick box you can have deckbuild login to the server
automatically every time it starts.

Figure 3-12 Upload rules

Figure 3-12 shows the final part of the remote preferences located at the very bottom of the
panel (see also Figure 3-5 and Figure 3-6). It contains a list of regular expressions. These
expressions are applied to every line of the deck to identify any possible input files. If an
expression matches a given line of deck then the identified input file is uploaded before the
deck line is executed on the server. This ensures that all needed input files are found on the
server.

Please note, that deckbuild ships with the above listed rules as a default setting. Should
33 DeckBuild User’s Manual

Remote Mode Functions
your set of rules look different it is a good idea to either reset your preferences to factory
defaults or to click the ‘Reload rules’ button in order to get the default list of rules. Please
note the ‘Import rules’ and ‘Export rules’ functionality, which can be used to export rules to
a text file and import rules from a text file respectively. This is useful to allow for an update
of upload rules without having to upgrade to a newer version of deckbuild..

3.3.4 Prerequisites
In order for the remote mode of Deckbuild to function proper, you need to make sure that
no firewall (hard- or software) is operating between the client and the server machine. It is
not sufficient to only support the SSH protocol as the remote mode uses the CORBA
middle ware to communicate between client and server.
34 DeckBuild User’s Manual

DeckBuild Controls Functions
3.4 DeckBuild Controls
DeckBuild consists of a window containing two subwindows: the Editor pane in the upper
half of the base frame and the Runtime Output pane in the lower half. The Editor pane is used
to build and edit input decks, while the Runtime Output pane is used to display feedback
from a running simulator.

DeckBuild’s controls are available in the toolbar and menus (see Figure 3-20). The following
describes these controls.

The following terms and definitions will be used throughout this document to describe one of
several states a simulation may be in.

• A simulator will be called executing if it is running a line of deck.
• A simulator will be called waiting if it presents a prompt, waiting for user input. It will

achieve this status as soon as a deck statement is finished and no further statements are to
be executed (e.g., after single stepping).

• A simulator will be called paused if it is possible to later continue the simulation exactly
at the point where it was paused by using unpause.

• A simulator will be called terminated if it has ended either forcibly or gracefully (by
means of Quit).

3.4.1 The View Menu
The View menu is used to change the appearance of the editor and the Toolbars (see Figure
3-13).

Figure 3-13 View Menu

This allows you to define what is displayed in the left margin of the editor, what toolbars will
be available, and to open the Stops dialog (see Figures 3-14 and 3-15).
35 DeckBuild User’s Manual

DeckBuild Controls Functions
Figure 3-14 Margin and Line Numbers Enabled

Figure 3-15 Margin and Line Numbers Disabled
36 DeckBuild User’s Manual

DeckBuild Controls Functions
Figure 3-16 shows the entry of the Toolbars menu with its default settings.

Figure 3-16 Default Toolbar Settings

In the following description of the toolbar functions, the default settings with only the Run,
Tools, Syntax and View toolbars enabled was used.
37 DeckBuild User’s Manual

Running Deck Functions
3.5 Running Deck
In the following section, all the actions related to running a deck are described.

Figure 3-17 shows a screenshot of the Toolbar.

Figure 3-17 DeckBuild Toolbar

Here are the actions related to running a deck.

• Save and Run/Continue – Save the deck then start the simulation or continue from a
Stop point

• Run/Continue – Starts a simulation or continues from a Stop point.
• Pause – Pauses a simulation. Use this if you want to temporarily relieve the CPU but

don't want to terminate the simulation. Pausing will immediately “freeze” the simulation
at the very line that is being executed. The simulator will be put into sleep mode by
sending a UNIX STOP signal. When a simulation is paused, you can resume it by
clicking Pause again. Unpausing will have the effect of sending a UNIX CONT signal.

• Stop – Stops the execution but does not kill the simulator. The Stop function will first
wait for the simulator to finish the current line and then it will put the simulator into
“Waiting”. The effect is the same as if you had defined a Stop point at the line where the
simulator is stopped.

• Kill – When you invoke the kill action, then the simulator is killed immediately. It is not
waited until the current line of deck has finished. No summary is displayed when the
simulator terminates. This is a way of forcibly terminating the simulation.

• Kill and Restart – Same as but will immediately restart from the top.
• Quit – Quits the simulation. This will first wait until the simulator has finished executing

a line before sending a quit command to it. The simulator will display a summary of the
resources that were used (i.e., CPU time) and will then exit.

• Save and Next – Save the deck then execute exactly one line of deck.
• Next – Executes exactly one line of deck.
• Save and Run to Line – Save the deck then execute up to the current location.
• Run to Line – Executes deck up to the cursor location.
• Go to line – Change the current line without executing deck.
• Set a stop at cursor location – Defines a Stop point.
• Enable/Disable history
• Open History actions - Open the history actions dialog
• Init from history at the cursor location – Loads a history file into the simulator.
• Start TonyPlot – Saves a structure from the current line and load it into TonyPlot.
• Start TonyPlot 3D – Saves a 3D structure from the current line and load it into TonyPlot

3D.
• Start MaskViews – Starts the MaskvViews program.
• Start Sedit
• Start Devedit
• Start Devedit3D
38 DeckBuild User’s Manual

Running Deck Functions
• Disable/Enable inline TonyPlot and TonyPlot 3D calls – Allows to ignore tonyplot
statements, which appear in the deck.

• Run the Athena to VictoryProcess deck converter (A2VP)
• Strip commented Athena commands inserted from a previous run of A2VP
• Open the main syntax dialog
• Open the variables tracking pane
• Open the Output files tracking pane

The looks of the Toolbar change while running a simulation since not every action is available
at all times. Figure 3-17 shows the Toolbar when deck is actually being executed. Compare to
Figure 3-18. Some actions are disabled (e.g., Run), whereas others are enabled (e.g., Kill).

Figure 3-18 Run Functions Disabled

The very same functions that you find on the toolbar are also available in the Run and Tools
menus (Figure 3-19 and Figure 3-42).

Figure 3-19 Run Menu

The following describes all the ways how to run a deck and how to halt the execution at any
position in it. A very simple way to run the whole deck is by clicking the Run button ().
This will start at the very first line and will go through the deck until either an error occurs or
when the last line has been reached. You can also only execute subsets of the available deck
or repeat running through certain portions of it.
39 DeckBuild User’s Manual

Running Deck Functions
Figure 3-20 Loaded Deck Waiting to be Started

Figure 3-20 shows a screen-shot of DeckBuild with a deck loaded. The deck has not yet been
executed. At the very top, the current line (with the copyright message as a comment) is
indicated by a light blueish background. As we execute lines of deck, the current line will
change.

You can choose to execute the deck line-by-line. This is called single stepping. To do this,

click (Next).

Figure 3-21 shows the result of one single step action. The current line has moved from line
number 1 to line number 2 and the runtime output now contains a copy of the executed line.
In this example, this is a comment, so no simulator was involved.
40 DeckBuild User’s Manual

Running Deck Functions
Figure 3-21 Executed Deck Line

Clicking a second time will execute the line called go athena. This statement instructs
DeckBuild to start the Athena simulator. Figure 3-22 shows the situation after the go line was
executed. Note that the current line has advanced to line number 3 (an empty line). Text was
also added to the Runtime Output pane. You can see the text is formatted according to where
it originates from. All the black rendered text is actually a copy of the line of deck being
executed. It originates from DeckBuild itself. The light grey rendered text originates from the
simulator. By using different font settings, it is easier to recognize what part of the simulator
output belongs to which deck statement.

Note: You can change the font settings for the runtime output in the Preferences panel.

The very last line of the runtime output in Figure 3-22 shows the following line:

ATHENA>

This is the prompt and it's an indication from the simulator that it is ready to accept (more)
commands. Prompts are the way how DeckBuild and simulators communicate. DeckBuild
will wait for the reception of a prompt before it sends the next line of deck to the simulator.
41 DeckBuild User’s Manual

Running Deck Functions
Figure 3-22 Started Athena Simulator
42 DeckBuild User’s Manual

Stop Points Functions
3.6 Stop Points
We will now demonstrate another way of executing the deck using “Stop points”. A Stop
point marks a position in the deck where the execution will stop. You can define any number
of Stop points. When executing the deck, only Stop points after the current line are
considered. A Stop point that appears before the current line is ignored until you start over
from a location before it.

Figure 3-23 shows a deck with two Stop points defined.

Figure 3-23 Deck with Stop Points

If you click on , then the deck will be executed from the current line (line 3) up to the first
Stop point in line number 19. Figure 3-24 shows the situation after reaching the Stop point.
You can see that the current line has advanced to line number 19 and that the runtime output
has changed showing the response of the simulator. The last line in the runtime output is again
43 DeckBuild User’s Manual

Stop Points Functions
a prompt. Click again and the deck will be executed up to line number 28. Pressing
once more will execute the remainder of the deck since there are no more stop points defined.

Figure 3-24 also shows a little yellow bullet in the margin next to line 15. This is called the
History feature (see Section 3.7 History Feature).

You can achieve a similar thing as with Stop points by clicking (Run to Line).

To use this function, position the cursor in a line below the current line and click .

DeckBuild will execute the entire deck from the current line down to the selected line and
will stop there.

Figure 3-24 Halted by Reach of a Stop Point
44 DeckBuild User’s Manual

History Feature Functions
3.7 History Feature
DeckBuild comes with a powerful feature called History. On the one hand side this allows
you to reposition your current line to any previously executed point in the deck. On the other
hand it is possible to use recorded history points to create PDF reports or movies to illustrate
the simulation progress. The PDF report and movie generation feature will be further
explained in Section 3.8 PDF report and movie generation

Deck lines with a history are indicated by a little yellow bullet on the left. Figure 3-25 shows
a deck, which has been run. You can see a total of five bullets on lines 54, 61, 66, 70, and 75.
To see all the bullets, scroll up or down to see the other indicators.

Note: Not every line of deck has an associated history point. The Preferences section allows you to define how
many history points are kept in total and how many lines without history will appear between two
consecutive history indicators.

History points are implemented by saving the state of the simulator. This will usually mean a
structure file is saved.

Note: Depending on simulator and type of deck, these files can be large so it is advisable to adapt the History
settings to your particular situation.

To use a History, simply click on the associated bullet. Figure 3-26 shows the situation right
after the history bullet in line number 66 (implant...) was clicked. You can see that the
current line was set to line number 67. Additionally, the runtime output indicates that the
simulator was initialized from the following file:

ATHENA> init infile=.mos1ex01/deckbuild/.history023.str
45 DeckBuild User’s Manual

History Feature Functions
Figure 3-25 Deck with History Indicators

If the simulator had not already been running, it will be started by executing a corresponding
go statement.

Note: The situation after loading a history file is the same as if you had reached this position in the deck by
running it from top up to this point.

Note: Not every simulator supports History. Currently, The Athena and Victory Process simulators are capable of
saving and loading history files.
46 DeckBuild User’s Manual

History Feature Functions
Figure 3-26 History Loaded
47 DeckBuild User’s Manual

PDF report and movie generation Functions
3.8 PDF report and movie generation
In this chapter we will emphasize two new features of the DeckBuild deck editing
environment. These are the movie creation on the one hand and the creation of PDF reports
on the other. This version of Deckbuild allows you to use recorded history points to prepare
movies and PDF reports of a simulation .

The history feature does not only allow you to restart a previously run simulation at arbitrary
points in the deck (Section 3.7 History Feature), it is also possible to hook up and run post-
processing scripts to history points. The scripts allow for converting the simulation state into
PNG images or to prepare cuts through the structure and save them as PNGs. Basically, any
other Silvaco or system tool can be utilized this way.

Note, that you need to use the XML file format to make the history status persistent,
otherwise all history information is lost when deckbuild terminates.

3.8.1 History Scripts
In order to use the saved simulation status for either the movie or the PDF report generation a
post-processing step must be performed on the saved data. This is done by attaching and
running a script to the history data. Note, that the default action is to not assign or run any
scripts. While this will still allow you to load a history point as described above no further
actions will be possible. To assign and run scripts, you need to use the history actions dialog.
It is opened by clicking on the second icon from the right (), on the toolbar of the main
DeckBuild window.

Figure 3-27 shows the available controls for assigning and running history scripts. The dialog
presents a list of all history items that have been created by the simulation so far, and gives
additional information for every history item. In the very left column, the line number of
where in the deck the history was recorded is indicated. It corresponds to the line numbers as
shown in the main window (see Figure 3-25) The second column from the left shows the
status of a history item.

Figure 3-27 History dialog showing available history points
48 DeckBuild User’s Manual

PDF report and movie generation Functions
When the dialog is first opened and no script had been assigned before, the status for all listed
history items is ‘Unknown’. This will change as soon the script executes. The third column
from the left gives the exit status of the script once it has terminated. A value not equal to 0
will indicate that a problem during script execution has occurred. The next two columns offer
buttons, which allow you to look into the console output of the script (stdout and stderr
channels). This is useful to get an idea of why a script may have failed or what information it
produced on the console. The next column - ‘Deck text’ - shows the line of deck for which the
history was recorded. You can use it to roughly identify the part of your simulation flow a
history item belongs to. The final two columns: ‘Page Title’ and ‘Page Comment’ will be
used by the PDF report generator. They will be explained further down in this section.

Note, that the content of the dialog is updated as the list of available history items grows.

The first action to take is to assign a script for execution. To do so you need to bring up the

history scripts dialog. It is opened by clicking the first icon from the left () in the history
actions dialog toolbar. Figure 3-28 shows the scripts dialog populated with all available
scripts. The scripts come pre-installed with the deckbuild tool. Every script has a short
description and you will be able to edit parameter values should the script require parameters
to fill in. If you are satisfied with your choice please close the dialog by clicking Ok. You will
notice that the status ‘No script currently defined’ as shown in the status line of Figure 3-27
will change to the name of the selected script. Everytime you re-open the history script dialog
to chose a different script, the status will immediately indicate the newly chosen script as
soon you Ok the dialog.

Figure 3-28 Choose script to run

Once a script was assigned the items in the history actions dialog become selectable. To run a
script for a particular history item, the item must be selected (highlighted.) After selecting the

items to run the ‘Queue selected’ button () must be clicked. Figure 3-29 shows that 5 items
have been selected and 4 scripts are actually executing (Status set to ‘Running’). The 5th item
is waiting for any of the other jobs to finish. The execution of jobs uses a built-in queuing
system, which allows for a certain number of jobs (4 in this example) to run in parallel. Jobs
49 DeckBuild User’s Manual

PDF report and movie generation Functions
are executed independently from the simulation of the deck. In other words, the simulation
will not be interrupted or influenced by the history script in any way.

Figure 3-29 Executing history scripts

Note, that there are two ways of how a script gets queued for execution.

The first way is to use the selection mechanism and clicking on the ‘Queue selected’ button as
described above. This method must be used when scripts are to be run on a simulation, which
was already finished. The second method will automatically queue scripts while the
simulation is actually executing. A job will be queued for every new history item to appear.
This requires that a script has been defined prior to a history point appearing. If you assign a
script while the deck is executing then all history items existing prior to the script assignment
will not have jobs queued, all items that appear after the script was assigned will have jobs
queued to run the assigned script. You can also combine the two methods and select/assign
history items that would be missed out otherwise.

If you want to terminate a ‘Queued’ or ‘Running’ script you have to select the items to
terminate and click on the ‘Clear selected’ button ().

3.8.2 Movie creation
In order to create a movie you must assign a script, which creates at least one PNG image of
the structure. The task of creating a PNG image typically involves the use of the VictoryMesh
and TonyPlot tools. The history script vm_export_cuts.xml will convert the VictoryProcess
history point into three different structure files, one birds view and two cutplanes according to
the cutplane definition given when the script was assigned. You can change the parameters of
a script by clicking on the ‘Edit script parameters’ button (). This will open the parameter
dialog shown in Figure 3-30.

The vm_export_cuts.xml script defines two cutplanes to create cuts through the structure.
The cuts will be shown in the PDF report along with the 3D view (birds view). Figure 3-30
shows two parameters named cutplane1-args and cutplane2-args of the script
vm_export_cuts.xml. The column named ‘Value’ must contain the actual cutplane
definition and must follow the syntax of the VictoryMesh cutplane command. In this example
50 DeckBuild User’s Manual

PDF report and movie generation Functions
two cutplanes along the ‘x’ and ‘y’ axis are defined. Note, that VictoryMesh allows you to
define arbitrary cutplane locations. You can bring up the VictoryMesh help on the cutplane

command by clicking the help icon () of the history dialog.

Note, that the vm_export_cuts.xml script defines cutplane parameters used by
VictoryMesh during the creation of the structures. It is therefore necessary to rerun the script
everytime the parameters are changed.

After the structure files were created TonyPlot will be used to read each one of them and
create a corresponding PNG image.

Figure 3-30 Edit script parameters

Once a script finishes without an error, this item can be included in the movie creation. You
have the choice of creating up to three different movies out of the birds view and the two

cutplanes. Use the ‘Setup movie’ button () to open the dialog as shown in Figure 3-31 and
choose, which movies you would like to create.

Figure 3-31 Selecting movies to create

To generate the movies you have to click the ‘Generate movie’ button (). This will create
up to three animated GIF files depending on your choice and will load them into a viewer.
Figure 3-32 shows Deckbuild’s builtin movie viewer window.

Note, that a successful creation of an animated GIF requires that a PNG image was
created by the history script.
51 DeckBuild User’s Manual

PDF report and movie generation Functions
Should you have chosen a different script, or in case you had forgotten to queue/run the
scripts, or if there was an error etc., then no frame is created for the given history item. It is
advisable to check the runtime output to further investigate the cause of the problem.

In case you want to add/remove frames from the movie you have to close the movie dialog
and change the selection (the highlighted history items). Everytime you hit the ‘Generate
movie’ button () the movie files are re-created (overwritten). The movie file is found in a
hidden sub-directory of the experiment directory. In this example the directory is ‘.vpex02/
deckbuild’ and the movie files are called Animated_0.gif, Animated_1.gif and
Animated_2.gif respectively. You may want to copy the files to another location in you want
to keep them permanently. When deckbuild exits it asks you to cleanup any generated data.
This would include the movie (and also the PDF report) should you opt to clean the data.

Figure 3-32 Movie viewer

3.8.3 Browsing through history points
Instead of creating a movie out of all available PNG images, you do have the option of
browsing structure files of the history items using the TonyPlot tool. Click on the TonyPlot

icon () in the history actions dialog to open TonyPlot and load the structure file of the
active history item. Once TonyPlot was started this way, you can then navigate to a different
history item and the corresponding structure file (should it be existing) will be loaded into the
running TonyPlot program. You will also see that the cursor position in the main deck
window will jump to the deck statement, which had resulted in creating the history action.
52 DeckBuild User’s Manual

PDF report and movie generation Functions
Click on the TonyPlot icon again or close TonyPlot to stop browsing the history items this
way.

Please note that the file to be loaded will be the birds view.

Should you only be interested in browsing through all available history points you can choose
a different script, to only create a single structure file. The vm_export.xml script will only
export the VictoryProcess data into a structure file but will not compute any cutplanes. This
will significantly speed up the export process.

3.8.4 PDF report creation
Additionally to creating up to three individual movies, you do have the choice of creating a
PDF with one page per history point. Each page contains four areas containing up to three
images (birds view and two cutplanes) and a text box. Deckbuild allows you to arrange the
locations of the four content boxes to your needs.

DeckBuild offers controls to assign the content boxes on a template page to define the layout
of the page. The boxes can be occupied with images or text. Images need to follow a certain
naming scheme and need to have been created by the script. Content for the text box is either
taken from the deck or can be entered manually on a per page level.

The next step is to define the page layout. To do so, you need to click on the ‘Page layout for

PDF’ button (). This will bring up the layout template dialog. Figure 3-33 shows the page
template dialog with two positions, ‘view’ and ‘cut 1’ already defined. You can drag the
remaining two positions, ‘text’ and ‘cut 2’ into the page preview or re-arrange items in the
preview by dragging them onto each other. When done, please ‘Ok’ the dialog.

As a final step please add information in the ‘Page title’ and ‘Page comment’ columns (see
Figure 3-29) and hit the ‘Generate PDF’ button (). This will start the generation process
and open the produced PDF file.

Figure 3-33 Setup PDF layout
53 DeckBuild User’s Manual

Go to Line Functions
3.9 Go to Line
Apart from using the History Feature described in the previous section, you can also change
the current line of execution without restoring the original state. For instance, you can use this
to rerun a particular line of deck without the need to copy/paste it in the editor.

Figure 3-34 Go to Line Feature

In Figure 3-34, the runtime output shows that deck line number 21 (etch) was executed four
times. The fourth execution led to a simulator error.
54 DeckBuild User’s Manual

Tracking Variables Functions
3.10 Tracking Variables
Deckbuild provides a powerful means of keeping track of any variables, extracts and output
files that are created during a simulation. Everytime a set statement or an extract is executed
the corresponding variable is displayed in the variables pane.

You can toggle the variables pane by clicking on the variables icon of the main toolbar.
Figure 3-35 displays the deckbuild window with the variables pane enabled. You can see that
the pane is populated with variable names and values. In braces, the line number of the
corresponding set or extract statement is given. The first entry in the variables pane is gateox,
which corresponds to the extract statement in line 50 of the deck:

extract name="gateox" thickness oxide mat.occno=1 x.val=0.05

Figure 3-35 Variables Pane Enabled

Clicking on the value of a variable allows you to change its value. This is useful in debugging
decks with lots of set statements. The change is effective immediately and will influence any
statement, which takes as input the changed variable. Figure 3-36 displays the situation after a
deck containing three set statements is executed. The variables are assigned values according
to the statements.
55 DeckBuild User’s Manual

Tracking Variables Functions
Figure 3-36 Executing set statements

If you single step through this deck you can now change a variable value before continuing to
run the deck. Figure 3-37 illustrates the situation where execution has stopped after the first
set statement and the value of x was changed from 10 to 200. Figure 3-38 shows the situation
after the remaining deck was executed. You can see that variables y and z now have different
values as shown in Figure 3-17.

Figure 3-37 Edited Variable x

Figure 3-38 Influencing values of variables
56 DeckBuild User’s Manual

Tracking Output Files Functions
3.11 Tracking Output Files
Deckbuild offers a view at all files available in the directory where the deck is executed. This
will include all created structure files except files created by the history feature. History files
are considered as deckbuild internal files (i.e. not created by an explicit deck statement)

You can toggle the outputs pane on and off by clicking on the outpus icon.

Figure 3-39 displays the deckbuild window with both the variables tracking and the outputs
pane enables. Note, that both panes can be enabled separately allowing you to optimize the
available window space.

At the very top of the outputs pane there is a filter available, which can be used to limit the
amount of shown files.

Figure 3-39 Outputs and variables panes enabled

The outputs pane is not limited to only viewing a list of all created files, you can also use it to
directly load a file into TonyPlot or any other viewing application. Figure 3-40 displays the
contextual menu, which opens upon right-clicking a displayed file.
57 DeckBuild User’s Manual

Tracking Output Files Functions
Figure 3-40 Plotting from the Outputs pane
58 DeckBuild User’s Manual

Tracking Resource Usage Functions
3.12 Tracking Resource Usage
Deckbuild allows you to monitor the resource usage of the running simulator. The tracked
information consists of the amount of used RAM, the disk I/O read and disk I/O write
operations.

You can toggle the resource usage pane on and off by clicking the resource icon

Figure 3-41 Resource usage pane turned on

Figure 3-41 shows a running simulation with the resource usage tracker turned on. You can
see that the memory consumption at the time the screen-shot was taken was around 85MB.
The number at the top of the bar indicates the maximum amount of RAM that has ever been
used throughout this simulation. Next to the bar displaying the RAM two more bars are
shown. They indicate I/O read and I/O write respectively. A write rate of ~700kB/s is shown
in this examples.
59 DeckBuild User’s Manual

Tools Menu Functions
3.13 Tools Menu
The Tools menu offers a very convenient way to open various tools (Figure 3-42). Clicking
on any of the icons will open the corresponding tool.

Figure 3-42 Tools menu

When the simulation is in the “Waiting” state, pressing (TonyPlot) will save a structure

file from the current line in the deck. It will then start TonyPlot and will load the saved file
into it. If there is a History file, which had been saved on the line, then no extra file will be
saved and the history file will be loaded into TonyPlot.

The same is true for TonyPlot 3D. A file is exported and loaded into TonyPlot 3D.
60 DeckBuild User’s Manual

Edit Menu Functions
3.14 Edit Menu
Figure 3-43 shows the Edit menu. This menu contains the text editor functions. They are as
follows:

• Undo – Undoes a previous editing operation.
• Redo – Redoes the effect of a previous Undo operation.
• Copy – Copies highlighted text into a buffer space.
• Cut – Removes the highlighted text and puts it into a buffer space.
• Paste – Pastes any text from the buffer space into the editor at the current position.
• Clear – Empties the editor window.
• Select All – Highlights all text in the editor in preparation for a Copy/Cut operation.
• Find – Searches for the desired text in the editor.
• Find Next – Continues to search for the desired text further down in the editor..
• Find previous – Continues to search for the desired text further up in the editor .
• Replace – Replaces found occurrences of text with the new desired text.
• Preferences – This opens the Preferences panel.

Figure 3-43 Edit Menu
61 DeckBuild User’s Manual

Help Menu Functions
3.15 Help Menu
Figure 3-44 shows the Help menu. This will open the DeckBuild User's Manual.

Figure 3-44 Help Menu
62 DeckBuild User’s Manual

File Menu Functions
3.16 File Menu
Figure 3-45 shows the items from the File menu.

Figure 3-45 File Menu
• New – Clears the editor contents
• Create VWF DOE Experiment – Loads the deck together with all needed input files

into VWF
• Open – Opens a file from disk
• Append – Opens a file and append at the end of the editor contents
• New Deckbuild – Opens a new empty deckbuild window
• New Deckbuild Open File – Opens a file in a new deckbuild window
• Save – Saves the editor contents
• Save As – Saves the editor contents to a given file
• Save Preferences - Preferences are normally saved when deckbuild exits; This point

allows you to save the preferences right away, which may make sense when you start
other deckbuild instances.

• Examples – Opens the examples dialog
• Examples in Browser - will open the system configured browser and display the

example tree. Allows you to navigate through the available examples.
• Recent Files – Allows to open a file from a list of recently opened files
• Exit – Terminates deckbuild
63 DeckBuild User’s Manual

Examples Functions
3.17 Examples
There are more than 500 examples that are shipped with DeckBuild. To search for these
examples, select FileExamples, and a dialog will appear (see Figure 3-46). The dialog is
initially loaded with a hierarchical view at the examples. Select an example from the tree, or
enter a search string.

Figure 3-46 Examples Search Dialog

Figure 3-47 displays the examples dialog with an example selected from the hierarchy. The
selected example is mos1ex01 from the section MOS1, which has been used in many
examples throughout this manual.
64 DeckBuild User’s Manual

Examples Functions
Figure 3-47 Selecting an Example from the Tree

By entering a search string, the database of TCAD examples is searched. All parts of the
examples are considered in the search. This includes descriptive text, as well as the deck of
the example. Figure 3-48 shows results when searching the examples database for the string
mos1. The information presented is organized in terms of fields with section beginning at the
very left and version ending at the very right. The first two fields on the left represent the
hierarchy of how the TCAD examples are organized. The section (here MOS1) contains
basic MOS examples. The example field denotes the name of an example. title shows the
title of the example. simulator shows the simulators used in the example. technology shows
the technology used in the example. version shows the version of DeckBuild used in the
example. On the right hand side next to the Clear button, the number of hits is indicated. The
search returned 16 hits in this example. Hits are automatically ranked such that the best match
65 DeckBuild User’s Manual

Examples Functions
always appears at the top. Entering a basic string will consider all fields in the search. You can
also opt to refine your search by limiting the search to a particular field only.

Figure 3-48 Search Results for String mos1

Figure 3-49 shows another search over all fields. This time, the keyword threshold is being
searched. The search returns 69 hits with an example from the section SONOS ranked at the
top. Refine search by adding more keywords as shown below.
66 DeckBuild User’s Manual

Examples Functions
Figure 3-49 Searching for “threshold”

Figure 3-50 Search Expression Consisting of More Than a Single Keyword

Figure 3-50 shows the case where above search was modified to contain threshold mos. The
effect of adding a second keyword is that now both keywords are being matched. Every
example that matches either threshold or mos is returned with the best matches (both
keywords) at the top. A total of 115 hits is returned in this case.

To do a slightly different search that returns only documents containing both keywords, make
the keywords mandatory by adding a plus sign (+) before each search term as shown in Figure
3-51. Compared to Figure 3-50, the number of hits was reduced to 71.
67 DeckBuild User’s Manual

Examples Functions
Figure 3-51 Search with Mandatory Keywords

For results that do not contain a particular keyword, use the minus sign (-) as shown in Figure
3-52. The number of hits is now 44.

Figure 3-52 Search with Keywords to Exclude

By selecting one of the examples from the results list, you can view the description of the
example (Figure 3-53).
68 DeckBuild User’s Manual

Examples Functions
Figure 3-53 Viewing Description of an Example
69 DeckBuild User’s Manual

Cross-referencing runtime output and the deck Functions
3.18 Cross-referencing runtime output and the deck
Deckbuild allows you to easily identify what line in a deck has produced which runtime
output. You can either right-click anywhere in the deck and choose “Show in RTO”, or you
can right-click a line of runtime output in the runtime output pane and select “Show deck
line”.

Figure 3-54 Cross-referencing deck and RTO from the deck pane

Figure 3-54 shows the menu entry that is displayed when right-clicking in the deck pane.
Figure 3-55 shows the corresponding menu entry when right-clicking in the RTO pane.
Figure 3-56 shows how the deck line and the corresponding portion of runtime output are
highlighted. Please note, that the highlighting is removed once you move the cursor to a
different line in the deck.

Figure 3-55 Cross-referencing deck and RTO from the RTO pane
70 DeckBuild User’s Manual

Cross-referencing runtime output and the deck Functions
Figure 3-56 Cross-referencing: deck line and RTO portion are highlighted
71 DeckBuild User’s Manual

Folding runtime output Functions
3.19 Folding runtime output
Deckbuild allows you to reduce the amount of runtime output to only display the first line that
is returned by a command. Figure 3-57 and Figure 3-58 show a folded and an unfolded
portion of runtime output. Please note the changed symbol at the left area of the RTO pane,
which changes from '-' to '+' when the text is collapsed and vice versa when it is uncollapsed.
You can also fold/unfold the whole RTO pane in one go by using one of the two entries of the
'Fold' submenu as shown in Figure 3-59.

Figure 3-57 Unfolded runtime output

Figure 3-58 Folded runtime output

Figure 3-59 Folding text: fold/unfold all of the runtime output
72 DeckBuild User’s Manual

Visualizing VictoryProcess line statements Functions
3.20 Visualizing VictoryProcess line statements
Deckbuild offers simulator specific help for the LINE and CARTESAN commands of
VictoryProcess.

Figure 3-60 Visualizing VictoryProcess LINE statements from the context menu

Figure 3-60 displays the context menu that opens when right-clicking in a VictoryProcess
deck, which uses LINE and CARTESIAN statements. Depending on what LINE statements (x,
y, or z), up to three options conforming to the three planes, xy, xz, yz are offered. Note, that
only lines from the top of the deck up to the position where you right-click are taken into
account.

Figure 3-61 shows the visualization of the XY plane.

Please note, that for a LINE (or CARTESIAN) statement to be taken into account it must be
free of variables. Statements of the form:

 set loc1=-0.22

 line z loc=$loc1 spac=0.05
73 DeckBuild User’s Manual

Visualizing VictoryProcess line statements Functions
Figure 3-61 Visualization of VctoryProcess LINEs in the XY plane

will not be supported and Deckbuild will ignore this particular LINE (or CARTESIAN)
statement.
74 DeckBuild User’s Manual

Context sensitive help system Functions
3.21 Context sensitive help system
Deckbuild offers several ways to get help. By selecting the “HelpDeckbuild Help” menu
entry (or by pressing the F1 key), the deckbuild PDF manual which you are reading right now
will open. (see also Section 3.14 Edit Menu)

Deckbuild also offers help directly on the deck syntax without the need to open the simulator
manual. You can right-click on any command in the deck. This is supported for the simulators
VictoryProcess, VictoryMesh and for the Deckbuild internal commands. Figure 3-62 shows
the menu that is populated then right-clicking anywhere in the VictoryProcess deck. In this
case the command 'save' was clicked and the menu entry allows to open the help on the same
command (Show VP Help for “Save”)

Figure 3-62 VictoryProcess Help menu shown on right-clicking into a VictoryProcess section

Figure 3-63 shows the pop-up that opens when the Show VP Help for “Save” action is
chosen.
75 DeckBuild User’s Manual

Context sensitive help system Functions

Figure 3-63 VictoryProcess help for the save command

Figure 3-64 shows what happens when you right-click into a VictoryMesh deck. You can see
that the menu entry has slightly changed and now reads:

 “Show VictoryMesh help for refine”

By choosing this action you will open the window as shown in Figure 3-65. The window
allows you to also navigate among the various other VictoryMesh commands that are
available.
76 DeckBuild User’s Manual

Context sensitive help system Functions
Figure 3-64 VictoryMesh Help menu shown on right-clicking into a VictoryMesh section
77 DeckBuild User’s Manual

Context sensitive help system Functions
Figure 3-65 VictoryMesh help for the refine command

Finally, Figure 3-66 shows the menu entry when you right-click any of the internal deckbuild
commands. In this example a 'set' command was chosen. The menu entry thus reads:

 “Show Deckbuild Help for set”

If you select the menu entry then the window shown in Figure 3-67 opens. As with the
VictoryMesh help the window allows you to navigate around various other commands, like
IF, LOOP, SYSTEM and others.
78 DeckBuild User’s Manual

Context sensitive help system Functions
Figure 3-66 Deckbuild help menu shown when right-clicking on a Deckbuild command
79 DeckBuild User’s Manual

Context sensitive help system Functions
Figure 3-67 Deckbuild help for the set command
80 DeckBuild User’s Manual

Commands Functions
3.22 Commands

3.22.1 Deck Writing Paradigm
Generally, DeckBuild supports several ways of writing an input deck: You can copy/paste
portions from another deck, or you can write deck line by line, or you can use popups to
create statements for a simulator. You can mix and match and use each as appropriate. Process
simulation, for example, is an inherently sequential operation. The same basic commands
(implant, diffuse, etch, and deposit) are used over and over again. Victory Process and Athena
are good examples of how this paradigm works, because each popup has a button used to just
write the syntax for that popup/command.

3.22.2 Commands Menu
The Commands menu is the primary means of accessing dialogs used to write the input deck.
Typically, each item on the menu is associated with a dialog that contains controls used to
specify an input deck command. For instance, invoking Implant causes the Athena Implant
dialog to appear. Because Victory Process is compatible with Athena, you can use the same
Implant dialog to define an Implant command for Victory Process.

3.22.3 Parsing the Deck
DeckBuild has a built-in feature that allows parsing any part of a deck to automatically
configure the appropriate dialogs. For example, to repeat a previous implant process
command with some minor changes, invoke the parser on the next IMPLANT statement. Then,
apply the needed changes, place the text cursor in the proper location, and press the WRITE
button.

Figure 3-68 illustrates how the parser is used. Select portions of a line or the lines as a whole
(double-click on a line to select it a a whole) and right-click. A menu will open, allowing you
to open the identified command dialog. In this example, the dialog for the implant command
will be opened.
81 DeckBuild User’s Manual

Commands Functions
Figure 3-68 Parsing a Line of Deck

Note: Parse Deck does not carry over parameters into the dialog that are not specified. For example, if you are
parsing the line implant boron, the values of energy and dose will not be altered from whatever
previous value they had on the dialog.
82 DeckBuild User’s Manual

Commands Functions
3.22.4 Process Simulators
Figure 3-69 shows how the Process commands menu, consisting of dialogs for Implant,
Diffus, Deposit, and others. Some menus do have submenus in variants of a command
are available. Figure , shows this for the Etch command menu, which has two sub-menu
entries called Etch and Rate Etch.

Figure 3-69 Invoking Process Etch Command
83 DeckBuild User’s Manual

Commands Functions
3.22.5 Writing a Process Input Deck
Since process fabrication is itself an inherently sequential operation, simply choose the
command of interest from the Commands menu. A corresponding dialog appears that has
controls laid out to represent the variable parameters available for the command. For
example, Figures 3-70, 3-71, 3-72, and 3-73 show the Diffusion dialog. The dialog is
organized as a tabbed view presenting four tabs: Time/Temp, Ambient, Impurities, and
Models. These correspond to the various parameters of the diffuse command.

Figure 3-70 Diffuse Dialog–Time/Temp Parameters
84 DeckBuild User’s Manual

Commands Functions
Figure 3-71 Diffuse Dialog–Ambient Definition

When you adjust all the controls to reflect the process step to be performed, click the WRITE
button. A line (or sometimes several lines) of text is written to the deck at the location of the
text cursor. If desired, verify the cursor’s location before clicking WRITE, although
DeckBuild automatically detects if the caret is in the middle of a line and moves it if
necessary. Build the entire process deck by invoking the dialogs as needed from the
Commands menu, setting the controls, and writing the deck one dialog at a time. You can
also parse the deck. That is, read a line or lines of syntax from the deck and automatically
configure the correct dialogs.
85 DeckBuild User’s Manual

Commands Functions
Figure 3-72 Diffuse Dialog–Impurities
86 DeckBuild User’s Manual

Commands Functions
Figure 3-73 Diffuse Dialog–Models
87 DeckBuild User’s Manual

Preferences Functions
3.23 Preferences
Many settings of DeckBuild are customizable. To do this, open the Preferences panel by
selecting EditPreferences (see Figure 3-74).

Figure 3-74 Opening Preferences

Figure 3-75 shows the Main Preferences dialog. On the left-hand side, you can see the various
areas ranging from Manage Preferences to Simulation Settings. The right-hand side of the
preferences dialog shows the settings that are available within a particular area. This part will
change everytime you select a different area. In Figure 3-75, Manage Preferences area is
selected.

The Manage Preferences area offers the four buttons:

• Import – Imports settings from a previous export.
• Export – Exports the current preferences settings into a file.
• Factory Settings – Resets all preferences to their factory defaults.
• Recent Files – Clears the recent files lists in the editor.
88 DeckBuild User’s Manual

Preferences Functions
Figure 3-75 Preferences Panel

When you select Import or Export, a file selection dialog will appear (see Figure 3-76).
Select a file and press the Import button to save the preferences to it.

Figure 3-76 File Selection Dialog

Figures 3-77 and 3-78 show the confirmation dialogs that appear if you select either Factory
Settings or Recent Files.
89 DeckBuild User’s Manual

Preferences Functions
Figure 3-77 Confirmation Dialog: reset to factory defaults

Figure 3-78 Confirmation Dialog: clear recent files list.
90 DeckBuild User’s Manual

Application Functions
3.24 Application
This area allows you to define settings related to the application shortcuts and toolbars. Figure
3-79 shows the settings for shortcuts, whereas Figure 3-80 shows the Toolbars settings. In
addition to the View menu (Section 3.4.1 The View Menu), the Toolbars settings allow you
to also define the icon size and whether hints are displayed or buttons are underlined with a
textual description.

Figure 3-79 Configuring Application Shortcuts
91 DeckBuild User’s Manual

Application Functions
Figure 3-80 Configuring Toolbars
92 DeckBuild User’s Manual

Tools Functions
3.25 Tools
The Tools area is split into five sections corresponding to TonyPlot, TonyPlot 3D,
MaskViews, Sedit, and Devedit. Each selection allows you to choose the installation location
and version. Normally, you are not concerned with the installation location as this is where
DeckBuild started. However, if you have several installation trees (e.g., to test a new
package in a different location first), you can also pass options to a tool. For example, when
connected over the network, it may make sense to use the -nohw option to the TonyPlot 3D
tool to avoid using hardware acceleration. Figure 3-81 shows settings for the TonyPlot tool.

Figure 3-81 Settings for TonyPlot
93 DeckBuild User’s Manual

Editor Settings Functions
3.26 Editor Settings
Figure 3-82 shows the preferences settings for the Editor.

With the first group of settings at the very top, you can define the color and font for each
existing style used by the Editor.

To do this you select items in Category and Style lists in left area. Then you can set the
color and font for this style in the right area.

Figure 3-82 Editor Settings

The second group allows you to turn the margin and line number display on and off. This is
also available in the View menu (Section 3.4.1 The View Menu).

The last group of settings allows you to decide which file format to use. The default file

format is.IN, which is a plain text format and is also readable by previous DeckBuild
versions. This version of DeckBuild also supports the use of an XML format, which basically
allows to keep extra information (e.g., defined stops or optimizer experiments). The XML file

cannot be opened by previous DeckBuild versions. Note that you can always open an XML

file and save it as normal.IN file. This allows backwards compatibility.
94 DeckBuild User’s Manual

History and File Settings Functions
3.27 History and File Settings
Figure 3-83 displays settings for the History system. At the very top, you can enable History
for the simulators that support it. These are Athena and Victory Process. Then, there are
two settings to select: Length and Skip. Length defines the maximum number of history files
that are being kept. Skip defines the number of lines to skip between any two history points.
A value of 0 for Skip means to save a history after every line of deck.

Below that, you can find the settings for the File removal policy. Changing these settings
affects the way how DeckBuild cleans up when it exits. If set to Always, then all saved files
are removed before DeckBuild exits. Setting to Confirm will open a confirmation dialog box
(Figure 3-84). Setting to Archive will open a file selection dialog to name an archive file
when DeckBuild exits. Setting to Never will keep the files unconditionally.

At the bottom, you will find settings that influence the status lines on the main editor window.
The Check size of files every setting allows you to define an interval of how often the size of
files generated by simulations is determined. Warn if size of files exceeds allows you to
define a warning limit to detect cases of exhaustive use of disk space.

Figure 3-83 History Settings
95 DeckBuild User’s Manual

History and File Settings Functions
Figure 3-84 Dialog to confirm removal of files
96 DeckBuild User’s Manual

Runtime Settings Functions
3.28 Runtime Settings
Figure 3-85 shows the Preferences area that configures the runtime settings. The setting at the
very top allows you to decide whether the standard error and standard output of a simulator
will appear in a single pane or in separate panes in the main window. Standard error (Error)
is normally used by simulators to indicate certain error conditions (e.g. a licensing problem).
Standard output (Output) is used for the regular simulator output (e.g., to indicate the
progress of the simulation).

Figure 3-85 Runtime Settings

When "Clear Runtime Output on Kill and Restart" is ticked, Deckbuild will clear the
runtime output and removed any text, which is stored from a previous simulation run.

The "Command Warnings and Errors" setting at the bottom right will enable syntax
highlighting for simulators, which support the enhanced simulator interface. At this time this
is the VictoryProcess 3D process simulator. The simulator supports three different warning/
error stati ranging from 'Warning', over 'Error' to 'Fatal'. Note, that the meaning of a
'Warning' in this context is that the simulation does not stop. The only effect is the syntax
highlighting indicated in the deck. The meaning of 'Error' is that the simulation will actually
be stopped at the statement, which caused the error. The simulator will be kept running such
that the user can correct the error and re-run the statement. Finally, a state of 'Fatal' means
that the simulator either has crashed or will be terminated by deckbuild. The simulation
cannot be continued.
97 DeckBuild User’s Manual

Runtime Settings Functions
Figure 3-86 shows the bottom left of the editor window in case standard output and standard
error are shown in separated panes.

Figure 3-86 Standard Output Separate from Standard Error

The next group of settings is concerned what fonts and colors will be used to render the
runtime output. Using different colors allows you to distinguish original deck lines from
simulator response and extracted values. Figure 3-87 shows examples for all three available
settings. The light grey rendered font indicates output from the simulator. The black font
denotes deck lines (they are repeated in runtime output for clarity), whereas pink colored lines
denote extracted results (gateox in this example).

Figure 3-87 Formats Applied to Various Types of Runtime Output

The Temporary Directory setting allows you to chose another than the default temporary
directory (usually /tmp on UNIX).
98 DeckBuild User’s Manual

Runtime Settings Functions
The Disk Space settings allow to define an interval how often the disk statistics are updated
as well as a warning to get an indication in case your disk space drops below a certain mark.

Finally, the Monitor Strings allow you to define a list of strings to be watched by DeckBuild.
As soon one of the defined strings appears anywhere in the runtime output, the simulation is
immediately stopped and dialog will appear to indicate the problem. Figure 3-88 shows that
an illegal diffus command (diffus error) was entered. This triggers an error and a
dialog will appear.

Figure 3-88 Detection of Monitor String
99 DeckBuild User’s Manual

Simulation Settings Functions
3.29 Simulation Settings
Figure 3-89 shows the preferences area for the Simulation settings.

The settings are split into two main areas. The first area has settings common to all
simulators. This is the nice level that is being used to run a simulation. You can also disable
the system commands (shell call out from within a deck) and the auto interface. The second
area is dedicated to fine tuning where a simulator is started from and what version of the
simulator you are using. When the Use default simulator settings box is checked, the whole
area is greyed out and you cannot make any changes. However in Figure 3-89, the box has
been unchecked. This allows you to make the following changes:

• Change the path of where a simulator is started from. If you click on the Use default path
checkbox, then the path for the simulator is the same as where you started DeckBuild
from. So if you installed your tools in, for instance, /opt/silvaco, then the simulators
will be started exactly from there. If you happen to have several installations, for instance,
to allow testing a particular release before installing it in the final location, then you can
uncheck the Use default path box. This will enable the Browse button as shown in
Figure 3-90. The selected directory needs to be a Silvaco installation. If you select a
folder that does not contain the silvaco installation a dialog will appear (see Figure 3-91).

• Select a particular version. Independent of the selected install tree, you can choose among
one of several versions of a simulator that are installed in your system.

• Using the Overide simulator command alllows you to run an arbitrary command instead
of using a simulator. This option enables you to use a shell wrapper to start a simulator.

Figure 3-89 Simulation Settings
100 DeckBuild User’s Manual

Simulation Settings Functions
Figure 3-90 Selecting an Installation Path

Figure 3-91 Illegal Installation Path Selected
101 DeckBuild User’s Manual

Registered Filetypes Functions
3.30 Registered Filetypes
This area allows to associate viewer applications with file types based on the extension of a
file.

3.31 Remote Settings
Please refer to Section 3.3 Remote Mode for full details.
102 DeckBuild User’s Manual

Chapter 4
Statements

Overview Statements
4.1 Overview
This section contains a complete description of every statement and parameter used by
DeckBuild. The following information is provided for each statement:

• The statement name
• The syntax of the statement with a list of all the parameters of the statement and their type
• A description of each parameter
• An example of the correct usage of each statement

4.1.1 DeckBuild Commands
The following list identifies the commands that DeckBuild executes. Each of these
commands is described in subsequent sections:

• ASSIGN

• AUTOELECTRODE

• DEFINE

• ELSE

• EXTRACT

• GO

• IF

• IF.END

• L.END

• L.MODIFY

• LOOP

• MASK

• MASKVIEWS

• SET

• SOURCE

• STMT

• SYSTEM

• TONYPLOT

• UNDEFINE
104 DeckBuild User’s Manual

ASSIGN Statements
4.2 ASSIGN
Provides a much richer version of the functionality provided by the existing SET statement
(see Section 4.11 “SET”).

Syntax
This is the syntax of the ASSIGN statement:

assign name = <variable> [print]

 (n.value = <expr_array> [delta=<expr> | ratio=<expr>] |

 l.value = <expr_array> |

 c.value = <qstring> [delta=<expr>] |

 <c_array>

)

 [level = <expr>]

with the following subsidiary definitions :

 <expr_array> -> <expr> |

 (<expr>, <expr_array>) |

 (<expr> <expr_array>)

 <c_array> -> c<integer>=<qstring> |

 c<integer>=<qstring> <c_array>

Description
The ASSIGN statement allows you to assign either a numerical (n), a logical (l) or a character
(c) value to a variable. Numerical values may be arbitrary arithmetical expressions and may
incorporate any of the standard functions mentioned in Section 4.11 “SET”. All user-defined
variables will be substituted before the expression is evaluated.

Arbitrarily, many variables may be assigned in the same deck.

Logical values may also be arbitrary numerical expressions. If any expression evaluates to a
non-zero value, it is interpreted as true. Otherwise, it is interpreted as false. You can use the
actual words "true" and "false". You can also assign arbitrary boolean expressions to
logical values. The following operators are recognized:

logical AND &

logical OR |

logical NOT ^
105 DeckBuild User’s Manual

ASSIGN Statements
The usual relational operators are also recognised (>, <, >=, <=) with a single '=' character
for the equals operator and the token ^= for the not-equals operator.

Note: Although unquoted strings are supported, you should always use quoted strings for character values for the
sake of clarity.

You can assign a whole array of values to a variable. Arrays of numerical and logical arrays
are written in the following manner:

(1, 2, 4, 8)

 but arrays of character variables are written like this :

c2 = "Mary" c3 = "had" c5 = "a" c7 = "little" c11 = "lamb."

You can have many terms in a character array with their defining integers (the ones prefixed
with 'c' for 'character') and not be sequential.

The array will be sorted in the increasing order of its defining integers.

Arrays are usually assigned to variables in loops. After each loop, the next value in the array
will be assigned to the variable. If the end of the array comes before the end of the loop, the
variable will revert to the first value in the array on the next pass.

You can also use the delta and ratio clauses to alter a variable on each pass through a loop. If
you specify delta, that value will be added to the variable on each pass. If you specify ratio,
the variable will be multiplied by that value on each pass.

If you specify an array of values, you cannot then specify either the delta or the ratio clauses.

You can specify a delta clause for a character value. This increment must be an integer and
will be truncated if it isn't. This is an odd concept but is useful when, for example, you want
to use a new output file on each iteration of a loop. A few examples will illustrate the idea. If
the character value is a00 and delta is 4, then the first few values the variable takes will be
a00, a04, a08, a12 and so on. Eventually, you will reach the values a92, a96, b00, b04, and
so on. Incrementing lower-case 'z' by one produces lower-case 'a' but not upper-case 'A'
and vice versa. You can also specify a negative delta with the obvious results.

An ASSIGN will persist until you encounter a second ASSIGN with the same variable name. If
this happens, the old ASSIGN will be discarded and replaced by the new one. If an ASSIGN is
outside of all loops, then the value of its variable never changes. If it's inside a loop, then its
variable changes every time a new iteration of the loop begins.

If you specify the print keyword, the current value of the variable will print when initialized
and will change each time thereafter.

You can use the level clause to have the value of the variable change when a particular
member of a set of nested loops begins a new iteration. If the level you specify is positive, the
loop is obtained by counting downwards from the zero level, the one outside of all loops. If
the level is negative, the loop is obtained by counting upwards from the current level towards
the outermost loop. So, level=-2 means change when the loop two above the present one
starts a new iteration. level=2 means change when the next-to-the-outermost loop begins a
new iteration.
106 DeckBuild User’s Manual

ASSIGN Statements
As already mentioned, user-defined variables will be substituted before attempting expression
evaluation. These variables are defined using the SET and ASSIGN statements. You can
indicate the presence of a user-defined variable by prefixing it with '$' or '@' or by
surrounding it with braces like this:

${my_variable_1}, @{my_variable_2}.

Variables embedded withing quoted strings will be correctly substituted. "Bare" variables
will be recognized provided they are surrounded by both spaces and parentheses. This usage,
however, is very confusing and highly inadvisable.

Examples
1. In this example, param1 will take the values 1, 2 and 3 on the three passes through the

loop.

loop steps=3

 assign name=param1 print n.value = 1 delta = 1

l.end

2. This generates the sequence aa.20, aa.16, aa.12, aa.08, aa.04 and aa.00 for param2.

loop steps=6 print

 assign name=param2 c.value = "aa.20" delta = -4

l.end

3. Followed by, "Mary", "had", "a", "little" and "lamb".

loop steps=5 print

 assign name=param3 c10="lamb." c3="Mary" c8="little" c4="had"
c7="a"

l.end

In the two preceding examples, the double quotation marks will not be included when
param2 and param3 are substituted into later expressions.

4. param1 takes the values 42, 38, 17, 42, 38.

loop steps=5 print

 assign name=param1 n.value = (42, 38, 17)

l.end

5. param1 takes the values 42, 45.2, 48.4, 51.6, 54.8.

loop steps=5 print

 assign name=param1 n.value = 42 delta = 3.2

l.end

6. param1 takes the values 42, 134.4, 430.08, 1376.26, 4404.02.

loop steps=5 print

 assign name=param1 n.value = 42 ratio = 3.2

l.end
107 DeckBuild User’s Manual

ASSIGN Statements
7. This is a simple example illustrating the use of boolean expressions.

assign name=condition l.value = ($x > 0.0 & $y < 3.0)

If x and y represent coordinates, the value of condition will be true or false accordingly as the
coordinates are in a required area of the structure. The value of $condition could then be used
as input to an IF statement.

8. It is worth emphasizing that ASSIGN can be used for the simplest of cases. See the
following example:

assign name=e_charge n.value=1.6e-19
108 DeckBuild User’s Manual

AUTOELECTRODE Statements
4.3 AUTOELECTRODE
Defines layout-based electrodes.

Syntax
autoelectrode

Description
The autoelectrode command causes DeckBuild to submit electrode definition statements
to the current simulator. The electrode name and positioning information will be taken from
the MaskViews layout data.

Note: DeckBuild only remembers the electrodes speci f ied within each mask. Therefore, an
autoelectrode statement must be used for every mask layer where electrodes are defined. This
defines multiple electrodes for a single autoelectrode statement within the current mask.

See
“IC Layout Interface” section
109 DeckBuild User’s Manual

DEFINE and UNDEFINE Statements
4.4 DEFINE and UNDEFINE
DEFINE replaces all subsequent occurrences of an identifier with a specified string.

UNDEFINE cancels this action. All DEFINE statements may be canceled at once by calling
SET CLEAR, see Section 4.11 “SET”.

Syntax
define <identifier> <rest_of_line>

undefine <identifier>

Description
The identifier should either be a quoted string or a well-formed identifier. That is, one which
begins with a letter or an underscore and continues with an arbitrary sequence of letters,
digits, underscores and periods.

Every time this token is identified thereafter, it will be replaced by the whole of the rest of the
DEFINE statement from the end of the token down to the end of the line. This
<rest_of_line> component may consist of any characters whatsoever.

You don't have to flag the presence of the defined (DEFINE) token using a '$' or '@' prefix
or any of the other methods mentioned in Section 4.2 “ASSIGN”.

Substitution of a defined (DEFINE) token will persist until you encounter an UNDEFINE
statement referencing the same token.

Substitution of defined (DEFINE) tokens will occur before each line is executed, unless the
line begins with a % character. This also holds for the DEFINE and UNDEFINE lines themselves
and has an odd corollary, which you can see in the examples section.

Examples
1. Here is a straightforward example:

define mypath /home/john_smith/tmp/logs

.

.

.

log outf=mypath/file1.log

.

.

.

log outf=mypath/file2.log

This pathology will define black as white.

define color black

.

.

.

define color white
110 DeckBuild User’s Manual

DEFINE and UNDEFINE Statements
To get the behavior you probably had in mind, do this :

 define color black

 .

 .

 .

 %define color white

2. Something similar happens with the UNDEFINE command. In the next example, "black"
is substituted for "color" in the UNDEFINE command and a no-op results.

define color black

.

.

.

undefine color

3. For an UNDEFINE to take effect, always use the '%' prefix. For example:

define color black

.

.

.

%undefine color
111 DeckBuild User’s Manual

EXTRACT Statements
4.5 EXTRACT
Extracts information from the current simulation.

Syntax
extract extract-parameters

Description
The extract statement is used to extract interesting information from the current simulation.
See Chapter 5: “Extract” for a complete description.
112 DeckBuild User’s Manual

GO Statements
4.6 GO
Interface between simulators

Syntax
go <simulator> [inflags=<> | outflags=<> | simflags=<> | cut-
line=<>|noauto]

Description
The GO statement tells DeckBuild to shut down the current simulator and start up the specified
simulator when the statement is executed. It is used to auto-interface between simulators.

simulator can be ssuprem3, athena, atlas, devedit, utmost.

inflags specifies new load command flags for autointerface.

outflags specifies new save command flags for autointerface.

simflags specifies flags to be appended to default simulator argument.

cutline specifies a MaskViews cutline file to be loaded into DeckBuild.

noauto specifies that no autointerface occurs for this go statement.

Examples
If the current simulator is SSuprem3, then this statement causes DeckBuild to quit SSuprem3
and start up Athena.

go athena

This will replace the default flags used in Athena auto interface command with "master"
when loading and "flip.y" when saving.

go athena inflags=master outflags=flip.y

Note: One or more flags can be specified on the go line.

This statement will append "-V 2.2.1.R" to the default DevEdit argument to start version
2.2.1.R of the tool.

go devedit simflags="-V 2.2.1.R"

Note: Quotes are required where spaces used in flags or multiple flags used.

This loads the MaskViews cutline default.sec from the specified directory into DeckBuild.

go athena cutline="/usr/jdoe/default.sec"

This removes the currently loaded MaskViews cutline.

go athena cutline=none

Note: The cutline flag should never be used with VWF.

The cutline flag cannot be used within VWF because is no guarantee that the specified
directory path for the cutline file will exist on any of the remote machines in a network that
VWF jobs can be sent to.
113 DeckBuild User’s Manual

GO Statements
If the current simulator is Athena, then the following statement causes DeckBuild to quit
Athena and start up Atlas but no autointerface between the two simulators will occur.

go atlas noauto

See
“Auto Interface” section
114 DeckBuild User’s Manual

IF, ELSE and IF.END Statements
4.7 IF, ELSE and IF.END
These three commands together provide the standard IF block functionality.

Syntax
if cond = (<boolean_expr>)

else [cond = (<boolean_expr>)]

if.end

Description
The IF command starts the block. If its condition evaluates to true, then statements down to
the next ELSE or IF.END line will be executed. If the condition evaluates to false, then there
will be a s search for an ELSE IF line whose condition evaluates to true. If you find such a
line, the lines in its sub-block will be executed. At most, one sub-block in a given IF block
will be executed.

The <boolean_expression> can be an arbitrary combination of boolean variables
concatenated with AND, OR or NOT operators as described in Section 4.2 “ASSIGN”.

You can nest IF blocks with each other and with LOOPs. As usual, an ELSE or an IF.END is
associated with the most recent IF. There is no mechanism for using brackets or braces to
enforce a particular nesting.

Example
if cond = (@MOSTYPE = "PMOS")

 method gummel carriers = 1 holes

else

 method gummel carriers = 1 electrons

if.end
115 DeckBuild User’s Manual

LOOP, L.END and L.MODIFY Statements
4.8 LOOP, L.END and L.MODIFY
These three commands together provide the standard looping functionality.

Syntax
loop steps = <expr> [print]

l.end [break]

l.modify [level = <expr>] [steps = <expr>] [next | break]
[print]

Description
Every loop statement must have a corresponding l.end statement. All the commands
between these two statements are executed repeatedly for the number of times given in the
steps clause of the loop command. If you specify the print keyword, the values of all user-
defined variables that vary under the control of the loop will print every time they change. If
you specify the break keyword in the l.end statement, the loop will exit on its first iteration
regardless of the value of steps.

Example: Simple Loop In DeckBuild and Atlas
This example creates a simple resistor in Atlas and uses the loop functionality in DeckBuild
to run two voltage solutions at 0.1V and 0.2V in Atlas.

go atlas

mesh

x.m l=0.0 s=0.01

x.m l=0.1 s=0.01

y.m l=0.0 s=0.01

y.m l=0.1 s=0.01

region num=1 silicon

electrode name=top top

electrode name=bottom bottom

doping num=1 conc=1e17 n.type uniform
116 DeckBuild User’s Manual

LOOP, L.END and L.MODIFY Statements
solve init

solve previous

set a=0.1

loop steps = 2

solve v1=$a

set a=$a*2

l.end

quit

Loops can of course be nested with each other and with IF blocks. When an l.end statement
is encountered, it is associated with the most recent loop statement.

The l.modify statement changes the behavior of the current loop or one within which it is
nested. You specify the level of the loop you wish to modify using the level clause, which is
described in Section 4.2 “ASSIGN”. Without this clause, the current loop is assumed. You use
the steps clause to change the number of times the loop will be executed. A value less than or
equal to the current loop iteration count is acceptable and simply results in the loop exiting at
the end of the current iteration.

The break keyword causes the loop to exit immediately.

The next keyword causes the loop to abandon the current iteration and to begin the next
without executing any statements between the l.modify and the relevant l.end statements.

The print command switches on the printing of user-defined variables as described above.

Example

loop steps=3

 assign name=param1 print n.value = 1 delta = 1

loop steps=3

 assign name=param2 print n.value = 1 delta = 1

l.end

l.end
117 DeckBuild User’s Manual

MASK Statements
4.9 MASK
Defines the position of the process flow where photoresist or barrier material is added with
the use of the MaskViews IC layout interface.

Syntax
mask name="maskname"[misalign=<misalignment>/

|bias=<bias>|delta_cd= <delta_cd>/

|shrink=<shrink>|reverse|optolith]

Description
Mask is used to interface to Silvaco’s general purpose layout editor MaskViews. The mask
statement defines the location where photoresist is deposited in the flow of processing events.
The etched pattern is dependent on the MaskViews cutline file, which must be loaded into
DeckBuild.

Name specifies the name of the layer that defines the photoresist patterning. This name must
correspond to a mask level name contained in the MaskViews cutline file loaded into
DeckBuild.

Bias and delta_cd increase or decrease the width of the deposited mask. For positive masks,
a positive delta.bias decreases the etched hole(s) in the mask.

Misalignment shifts the entire specified mask left and right. Negative misalignment values
shift the mask left, positive values right.

Shrink reduces the size of the specified layer by the ratio specified.

Reverse specifies that the mask polarity should be reversed or that negative type photoresist
should be modeled.

Optolith specifies that the loaded MaskViews cutline is from an Optolith layout. Therefore,
OPTOLITH syntax (layout commands) is used to define the photoresist pattern.

Examples
The delta value can be used to vary the Critical Dimension (CD) of the specified layer. The
value operates on as edge-by-edge basis. For example, for an IC layout with a 1.0, micron
wide "poly" the statement:

mask name="poly" delta=-0.1

creates a drawn poly length of 0.8 microns, meaning that 0.1 have been removed from each
poly edge.

The bias command option performs the same operation as the delta command. This can be
used globally to edit the bias of each layer. The bias command can be used with delta, such
that the real value for CD reduction is the sum of the delta and bias values, per edge. For
example, if an IC layout with 1.2 micron CD’s is streamed-in from GDS2, and the final etch,
then the final etch profile is known to be 0.9 microns due to a combination of biasing, photo-
exposure, and over etch, then the offset is required to be constant. This is where the bias
command can be used.

mask name="poly" bias=-0.15

In other words, 1.2 microns-0.9 microns=-0.3 microns =2(-0.15) microns, or -0.15 microns
per edge.
118 DeckBuild User’s Manual

MASK Statements
Further experimentation might be required in addition to the fixed bias. This is where the
delta command can be used. In this example:

mask name="poly" bias=-0.15 bias=-0.15 delta=-0.025

This simulates a true experiment in terms of CD variation.

The misalign command is used to offset a layer with respect to other layers. For example

mask name="poly" bias=-0.15 misalign=-0.1

causes the poly layer to be offset to the left by 0.1 microns.

The shrink command is used to reduce the size of all edges in the specified layer. For
example, the statement below will reduce the layer edges by 50 percent.

mask name="poly" shrink=0.5

Misalignment and CD Experimentation
It is often necessary to experiment with either misalignment or the CDs of a layer. The
MaskViews-DeckBuild interface supports this level of experimentation. DeckBuild can be
used to experiment with the cutline generated by MaskViews. Each mask statement can be
used to alter the cutline. The underlying mesh used by Athena is not changed with mask
experimentation commands. VWF can be used to split on these values to generate RSM’s
relating to mask experimentation.
119 DeckBuild User’s Manual

MASKVIEWS Statements
4.10 MASKVIEWS
Plots a layout file

Syntax
maskviews <layout file>

Description
This statement starts the MaskViews layout editor and load the supplield layout file. If no
layout file is specified, MaskViews is invoked with no data.

Examples
This statement plots a layout file (which should be in the current directory).

maskviews layout.lay

See
MaskViews User’s Manual
120 DeckBuild User’s Manual

SET Statements
4.11 SET
Sets the value of a user-defined variable or clear all existing variables.

Syntax
set <variable> = <value> | <expr> | <built_in_func> [nominal]

set clear

<built_in_func> = max (<expr>, <expr>) |

 min (<expr>, <expr>) |

 ave (<expr>, <expr>) |

 sin (<expr>) |

 cos (<expr>) |

 tan (<expr>) |

 asin (<expr>) |

 acos (<expr>) |

 atan (<expr>) |

 atan2 (<expr>, <expr>) |

 sinh (<expr>) |

 cosh (<expr>) |

 tanh (<expr>) |

 exp (<expr>) |

 log (<expr>) |

 log10 (<expr>) |

 pow (<expr>, <expr>) |

 sqrt (<expr>) |

 ceil (<expr>) |

 floor (<expr>) |

 abs (<expr>) |

 ldexp (<expr>, <expr>) |

 fmod (<expr>, <expr>)

Description
The set command is used to set the value of a user-defined variable. The value can later be
substituted using $-substitution, which replaces the variable name with its value when the
variable is preceded by a dollar sign ‘$’ or by the at sign '@'.

variable is a user-defined variable name. It may contain spaces or other non-alphabetical
characters if it is delimited by double quotation marks..

<expr> is an algebraic expression consisting of numeric constants, $-substituted variables,
algebraic operators (+,-.*,/,^), and or the built-in functions shown.
121 DeckBuild User’s Manual

SET Statements
set commands can be used in conjunction with extracted values. If a $-variable is to be
substituted and if an existing DeckBuild variable cannot be found, it is assumed to be a user-
defined environment variable.

Synonyms for SET
We have introduced synonyms for the SET syntax to provide improved compatability with
other products. Both of the following syntaxes are valid.

Assign|assign NAME=<variable> N.VALUE= <value> | <expr> |
<built_in_func>

define <variable> <value> | <expr> | <built_in_func>

These will assign the chosen value or expression to the variable in the same way as the
existing SET syntax. To reiterate, you can substitute the value later using $-substitution,
which replaces the variable name with its value when the variable is preceded either by a
dollar sign '$', or by the at sign '@'.

Examples
These statements show how to set variables and how to substitute with each other and in
simulator syntax.

set time=30

set temp=1000

set press=1.0

set env="nitro"

set pi=3.1415

set "pi*2" = 2*$pi

diffuse time=$time temp=$temp press=$press $env hcl=$"pi*2"

The following statements extract the thickness of the top layer of oxide in a structure and etch
back that thickness plus 0.05 micron.

extract name="oxide thickness" thickness oxide

set etch_thickness = ($"oxide thickness"*10000) + 0.05

etch oxide dry thickness=$etch_thickness

Note: The thickness is measured in angstroms, so it is converted to microns first.

Variable names that contain spaces (generated by extract statements) must be quoted for $-
substitution, and the ‘$’ must precede the quoted string as shown.

For variable names with no spaces, quotation marks are optional.

The following statement will remove all existing variables, including those made by define
statements, see Section 4.4 “DEFINE and UNDEFINE”.

set clear
122 DeckBuild User’s Manual

SET Statements
The statements below show the use of the nominal flag.

extract name="oxide thickness""oxide thickness" thickness_bad_syn-
tax oxide

set "oxide thickness" = 0.5 nominal

etch oxide dry thickness=$oxide thickness

For this example, if the extract statement was successful, the value of "oxide thickness"
would be set. Therefore, the nominal set statement would be ignored. But the extract
syntax is incorrect, so the extract statement never creates the result variable and "oxide
thickness" is set by the nominal set statement to 0.5.
123 DeckBuild User’s Manual

SOURCE Statements
4.12 SOURCE
Enables simulation commands to be executed from an external file

Syntax
SOURCE file

Description
The SOURCE statement enables simulation commands to be executed from an external file.
The named file is read and placed in DeckBuild’s input buffer and is executed as if it were
part of the input deck.

file is the name of a file that contains any valid simulator syntax or DeckBuild statements,
such as extract and set. The sourced file may source other files. If the file name does not
begin with ‘/’, then it is assumed to be in the current directory.

Examples
The file to be sourced may contain part of an input deck including commands from any
simulator. The following input deck fragment will perform a diffusion, access the file
include_file for further commands, then revert back to the deposition step.

etch oxide all

#

Source an external file

Return to the input deck

implant bf2 dose=1.0e12 energy=35 pearson

include_file contains these statements:

#gate oxide grown here:-

diffus time=10 temp=900 dryo2 press=1.00 hcl%=3

The runtime output from this fragment will appear as:

ATHENA> etch oxide all

ATHENA> #

ATHENA> # Source an external file

ATHENA> source include_file

ATHENA> #gate oxide grown here:-

ATHENA> diffus time=10 temp=900 dryo2 press=1.00 hcl%=3

Solving time(sec.) 0 + 0.01 100%, np 106

Solving time(sec.) 0.01 + 0.173987 1739.87%, np 106

Solving time(sec.) 0.183987 + 0.187665 107.861%, np 106

*

Solving time(sec.) 0.371653 + 0.628347 334.823%, np 106

Solving time(sec.) 1 + 0.1 15.9148%, np 106

Solving time(sec.) 1.1 + 3.1396 3139.6%, np 106
124 DeckBuild User’s Manual

SOURCE Statements
Solving time(sec.) 4.2396 + 19.1813 610.947%, np 106

Solving time(sec.) 23.4209 + 93.4041 486.955%, np 106

Solving time(sec.) 116.825 + 150 160.593%, np 104

Solving time(sec.) 266.825 + 150 100%, np 104

Solving time(sec.) 416.825 + 150 100%, np 104

Solving time(sec.) 566.825 + 33.1751 22.1167%, np 104

ATHENA ># Return to the input deck

ATHENA> implant bf2 dose=1.0e12 energy=35 pearson
125 DeckBuild User’s Manual

STMT Statements
4.13 STMT
Enables you to define variables that change under the control of loops.

Syntax
stmt <parameters>

Where

<parameters> -> <parameter> | <parameter> <parameters>

<parameter> -> <variable> = <initial> [: [+ | *] <change> [:
<level>]]

That is, a stmt command must carry at least one parameter and may carry many
(independent) parameters.

Description
This is effectively a shorthand for part of the ASSIGN statement.

The <initial>, <change> and <level> terms are all numerical expressions.

The value of the variable is re-evaluated every time the STMT command is encountered. If no
arithmetical operator is specified or if the '+' sign appears explicitly, then addition is
understood and the variable is re-evaluated as

<initial> + <change> * (count - 1)

where count is the current iteration count of the loop with level <level>.

If the multiplication operator ('*') appears, the variable is re-evaluated as

<initial> * pow(<change>, (count - 1))

where pow is the usual exponentiation function.

The <change> term defaults to 0 in the addition case and 1 in the multiplication case. The
<level> term defaults to the current loop level. This means that if you only specify
<initial>, the variable will be a constant.

Examples
1. In this example param1 will take the values 1, 2, 3, 4 and 5.

loop steps=5 print

 stmt param1=1:1

l.end

2. In this example param1 will take the values 1, 2, 4, 8 and 16.

loop steps=5 print

 stmt param1=1:*2

l.end
126 DeckBuild User’s Manual

SYSTEM Statements
4.14 SYSTEM
Allows DeckBuild to execute UNIX system commands within a simulation deck.

Syntax
SYSTEM <UNIX command>

Description
The SYSTEM command allows you to execute shell scripts or perform other UNIX tasks
directly from the simulation deck. The command is blocking, meaning that the simulation
does not continue until the SYSTEM command has finished execution.

To use this feature, enable the SYSTEM commands in the Main Control Options Popup (see
Figure 3-18). To enable system commands for VWF Automation Tools, set the environment
variable DB_SYSTEM_OPTION to any value.

Examples
system rm history*.str

Note: Redirection of the system command output (i.e., system 1s * .in > file.out) cannot be
achieved as the output is already redirected by DeckBuild.
127 DeckBuild User’s Manual

TONYPLOT Statements
4.15 TONYPLOT
Plots a file

Syntax
tonyplot -args

Description
This statement causes DeckBuild to save a temporary file from the current simulator and start
up TonyPlot with that file loaded. The temporary file is removed when TonyPlot exits.

-args, if specified, are passed directly to TonyPlot (as if invoked from the command line). If
any of -st, -da, or -over and a file name is specified, DeckBuild uses the named file instead
of saving and plotting the current structure.

DeckBuild also detects if the structure to be plotted is 3D and use TonyPlot3D if required.

Examples
This statement saves the current file and starts TonyPlot.

tonyplot

This statement plots a file (which should be in the current directory).

tonyplot -st well.str

See
Section 3.4 “DeckBuild Controls”
128 DeckBuild User’s Manual

Chapter 5
Extract

Overview Extract
5.1 Overview
DeckBuild has a built-in extraction language that allows measurement of physical and
electrical properties in a simulated device. The result of all extract expressions is either a
single value (such as Xj for process or Vt for device), or a two-dimensional curve (such as
concentration versus depth for process or gate voltage versus drain current for device).

Extract forms a “function calculator” that allows you to combine and manipulate values or
entire curves quickly and easily. You can create your own, customized expressions, or choose
from a number of standard routines provided for the process and device simulators. You can
take one of the standard expressions and modify it as appropriate to suit your needs. Extract
also has variable substitution capability so that you can use the results of previous extract
commands.

Extract has two built-in 1D device simulators, QUICKMOS and QUICKBIP, for specialized
cases of MOS and bipolar electrical measurement. Both QUICKMOS and QUICKBIP run
directly from the results of process simulation for fast, easy and accurate device simulation.
130 DeckBuild User’s Manual

Process Extraction Extract
5.2 Process Extraction
DeckBuild’s process extraction window is shown below (Figure 5-1).

Figure 5-1 Process Extraction Dialog

You may use this window to look at the following:

• Material thickness measures the thickness of the nth occurrence of any material or all
materials in the structure.

• Junction depth measures the depth of any junction occurrence in the nth occurrence of
any material.

• Surface concentration measures the surface concentration of any dopant, or net dopant,
in the nth occurrence of any material.

• QUICKMOS 1D Vt calculates the one-dimensional threshold voltage of a MOS cross
section using the built-in QUICKMOS 1D device simulator. The gate voltage range
defaults between 0 to 5 Volts but can be specified as required. The substrate can also be
fixed at any bias. Qss and device temperature values may also be specified.

• QUICKMOS CV curve creates a CV curve of a MOS cross section using QUICKMOS.
This shows capacitance as a function of either gate voltage or substrate voltage with the
other terminal held at any fixed bias. Qss and device temperature values may also be
specified.

• QUICKBIP 1D solver measures any of 22 BJT Gummel-Poon parameters, plus any
forward or reverse IV curve. See the Section 5.9 “QUICKBIP Bipolar Extract” for more
information and examples.
131 DeckBuild User’s Manual

Process Extraction Extract
• Junction capacitance versus bias calculates the junction capacitance of a specified p-n
junction within any region as a function of applied bias to that region. Qss and device
temperature values can also be specified.

• Junction breakdown curve calculates the electron or hole ionization integral of any
region as a function of applied bias to that region. This calculation uses the Selberherr
impact ionization model. (see the Impact command section and Impact Ionization physics
sections within the Atlas manual). You can modify the Selberherr model default values
and specify Qss and device temperature values.

• SIMS profile calculates the concentration profile of a dopant in a material layer.
• SRP profile calculates the SRP (Spreading Resistance Profile) in a silicon layer.
• Sheet resistance and sheet conductance calculates the sheet resistance or conductance

of any p-n region in any layer in an arbitrary structure. You can specify the bias of any
region in any layer, the Qss of any material interface and the device temperature. A flag
for carrier freezeout calculations can also be set (see the “Incomplete Ionization Of
Impurities” physics section within the Atlas manual).

• Sheet resistance and sheet conductance versus bias calculates the sheet resistance or
conductance of one or more regions as a function of applied bias to any region. Qss and
device temperature values can also be specified.

• Electrical concentration profiles measures electrical distributions versus depth. You can
also specify the bias of any region in any layer and the Qss of any material interface. The
device temperature can also be set to the required value. The following distributions are
calculated:

• electrons

• holes

• electron quasi-fermi level

• hole quasi-fermi level

• intrinsic concentration

• potential

• electron mobility

• hole mobility

• electric field

• conductivity

• 1D maximum/minimum concentration measures the peak or minimum concentration of
any dopant or net dopant, for a specified 1D cutline, in the nth occurrence of any material
or all materials, and also within any junction-defined.

• 2D maximum/minimum concentration measures the peak or minimum concentration of
any dopant or net dopant, for the whole 2D structure or within a specified area, in any
material or all materials, and also within any junction-defined. The actual xy coordinates
of the maximum or minimum concentration can also be retrieved.

• 2D material region boundary returns the maximum or minimum boundary of the
selected material region for either X or Y axis. Therefore, the outer boundaries of any
material region can be extracted.

• 2D concentration area integrates specified concentration of any dopant or net dopant for
whole 2d structure or within a specified location.
132 DeckBuild User’s Manual

Process Extraction Extract
• 2D maximum concentration file (CCD) creates a Data Format file with the XY
coordinates and the actual values of the maximum concentrations stepping across the
structure. This file can be loaded into TonyPlot when in -ccd mode to show a line of
maximum concentration across a device.

• ED tree creates one branch of a Smile plot or ED tree from multiple Defocus distance
against Critical Dimension (CD) plots created for a sweep of Dose values by Optolith.
These plots are all written in a single Data format file.

• Elapsed time extracts time stamps from a specified start time at any point in a simulation.
You can reset the start time as required.

Note: This extraction is not CPU time.

The built-in 1D Poisson device simulator is used to calculate sheet resistance and
conductance and the electrical concentration profiles.

With the exception of 2D extractions, all the process extraction routines are available from
both 1D and 2D process simulators. In the case of the 2D simulators, a cross section x or y
value or region name (used in conjunction with MaskViews) determines the 1D section to
use.

Note: An error will be returned for attempted extractions on 3D structure files.
133 DeckBuild User’s Manual

Process Extraction Extract
5.2.1 Entering a Process Extraction Statement
To place an extract statement in your process deck, select CommandsAthena Extract....
The Extraction popup appears. The popup for extracting Athena is shown in Figure 5-2.

Figure 5-2 Thickness Extraction Dialog

Choose the extract routine you want by activating a choice on the Extract setting. The popup
changes size and displays different items, depending on which routine you choose. Then,
enter or choose the desired information for each item on the popup. An extract name is always
required. Optionally, enter the minimum or maximum desired cutoff values by checking Min
value or Max value and entering a value in the corresponding text field. By default, all
extract results are written to a file named results.final. But using the Results datafile
field allows you to specify the results file for each individual extract statement. Material
and impurity names are selected using a Pulldown menu (Figure 5-3).
134 DeckBuild User’s Manual

Process Extraction Extract
Figure 5-3 SIMS Profile Extraction Dialog Showing Material Pulldown

If the required option is not present in the default setting, select the User Defined checkbox to
allow entering materials/impurities in the corresponding text box.

Finally, place the text caret at the desired point in the deck and click on the WRITE button.
The extract syntax is written to the deck.
135 DeckBuild User’s Manual

Process Extraction Extract
5.2.2 Extracting a Curve
Some of the process extraction statements create a two-dimensional curve as a result, rather
than a single value. For instance, extract constructs a data set of concentration versus depth
for the SIMS, SRP, and electrical quantities distributions. You can use the resulting 2D curve
for measurement and testing and as a target on the Optimizer worksheet so that you can
optimize against 2D curves.

Extract provides several additional options to 2D curve support: axis layout, axis attributes,
optional computation of area under the curve, and optional outfile. These options are the same
regardless what type of curve (for instance, QUICKMOS CV and SIMS profile) you are
extracting.

The Athena Extract popup showing the SIMS Profile is shown in Figure 5-4.

Figure 5-4 SIMS Profile Extract Dialog

The following options are available:

• X vs Y axis determines the x and y axes of the resulting profile curve. The default (which
should always be used unless you plan to customize the resulting extract expression) is
that the x axis is depth into the material, and the y axis is the concentration.

• X axis attributes and Y axis attributes allows you to modify the data values on each
axis independently. To compute net concentration versus depth, you can select abs on the
y axis (concentration), and select nothing on the x axis (depth). abs is always evaluated
before taking the log or square root of the data.

• Curve X axis bounds specifies whether to create the curve for the whole X axis or for
only a required section. If selected, X axis value fields become active, enter values in the
same units as the resulting curve. This is useful for extracting local maxima and minima.
136 DeckBuild User’s Manual

Process Extraction Extract
• Store X/Y datafile stores an output file in TonyPlot data format if set to Yes. You can
plot the data file in TonyPlot using the -da option. You can also read the data file directly
into the Optimizer worksheet as a target if desired.

• Compute curve area computes the area under the curve. When checked, it causes several
other items to become active.

• Area X axis bounds tells Extract whether to integrate the area under the curve along its
entire length or just for a bounded portion of the X axis. If you select Bounded, then X
axis start and X axis stop become active. Enter start and stop values in the same units as
the resulting curve.

To construct the 2D curve, set each item on the popup in turn and click on WRITE.

Depth is always computed as distance from the top of the selected material layer and
occurrence. Depth starts from 0 and increases through the material.
137 DeckBuild User’s Manual

Customized Extract Statements Extract
5.3 Customized Extract Statements
In addition to the simple curve primitives shown on the popup, you can edit the input deck
directly to make customized curves. Examples include extracting maxima and minima on the
curve, combining axes using a function definition, looking at slopes of tangent lines,
intercepts of sloped lines. The Extract syntax is described below, followed by examples of
process extraction. See the examples listed under Section 5.4 “Device Extraction” for more
information.

5.3.1 Extract Syntax
Text inside matching pairs of /* and */ delimiters are comments. These are used to clarify
the meaning of the syntax and also as definitions for the most primitive types, such as
<QSTRING>.

The backslash character (\) at the end of a line indicates a continuation line.

Many of the optional parameters (the ones enclosed in square brackets) have default values.
Some of these defaults are given immediately after they appear. Others appear in more than
one place and so are collected at the end.

Description
<EXTRACT_STATEMENT> :

 <EXTRACT_SINGLE_LINE_GENERAL>

 <EXTRACT_MULTIPLE_LINE_GENERAL>

 <EXTRACT_2D_MAX_MIN_CONC>

 <EXTRACT_TIME>

 <EXTRACT_SIMPLE>

<EXTRACT_SINGLE_LINE_GENERAL> :

 [extract init infile=QSTRING>]

 /* In default of the above line, a temporary structure file represent-
ing the current state of the device will be constructed. */

 extract [name=<QSTRING>] <EXTRACT_SINGLE_LINE_PARTICULAR> \

 [datafile=<QSTRING>] [hide]
138 DeckBuild User’s Manual

Customized Extract Statements Extract

<EXTRACT_MULTIPLE_LINE_GENERAL> :

 [extract init infile=<QSTRING>]

 /* In default of the above line, a temporary structure file
representing the current state of the device will be constructed. */

 extract start <EXTRACT_MULTIPLE_LINE_SETUP_N>

 [extract cont <EXTRACT_MULTIPLE_LINE_SETUP_N> ...]

 /* zero or more instances of the extract cont line may appear. */

 extract done [name=<QSTRING>] <EXTRACT_MULTIPLE_LINE_DONE_N> \

 [datafile=<QSTRING>] [hide]

/* There are five pairs of definitions for<EXTRACT_MULTIPLE_LINE_SETUP_N>
and <EXTRACT_MULTIPLE_LINE_DONE_N>, with N replaced by 1, 2, 3, 4 or 5.
Elements from different pairs (ones with different values of N) must NOT
appear in the same statement. */

<EXTRACT_2D_MAX_MIN_CONC> :

 [extract init infile=<QSTRING>]

 /* In default of the above line, a temporary structure file representing
the current state of the device will be constructed. */

 extract [name=<QSTRING>] 2d.max.conc | 2d.min.conc [interpolate] \

 [<IMPURITY>] [<MATERIAL>] [mat.occno=<EXPR>] \

 [min.v=<EXPR>][max.v=<EXPR>] \

 [x.max=<EXPR> x.min=<EXPR> y.max=<EXPR> y.min=<EXPR> |

 y.max=<EXPR> y.min=<EXPR> region=<QSTRING>] \

 [datafile=<QSTRING>] [hide]

 [extract [x_pos_name=<QSTRING>] x.pos
139 DeckBuild User’s Manual

Customized Extract Statements Extract

 extract [y_pos_name=<QSTRING>] y.pos]

 /* x_pos_name and y_pos_name will default to the name in the|
 main extract statement, with "X position" and "Y position
 appended respectively. */

<EXTRACT_TIME> :

 extract [name=<QSTRING>] clock.time [start_time=<EXPR>] \
 [datafile=<QSTRING>]

<EXTRACT_SIMPLE> :

 extract [name=<QSTRING>] <EXPR> [datafile=<QSTRING>]

<EXTRACT_SINGLE_LINE_PARTICULAR> :

 <CURVE_FUNC> (<CURVE_SINGLE_LINE>)

 [outfile=<QSTRING> [sigfigs=<EXPR>]]

 <EXTRACT_MULTIPLE_LINE_DONE_5>

thickness [min.v=<EXPR>] [max.v=<EXPR>] [<MATERIAL>] [mat.occno=<EXPR>] \

[x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING>]

 xj [min.v=<EXPR>] [max.v=<EXPR>] [<MATERIAL>] [mat.occno=<EXPR>] \

[x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING>] [junc.occno=<EXPR>]
140 DeckBuild User’s Manual

Customized Extract Statements Extract
surf.conc [min.v=<EXPR>] [max.v=<EXPR>] [<MATERIAL>] [mat.occno=<EXPR>] \
 [x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING>] [<IMPURITY>]

1dvt [ptype | ntype] [min.v=<EXPR>] [max.v=<EXPR>] \
 [bias=<EXPR>] [bias.start] [bias.stop=<EXPR>] [bias.step=<EXPR>] \
 [vb=<EXPR>] [temp.val=expr] [soi] [qss=<EXPR>] [workfunc=<EXPR>] \
 [x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING>]

/* Default values : ptype, vb=0.0, qss=0 */

max.conc | min.conc [<IMPURITY>] [<MATERIAL>] [mat.occno=<EXPR>] \
 [region.occno=<EXPR>]

/* region.occno will default to all regions. */

2d.conc.file [<IMPURITY>] [<MATERIAL>] [mat.occno=<EXPR>] \
 [x.max=<EXPR> x.min=<EXPR> y.max=<EXPR> y.min=<EXPR>

max.conc.file | min.conc.file [<IMPURITY>] [<MATERIAL>] [xstep=<EXPR>] \
 [x.max=<EXPR> x.min=<EXPR> y.max=<EXPR> y.min=<EXPR>

max.bound | min.bound x.val=<EXPR> | y.val=<EXPR> \
 [min.v=<EXPR>] [max.v=<EXPR>] [MATERIAL] [mat.occno=<EXPR>]
141 DeckBuild User’s Manual

Customized Extract Statements Extract
max.bound | min.bound x.pos | y.pos xval=<EXPR> y.val=<EXPR> \
 [MATERIAL] [min.v=<EXPR>] [max.v=<EXPR>]

2d.area [<IMPURITY>] [x.step=<EXPR>] [min.v=<EXPR>] [max.v=<EXPR>] \
 [x.max=<EXPR> x.min=<EXPR> y.max=<EXPR> y.min=<EXPR> |
 y.max=<EXPR> y.min=<EXPR> region=<QSTRING>]

/* Default value : x.step = 10% of device size */

<CURVE_FUNC> (<CURVE_ARG>) :

 <CURVE_ARG>

 min (<CURVE_ARG>)
 /* Returns min y val for curve. */

 max (<CURVE_ARG>)
 /* Returns max y val for curve. */

 ave (<CURVE_ARG>)
 /* Returns average value for curve. */

 slope | xintercept | yintercept (maxslope | minslope
 (<CURVE_ARG>))

 /* Takes the tangent to the curve with either the least or the
 greatest slope and returns either the slope of this tangent,
 or its x intercept, or its y intercept. */

 area from (<CURVE_ARG>) [where x.min=<EXPR> and x.max=<EXPR>]

 /* Determines the area under the specified curve between the x
 limits defined by the min and max expressions. */

 x.val from (<CURVE_ARG>) where y.val=<EXPR>
 [and val.occno=<EXPR>]

 y.val from (<CURVE_ARG>) where x.val=<EXPR>
 [and val.occno=<EXPR>]

 /* Determines the x (or y) ordinate on the curve where the
 corresponding y (or x) ordinate is equal to the constant
 expression for the occurence specified. Linear interpolation
 is used between points on the curve.*/
142 DeckBuild User’s Manual

Customized Extract Statements Extract
 grad from (<CURVE_ARG>) where x.val=<EXPR> | y.val=<EXPR>

 /* Determines the gradient at the first x (or y) ordinate on the curve
where the corresponding y (or x) value is equal to the consent expres-
sion. Linear interpolation is used between points on the curve.*/

<CURVE_SINGLE_LINE> :

 curve (<AXIS_FUNC> (bias), \

 <AXIS_FUNC> (1dcapacitance [vg=<EXPR>] [vb=<EXPR>]
 [bias.ramp=vg|vb] \

 [bias.step=<EXPR>] [bias.start=<EXPR>] \

 [bias.stop=<EXPR>][temp.val=expr][soi]
 [qss=<EXPR>] \

 [workfunc=<EXPR>] \

 [x.val=<EXPR> | y.val=<EXPR> |
 region=<QSTRING>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

 /* Default values : vg=0.0, vb=0.0, bias.ramp=vg, qss=0 */

 curve (<AXIS_FUNC> (depth), \

 <AXIS_FUNC> ([<IMPURITY>] [<MATERIAL>]
 [mat.occno=<EXPR>] \

 [x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

 curve (<AXIS_FUNC> (depth), \
143 DeckBuild User’s Manual

Customized Extract Statements Extract
 <AXIS_FUNC> (srp \

 [material="silicon"|"polysilicon"] [mat.occno=<EXPR>]\

 [x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

 curve (<AXIS_FUNC> (<DEV_AXIS>), \

 <AXIS_FUNC> (<DEV_AXIS>) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

 deriv (<AXIS_FUNC> (<DEV_AXIS>), \

 <AXIS_FUNC> (<DEV_AXIS>) \

 [, <INTEGER>] \

)

 /* The integer is of course the nth derivative and its default value is
1.*/

edcurve (<DEFOCUS_AXIS>, <CRITICAL_DIMENSION_AXIS>, <DOSE_AXIS>, \

 dev=<EXPR> datum=<EXPR> x.step=<EXPR>)

<AXIS_FUNC> (<AXIS_ARG>) :

 <AXIS_ARG>

 <AXIS_ARG> + <EXPR>

 <EXPR> + <AXIS_ARG>

 <AXIS_ARG> + <AXIS_ARG>
144 DeckBuild User’s Manual

Customized Extract Statements Extract
 <AXIS_ARG> - <EXPR>

 <EXPR> - <AXIS_ARG>

 <AXIS_ARG> - <AXIS_ARG>

 <AXIS_ARG> / <EXPR>

 <EXPR> / <AXIS_ARG>

 <AXIS_ARG> / <AXIS_ARG>

 <AXIS_ARG> * <EXPR>

 <EXPR> * <AXIS_ARG>

 <AXIS_ARG> * <AXIS_ARG>

 <AXIS_ARG> ^ <EXPR>

 <EXPR> ^ <AXIS_ARG>

 <AXIS_ARG> ^ <AXIS_ARG>

 -<AXIS_ARG>

 abs (<AXIS_ARG>)

 log (<AXIS_ARG>)

 log10(<AXIS_ARG>)

 sqrt (<AXIS_ARG>)

 atan (<AXIS_ARG>)

<EXPR> :

 <NUMBER>

 $variable | $"variable"

 /* deckbuild set variable, see section 5.8.2: Variable Substitution */

 expr + expr

 expr - expr
145 DeckBuild User’s Manual

Customized Extract Statements Extract
 expr / expr

 expr * expr

 (expr)

 -expr

<EXTRACT_MULTIPLE_LINE_SETUP_1> :

 <EXTRACT_MULTIPLE_LINE_SETUP_A>

<EXTRACT_MULTIPLE_LINE_DONE_1> :

 <CURVE_FUNC> (<CURVE_MULTIPLE_LINE_1>)

 [outfile=<QSTRING> [sigfigs=<EXPR>]]

<CURVE_MULTIPLE_LINE_1> :

 curve (<AXIS_FUNC> (bias), \

 <AXIS_FUNC> (1djunc.cap [<MATERIAL>] [mat.occno=<EXPR>] \

 [region.occno=<EXPR>] [junc.occno=<EXPR>] \

 [temp.val=<EXPR>][soi][qss=<EXPR>][workfunc=<EXPR>] \

 [y.val=<EXPR>|x.val=<EXPR>|region=<QSTRING>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

<EXTRACT_MULTIPLE_LINE_SETUP_2> :

 <EXTRACT_MULTIPLE_LINE_SETUP_A>

<EXTRACT_MULTIPLE_LINE_DONE_2> :

 <CURVE_FUNC> (<CURVE_MULTIPLE_LINE_2>)
146 DeckBuild User’s Manual

Customized Extract Statements Extract
 [outfile=<QSTRING> [sigfigs=<EXPR>]]

<CURVE_MULTIPLE_LINE_2>:

 curve (<AXIS_FUNC> (bias), \

 <AXIS_FUNC> ([p.ion | n.ion] [<MATERIAL>]

 [mat.occno=<EXPR>] \

 [region.occno=<EXPR>]

 [junc.occno=<EXPR>] \

 [temp.val=<EXPR>][soi][qss=<EXPR>]

 [workfunc=<EXPR>] \

 [y.val=<EXPR> | x.val=<EXPR> |

 region=<QSTRING>] \

 [an1=<EXPR>] [an2=<EXPR>]

 [bn1=<EXPR>] [bn2=<EXPR>] \

 [ap1=<EXPR>] [ap2=<EXPR>]

 [bp1=<EXPR>] [bp2=<EXPR>] \

 [betan=<EXPR>][betap=<EXPR>]

 [egran=<EXPR>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

 /* Default value : p.ion

 an1=2.03e5, an2=7.03e5, bn1=1.231e6,

 bn2=1.231e6,

 ap1=6.71e5, ap2=1.582e6, bp1=1.693e6,

 bp2=2.036e6,

 betan=1.0, betap=1.0, egran=4e5

 See Appendix A5: Threshold Voltage Calculation. */

<EXTRACT_MULTIPLE_LINE_SETUP_3> :

 <EXTRACT_MULTIPLE_LINE_SETUP_A> | <EXTRACT_MULTIPLE_LINE_SETUP_B>
147 DeckBuild User’s Manual

Customized Extract Statements Extract
<EXTRACT_MULTIPLE_LINE_DONE_3> :

 <CURVE_FUNC> (<CURVE_MULTIPLE_LINE_3>)

 [outfile=<QSTRING> [sigfigs=<EXPR>]]

<CURVE_MULTIPLE_LINE_3> :

 curve (<AXIS_FUNC> (bias), \

 <AXIS_FUNC> (1dsheet.res | 1dp.sheet.res |
 1dn.sheet.res | 1dconduct |
 1dp.conduct | 1dn.conduct \

 [material="silicon" | "polysilicon"] \

 [region.occno=<EXPR>] [mat.occno=<EXPR>] \

 [y.val=<EXPR> | x.val=<EXPR> |
 region=<QSTRING>] \

 [workfunc=<EXPR>] [soi] [semi.poly]
 [incomplete] \

 [temp.val=<EXPR>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

<EXTRACT_MULTIPLE_LINE_SETUP_4> :

 <EXTRACT_MULTIPLE_LINE_SETUP_A> | <EXTRACT_MULTIPLE_LINE_SETUP_B>

<EXTRACT_MULTIPLE_LINE_DONE_4> :

 <CURVE_FUNC> (<CURVE_MULTIPLE_LINE_4>)

 [outfile=<QSTRING> [sigfigs=<EXPR>]]

<CURVE_MULTIPLE_LINE_4> :

 curve (<AXIS_FUNC> (bias), \

 <AXIS_FUNC> (n.conc | p.conc | n.qfl
 |p.qfl | intrinsic | potential
148 DeckBuild User’s Manual

Customized Extract Statements Extract
 | n.mobility | p.mobility
 | efield | econductivity \

 [material="silicon" | "polysilicon"] \

 [region.occno=<EXPR>] [mat.occno=<EXPR>] \

 [y.val=<EXPR> | x.val=<EXPR> |
 region=<QSTRING>] \

 [workfunc=<EXPR>] [soi] [semi.poly]
 [temp.val=<EXPR>] \

) \

 [, xmin=<EXPR> xmax=<EXPR>] \

)

<EXTRACT_MULTIPLE_LINE_DONE_5> :

 sheet.res|p.sheet.res|n.sheet.res|conduct|p.conduct|n.conduct \

 [material="silicon"|"polysilicon"][region.occno=<EXPR>] \

 [mat.occno=<EXPR>] \

 [y.val=<EXPR> | x.val=<EXPR> | region=<QSTRING>] \

 [workfunc=<EXPR>] [soi] [semi.poly] [incomplete]

 [temp.val=<EXPR>]

<EXTRACT_MULTIPLE_LINE_SETUP_5> :

 <EXTRACT_MULTIPLE_LINE_SETUP_A> | <EXTRACT_MULTIPLE_LINE_SETUP_B>

<EXTRACT_MULTIPLE_LINE_SETUP_A> :

 [<MATERIAL>] [mat.occno=<EXPR>] [region.occno=<EXPR>] \

 [bias=<EXPR>] [bias.start=<EXPR>] [bias.step=<EXPR>]
 [bias.stop=<EXPR>] \

 [y.val=<EXPR> | x.val=<EXPR> | region=<QSTRING>]

<EXTRACT_MULTIPLE_LINE_SETUP_B> :

 [interface.occno=<EXPR>] [qss=<EXPR>]

 /* Default value : qss=1e10 */
149 DeckBuild User’s Manual

Customized Extract Statements Extract
<DEV_AXIS> :

 v."<electrode>" /* voltage at electrode */

 i."<electrode>" /* current at electrode

 c."<electrode1>""<electrode2>" /* capacitance between

 electrode1 and electrode2 */

 g."<electrode1>" "<electrode2>" /* conductance between

 electrode1 and electrode2 */

 vint."<electrode>" /* internal voltage at
 electrode */

 time /* transient time */

 temperature | temp /* device temperature */

 frequency | freq /* frequency */

 beam."<beam no>" /* light intensity for specified
 beam */

 ie."<electrode>" /* electron current at
 electrode */

 ih."<electrode>" /* hole current at electrode */

 q."<electrode>" /* charge at electrode */

 id."<electrode>" /* displacement current at
 electrode */

 ireal."<electrode>" /* real component of current at
 electrode */

 iimag."<electrode>" /* imaginary component of current
 at electrode */
150 DeckBuild User’s Manual

Customized Extract Statements Extract

 ifn."<electrode>" /* fowler nordhiem current at
 electrode */

 ihe."<electrode>" /* hot electron current at
 electrode */

 ihh."<electrode>" /* hot hole current at
 electrode */

 wfd."<electrode>" /* workfunction difference at
 electrode */

 rl."<electrode>" /* lumped resistance at
 electrode */

 cl."<electrode>" /* lumped capacitance at
 electrode */

 ll."<electrode>" /* lumped inductance at
 electrode */

 vcct.node."<circuit node>" /* circuit bias */

 icct.node."<circuit node>" /* circuit current */

 rhoe."<layer>" /* Electron sheet resistance for
 specified layer */

 rhoh."<layer>" /* Hole sheet resistance for
 specified layer */

 rho."<layer>" /* Total sheet resistance for
 specified layer */

 vlayer."<layer>" /* Bias on specified layer */

 sm."<mode>" /* Photon density for specified
 mode */

 pm."<mode>" /* Laser power per mirror for
 specified mode */
151 DeckBuild User’s Manual

Customized Extract Statements Extract

 gm."<mode>" /* Gain for specified mode */

 vcct.real."<circuit node>" /* Real circuit bias */

 vcct.imag."<circuit node>" /* Imaginary circuit bias */

 icct.real."<circuit node>" /* Real circuit current */

 icct.imag."<circuit node>" /* Imaginary circuit current */

 s.real."<parameter>" - real value of specified "S" parameter

 s.imag."<parameter>" - imaginary value of specified "S"
 parameter

 y.real."<parameter>" - real value of specified "Y" parameter

 y.imag."<parameter>" - imaginary value of specified "Y"
 parameter

 z.real."<parameter>" - real value of specified "Z" parameter

 z.imag."<parameter>" - imaginary value of specified "Z"
 parameter

 h.real."<parameter>" - real value of specified "H" parameter

 h.imag."<parameter>" - imaginary value of specified "H"
 parameter

 abcd.real."<parameter>" - real value of specified "ABCD"
 parameter

 abcd.imag."<parameter>" - imaginary value of specified "ABCD"
 parameter

 probe."<probe name>" /* Atlas probe values */

152 DeckBuild User’s Manual

Customized Extract Statements Extract
 ow. "beam no" /*optical wavelength
 for specified beam */

 spc. "beam no" /*source photo current
 for specified beam */

 apc. "beam no" /*available photo current
 for specified beam */

 elect."<PARAMETER>" /* Value for specified
 electrical parameter */

 <PARAMETER> : /* ALL PARAMETER strings
 are completely case
 -insensitive. */

Time

Freq

Frequency

Temp

Temperature

Absorption

Absorption Coefficient

Absorption Spectrum

Acceptor bump state density

Acceptor Bump State f_T

Acceptor Bump State Ionized Density

Acceptor Int. Bump State Density

Acceptor Int. Bump State f_T

Acceptor Int. Bump State Ionized Density

Acceptor Int. Tail State Density

Acceptor Int. Tail State f_T

Acceptor Int. Tail State Ionized Density

Acceptor Int. Trap Density

Acceptor Int. Trap f_T

Acceptor Int. Trap Ionized Density

Acceptor state energy

Acceptor tail state density

Acceptor Tail State f_T

Acceptor Tail State Ionized Density
153 DeckBuild User’s Manual

Customized Extract Statements Extract
Acceptor Trap Density

Acceptor Trap f_T

ADF

Amphoteric Int. Trap (0) State Density

Amphoteric Int. Trap (-) State Density

Amphoteric Int. Trap (+) State Density

Amphoteric Int. Trap Total State Density

Amphoteric Trap (0) f_T

Amphoteric Trap (0) State Density

Amphoteric Trap (-) f_T

Amphoteric Trap (+) f_T

Amphoteric Trap (-) State Density

Amphoteric Trap (+) State Density

Amphoteric Trap Total State Density

Angle

Anneal Temperature

Available photo current

Average Annual Power Production

Average Relative Permittivitty

Channel Sheet Conductance

CIE X Coordinate

CIE Y Coordinate

CIE Z Coordinate

Computation time

Conversion Efficiency

Current gain

Cutoff frequency

Displacement current

Distance along line

Donor bump state density

Donor Bump State f_T

Donor Bump State Ionized Density

Donor Int. Bump State Density

Donor Int. Bump State f_T

Donor Int. Bump State Ionized Density

Donor Int. Tail State Density

Donor Int. Tail State f_T

Donor Int. Tail State Ionized Density
154 DeckBuild User’s Manual

Customized Extract Statements Extract
Donor Int. Trap Density

Donor Int. Trap f_T

Donor Int. Trap Ionized Density

Donor state energy

Donor tail state density

Donor Tail State f_T

Donor Tail State Ionized Density

Donor Trap Density

Donor Trap f_T

Effective refractive index (Im)

Effective refractive index (Re)

Electric field

Electron Conc

Electron current

Electron effective mass

Electron energy

Electron energy relax time

Electron Impact Ionization Rate

Electron kinetic energy

Electron mass

Electron mobility

Electron momentum relax time

Electron Peltier Coefficient

Electron potential energy

Electron temp

Electron Velocity

Energy

e- Quantum Well Capture Rate

Function 1

Function 2

Gain

Gain (TE)

Gain (TM)

Gamma valley ratio

Generation rate

Global device temperature

Gma

Gms
155 DeckBuild User’s Manual

Customized Extract Statements Extract
Haze Parameter Cr

Haze Parameter Ct

Heavy hole valley ratio

Hole Conc

Hole current

Hole effective mass

Hole energy

Hole energy relaxation time

Hole Impact Ionization Rate

Hole kinetic energy

Hole mass

Hole mobility

Hole momentum relaxation time

Hole Peltier Coefficient

Hole potential energy

Hole temp

Hole velocity

h+ Quantum Well Capture Rate

<I1.I1*>

<I2.I2*>

Imag(<I1.I2*>)

Imaginary Index

Imag(<V1.V2*>)

Imag(Zo)

Integrated e- Conc

Integrated h+ Conc

Ionized Acceptor Concentration

Ionized Acceptor Trap Concentration

Ionized Donor Concentration

Ionized Donor Trap Concentration

Iteration

Lateral Field Gradient

Lattice temp

Light Frequency

Light hole valley ratio

Luminescent power

Luminescent wavelength

Luminous Efficiency
156 DeckBuild User’s Manual

Customized Extract Statements Extract
Luminous Flux

Luminous Intensity

L valley ratio

Max transducer power gain

MC number of samples

Minimum noise figure

Net doping

Noise conductance

Norm Intensity

Optical Output Coupling

Optical source frequency

Optical wavelength

output current average deviation

output current standard deviation

Output Spectral Power Density

Photon Density

Photon Energy

PL Intensity

Polarization

Position X

Position Y

Position Z

Potential

Prob. of Avalanche by Elec.

Prob. of Avalanche by Hole

Prob. of Avalanche Joint

Propagation Angle Phi

Propagation Angle Theta

Quantum Efficiency

Quantum Temperature

Radiative Rate

Real(<I1.I2*>)

Real Index

Real(<V1.V2*>)

Real(Zo)

Reciprocal Electric Field

Recombination rate

Reflective Haze
157 DeckBuild User’s Manual

Customized Extract Statements Extract
Reflectivity

Relative permitivity

Resistivity

RMS Error

SEU Track Charge

SEU Track Cumulative Charge

SEU Track Generation Rate

Sheet Capacitance

Sheet Electron Density

simulation time

Small signal frequency

SONOS Blocking Insulator Current

SONOS Tunnelling Insulator Current

Source photo current

Spin-orbit hole valley ratio

Spontaneous emission rate

Stern stability factor

Surface Field

Surface Potential

TE Radiant Intensity

Threshold Voltage

Time step magnitude

Time step number

TM Radiant Intensity

Total Acceptor Int. Trap Density

Total Acceptor Int. Trap Ionized Density

Total acceptor trap density

Total Acceptor Trap Ionized Density

Total Donor Int. Trap Density

Total Donor Int. Trap Ionized Density

Total donor trap density

Total Donor Trap Ionized Density

Total integration time

Total Optical Power

Total Photon Flux

Total Power Emitted

Total Power per Mirror

Total QuasiStatic C-V
158 DeckBuild User’s Manual

Customized Extract Statements Extract
Total Radiant Intensity

Total Radiation Dose

Total Trap State Density

Transient time

Transmission

Transmissive Haze

Trapped Interface Electron Charge

Trapped Interface Hole Charge

Unilateral power gain

UTMOST Measurement

UTMOST Measurement (Linear)

UTMOST Measurement (Log)

<V1.V1*>

<V2.V2*>

Victory AMR buffwidth

Victory AMR Level

Victory AMR mBulkDist

Victory AMR mDeltMax

Victory AMR mDeltMin

Victory AMR mDeltX

Victory AMR mDeltY

Victory AMR mDeltZ

Victory AMR mesh id

Victory AMR mesh location

Victory AMR mesh nx

Victory AMR mesh ny

Victory AMR mesh nz

Victory AMR mesh region

Victory AMR mesh region distrace/Refine flag

Victory AMR mesh sx

Victory AMR mesh sy

Victory AMR mesh sz

Victory AMR mLayer

Victory AMR mLayerHistory

Victory AMR mMaterialFlag

Victory AMR refine

Victory AMR regrid

VPICM Regular Node Index
159 DeckBuild User’s Manual

Customized Extract Statements Extract
Wavelength

X valley ratio

<DEFOCUS_AXIS> :

 da.value"DEFOCUS" | da.value"<CURVE_NUMBER>""DEFOCUS"

<CRITICAL_DIMENSION_AXIS> :

 da.value"CDs" | da.value"<CURVE_NUMBER>""CDs"

<DOSE_AXIS> :

 da.value"DOSE" | da.value"<CURVE_NUMBER>""DOSE"

<CURVE_NUMBER> :

 /* Integer specifying which curve when multiple curves are
 present in a DA format file. */

<MATERIAL> : /* All MATERIAL strings are completely
 case -insensitive. */

3C-SiC

4H-SiC

6H-SiC

Air

Al2O3

AlAs

AlAsSb

AlGaAs

AlGaAsP

AlGaAsSb

AlGaN

AlGaNAs

AlGaNP

AlGaP

AlGaSb
160 DeckBuild User’s Manual

Customized Extract Statements Extract
AlInAs

AlInNAs

AlInNP

AlN

AlP

AlPAs

Alpha Si 1

Alpha Si 2

Alpha Si 3

Alpha Si 4

AlPSb

Alq3

AlSb

AlSi

AlSiCu

AlSiTi

AlSix

Aluminum

AlxGa1_xAs_x_0.25

AlxGa1_xAs_x_0.5

AlxGa1_xAs_x_0.75

AlxIn1_xAs_x_0.50

Ambient

Ba2NdCu3O7

Ba2YCu3O7

BAlq

Barrier

BeTe

BPSG

BSG

CBP

CdO

CdS

CdSe

CdTe

CdZnO

CdZnTe

CMO
161 DeckBuild User’s Manual

Customized Extract Statements Extract
CNT

Cobalt

Computational Window

Conductor

Contact

Cooling package material

Copper

CoSix

CuInGaSe

CuPc

Diamond

Fictive GaAs

GaAs

GaAsP

GaAsSb

GaN

GaP

Gas

GaSb

GaSbAs

GaSbP

GaSbTe

Germanium

Gold

GST

HfO2

HfSiO4

HgCdTe

HgS

HgSe

HgTe

IGZO

IMO

In2O3

InAlAs

InAlAsP

InAlAsSb

InAlGaAs
162 DeckBuild User’s Manual

Customized Extract Statements Extract
InAlGaN

InAlGaP

InAlN

InAlP

InAlSb

InAs

InAsP

InAsSb

InGaAs

InGaAsP

InGaAsSb

InGaN

InGaNAs

InGaNP

InGaP

InGaSb

InN

InP

InPAsSb

InPSb

InSb

Insulator

InxGa1_xAs_x_0.33 Str GaAs

InxGa1_xAs_x_0.50 Unstr

InxGa1_xAs_x_0.75 Str InP

Iron

Irppy

ITO

Lead

Lens

Liquid Crystal

Mask Clear

Mask Opaque

MgCdO

MgCdZnO

MgO

MgZnO

Molybdenum
163 DeckBuild User’s Manual

Customized Extract Statements Extract
MoSix

Nickel

NiSix

NPB

NPD

Organic

OxyNitride

Palladium

PbS

PbSe

PbTe

PCM

PdSix

Pentacene

Phase Shift

Photoresist

Platinum

PM

PMMA

Polyimide

Polymer

Polysilicon

PPV

PtSix

Sapphire

ScN

Se

Si

Si~3N~4

SiGe

Silicon

Silver

SiN

SiO~2

SixNyHz

SnO2

SnTe

SOG
164 DeckBuild User’s Manual

Customized Extract Statements Extract
Tantalum

TaSix

TEOS

Tetracene

Tin

TiNi

TiO

TiO2

TiON

TiSix

Titanium

TiW

TPD

Tungsten

Twisted Nematic Liquid Crystal

Vacuum

WSix

ZnO

ZnS

ZnSe

ZnTe

ZrO2

ZrSix

material=<QSTRING>

<IMPURITY> : /* All IMPURITY strings are completely
 case -insensitive. */

Absorption Coefficient

Acceptor Conc

Acceptor Trap Concentration

Acceptor Trap Density

Active Aluminum

Active Antimony

Active Arsenic

Active Beryllium

Active Boron

Active Carbon

Active Chromium
165 DeckBuild User’s Manual

Customized Extract Statements Extract
Active Fluorine

Active Gallium

Active Germanium

Active Gold

Active Helium

Active Hydrogen

Active Indium

Active Magnesium

Active Nitrogen

Active Oxygen

Active Phosphorus

Active Selenium

Active Si-28

Active Si-29

Active Tin

Active Zinc

alpha

Aluminum

Antimony

Applied Potential

Arsenic

As active poly grain boundary

As active poly grain interior

AsI pairs

As poly grain boundary

As poly grain interior

Atomic Hydrogen Conc

Auger Recomb Eff Lifetime

Auger Recomb Rate

Average e- Energy

Average E Field X

Average E Field Y

Average E Field Z

Average Electrons Conc

Average e- Velocity X

Average e- Velocity Y

Average e- Velocity Z

Average Generation Rate
166 DeckBuild User’s Manual

Customized Extract Statements Extract
Average h+ Energy

Average Holes Conc

Average h+ Velocity X

Average h+ Velocity Y

Average h+ Velocity Z

Average Impact Gen Rate

Average Potential

Average Relative Permittivitty

B active poly grain boundary

B active poly grain interior

Band to Band Tunnel Current Density

Band to Band Tunneling Factor

Band to Band Tunneling Rate

Beryllium

BI pairs

Boron

Bound State Electron Concentration

Bound State Hole Concentration

B poly grain boundary

B poly grain interior

CAR acid conc

Carbon

Carrier Conc

Celsius Temp

Charge Conc

Chromium

Ci*

Composition fraction Z

Composition X

Composition Y

Cond. Current Density

Cond Current X

Cond Current Y

Cond Current Z

Conduction Band Energy

Cooling Package Temp

Current Flowlines

Cv*
167 DeckBuild User’s Manual

Customized Extract Statements Extract
Delta Area

Dislocation Loop Conc

Dislocation Loop Size

Disp. Current Density

Displ Current X

Displ Current Y

Displ Current Z

Donor Conc

Donor Trap Concentration

Donor Trap Density

Dopant Langevin Recomb Rate

Dopant Singlet Exciton Density

Dopant Triplet Exciton Density

Dry O~2

dT/dx

dT/dy

dT/dz

D Vector Magnitude

D Vector X

D Vector Y

D Vector Z

Ec (T)

e- Current Density

Eff BGN w/o T-depend

Effective BGN

Effective BGN (C-band)

Effective BGN (V-band)

Effective nie

Eff Min Carr Lifetime

Eff. Refractive Index (Im)

Eff. Refractive Index (Re)

E Field X

E Field Y

E Field Z

Eg

e- Ground State Energy

Eg (T)

Einstein Rel Corr e-
168 DeckBuild User’s Manual

Customized Extract Statements Extract
Einstein Rel Corr h+

e- Ionization Coefficient

e- Ioniz Eff Field

Electrical Conductivity

Electric Field

Electrode #

Electron Affinity

Electron Conc

Electron Concentration Update

Electron Conc (linear)

Electron Continuity Equation RHS

Electron Diff Coeff

Electron effective mass

Electron energy

Electron energy relax time

Electron kinetic energy

Electron mass

Electron momentum relax time

Electron potential energy

Electron QFL

Electron Quantum Potential

Electron Reaction Rate

Electrons

Electron Temperature

Electron Temperature Equation RHS

Electron Temperature Update

Electron Velocity

Electrostatic Potential Update

e- Mobility

e- Mobility Lateral

e- Mobility Trans

e- Mobility X

e- Mobility Y

e- Mobility Z

e- Nonlocal BBT Current Density

e- Peltier Coeff

e- Quantum Well Capture Rate

Equilibrium Electron Conc
169 DeckBuild User’s Manual

Customized Extract Statements Extract
Equilibrium Hole Conc

Equilibrium Potential

e- Recomb Rate

e- SRH Tno

e- Thermal Velocity

e- Thermoelectric Power

e- Tunnel Current Density

e- Velocity X

e- Velocity Y

e- Velocity Z

Ev (T)

Ex

Exciton Dissociation Efficiency

Exciton Dissociation Rate

Ex (envelope)

Ey

Ey (envelope)

Ez

Ez (envelope)

Fast State Density

Fixed Oxide Charge

Fluorine

Free Carrier Loss

Gallium

Gamma valley ratio

Germanium

Gold

h+ Current Density

Heat Capacitance

Heat Capacity

Heat Conductance

Heat Conductivity

Heat Flow Density X

Heat Flow Density Y

Heat Flow Density Z

Heat Flow Equation RHS

Heavy hole valley ratio

Helium
170 DeckBuild User’s Manual

Customized Extract Statements Extract
h+ Ground State Energy

h+ Ionization Coefficient

h+ Ioniz Eff Field

h+ Mobility

h+ Mobility Lateral

h+ Mobility Trans

h+ Mobility X

h+ Mobility Y

h+ Mobility Z

h+ Nonlocal BBT Current Density

Hole Conc

Hole Concentration Update

Hole Conc (linear)

Hole Continuity Equation RHS

Hole Diff Coeff

Hole effective mass

Hole energy

Hole energy relaxation time

Hole kinetic energy

Hole mass

Hole momentum relaxation time

Hole potential energy

Hole QFL

Hole Quantum Potential

Hole Reaction Rate

Holes

Hole Temperature

Hole Temperature Equation RHS

Hole Temperature Update

Hole Velocity

Hot Electron Current Density

Hot Hole Current Density

h+ Peltier Coeff

h+ Quantum Well Capture Rate

h+ Recomb Rate

h+ SRH Tno

h+ Thermal Velocity

h+ Thermoelectric Power
171 DeckBuild User’s Manual

Customized Extract Statements Extract
h+ Tunnel Current Density

h+ Velocity X

h+ Velocity Y

h+ Velocity Z

Hx

Hx (envelope)

Hy

Hydrogen Conc

Hydrostatic Pressure

Hy (envelope)

Hz

Hz (envelope)

I

Idiffuse

ILAV Node Flags

Imag(LNS<V1.V2*>)

Impact Gen'd Carriers

Impact Gen Rate

Implant Damage

In active poly grain boundary

In active poly grain interior

Indium

In poly grain boundary

In poly grain interior

Insulator Charge

Intensity

Interface Charge

Interstitial Arsenic

Interstitial Clusters

Interstitial Gallium

Interstitials

Intrinsic Conc (nie)

Ionic Species 1 Conc

Ionic Species 2 Conc

Ionic Species 3 Conc

Ionization Coeff e-

Ionization Coeff h+

Ionization Effect Field
172 DeckBuild User’s Manual

Customized Extract Statements Extract
Ionized Acceptor Concentration

Ionized Acceptor Trap Concentration

Ionized Donor Concentration

Ionized Donor Trap Concentration

Ispecular

J (diff.)

J (drift)

Je- X

Je- Y

Je- Z

Jh+ X

Jh+ Y

Jh+ Z

Jn (diff.)

Jn (drift)

Jnx (diff.)

Jnx (drift)

Jny (diff.)

Jny (drift)

Jnz (diff.)

Jnz (drift)

Joi X

Joi Y

Joi Z

Joule Heat Power

Jp (diff.)

Jp (drift)

Jproton X

Jproton Y

Jproton Z

Jpx (diff.)

Jpx (drift)

Jpy (diff.)

Jpy (drift)

Jpz (diff.)

Jpz (drift)

Jsx

Jsy
173 DeckBuild User’s Manual

Customized Extract Statements Extract
Jsz

Jtot X

Jtot Y

Jtot Z

Jvo X

Jvo Y

Jvo Z

Jx (diff.)

Jx (drift)

Jy (diff.)

Jy (drift)

Jz (diff.)

Jz (drift)

KSN

KSP

Langevin Recomb Rate

Lateral Field Gradient

Lattice Temperature

Lattice Temperature Update

Light hole valley ratio

Light intensity, mode 1

Light intensity, mode 2

Light intensity, mode 3

Light intensity, mode 4

Light intensity, mode 5

Light intensity, mode 6

Light intensity, mode 7

Light intensity, mode 8

Light intensity, mode 9

Light intensity, mode 10

Linear Charge Conc

Linear Net Doping

Linear Total Doping

LNS <V1.V1*>

LNS <V2.V2*>

Local Optical Gain

L valley ratio

Magnesium
174 DeckBuild User’s Manual

Customized Extract Statements Extract
Material Density

Material Type #

Mat Type # w/o Electrodes

Maxwell Stress

Maxwell Stress X

Maxwell Stress Y

Maxwell Stress Z

Mesh Discretization Error Estimate

Metal Density

Molecular Hydrogen Conc

Msx

Msy

Msz

Nc

Nc (T)

Net Active Doping

Net Doping

Ni

N Int X

N Int Y

N int Z

Nitride Electron Charging Rate

Nitride Electron Recombination Rate

Nitride Hole Charging Rate

Nitride Hole Recombination Rate

Nitrogen

n-MobilityEnhancement XX

n-MobilityEnhancement XY

n-MobilityEnhancement XZ

n-MobilityEnhancement YY

n-MobilityEnhancement YZ

n-MobilityEnhancement ZZ

Node Index

Nonlocal BBT e- Tunnelling Rate

Nonlocal BBT h+ Tunnelling Rate

Nonlocal e- Tunnelling Rate

Nonlocal h+ Tunnelling Rate

Nonlocal TAT e- Gamma
175 DeckBuild User’s Manual

Customized Extract Statements Extract
Nonlocal TAT h+ Gamma

Norm Grad Int

Norm Intensity

(n.p)^1/2 (T)

Nv

Nv (T)

nxx

nyy

nzz

Occupancy Trap #1

Occupancy Trap #2

Occupancy Trap #3

Occupancy Trap #4

Occupancy Trap #5

Occupancy Trap #6

Occupancy Trap #7

Occupancy Trap #8

Occupancy Trap #9

Occupancy Trap #10

Oi Velocity

Oi Velocity Enhancement

Oi Velocity Enhancement X

Oi Velocity Enhancement Y

Oi Velocity Enhancement Z

Oi Velocity X

Oi Velocity Y

Oi Velocity Z

Optical Intensity

output current average deviation

output current standard deviation

Oxygen

Oxygen Conduction Band Energy

Oxygen Diff Coeff

Oxygen Exchange Recombination Rate

Oxygen Interstitial Conc

Oxygen Interstitial Current Density

Oxygen Interstitial QFL

Oxygen QFL
176 DeckBuild User’s Manual

Customized Extract Statements Extract
Oxygen Recombination Rate

Oxygen Vacancy Conc

Oxygen Vacancy Current Density

Oxygen Vacancy QFL

Oxygen Valence Band Energy

PAC

Package Layer #

Package Material #

Peltier-Thomson Heat Power

Permeability

Ph active poly grain boundary

Ph active poly grain interior

Phosphorus

Photogeneration Rate

Photogeneration Rate (linear)

Photon Absorption Rate

Ph poly grain boundary

Ph poly grain interior

P Int X

P Int Y

P Int Z

PI pairs

p-MobilityEnhancement XX

p-MobilityEnhancement XY

p-MobilityEnhancement XZ

p-MobilityEnhancement YY

p-MobilityEnhancement YZ

p-MobilityEnhancement ZZ

Point Index

Poisson Equation RHS

Polarization Charge Conc

Poly Grain Size

Poly Grain Size X

Poly Grain Size Y

Poly Grain Size Z

Potential

Potential (process)

Prob. of Avalanche by Elec.
177 DeckBuild User’s Manual

Customized Extract Statements Extract
Prob. of Avalanche by Hole

Prob. of Avalanche Joint

Proton Conc

Proton Current Density

QFL Gradient X

QFL Gradient Y

QFL Gradient Z

Quantum Potential

Radiative Recomb Rate

Ratio NIE/Maj Carr Conc

Ratio nie/ni

Real(LNS<V1.V2*>)

Rec Heat Power

Recombination Rate

Refractive index (Im)

Refractive Index (Re)

Region #

Region # w/o Electrodes

Relative Permittivity

Resist Elevation

Resistivity

Rstim, mode 1

Rstim, mode 2

Rstim, mode 3

Rstim, mode 4

Rstim, mode 5

Rstim, mode 6

Rstim, mode 7

Rstim, mode 8

Rstim, mode 9

Rstim, mode 10

Sb active poly grain boundary

Sb active poly grain interior

SbI pairs

Sb poly grain boundary

Sb poly grain interior

Selenium

Semi Fixed Charge
178 DeckBuild User’s Manual

Customized Extract Statements Extract
Sem/Ins Material #

Sem/Ins # w/o Electrodes

Shear Stress

Sheet Capacitance

Sheet Electron Density

Sigma star x

Sigma star y

Sigma star z

Sigma x

Sigma y

Sigma z

Silicon

Silicon-28

simulation time (s)

Singlet Exciton Density

Singlet Exciton Generation Rate

Slow State Density

Species 1 Reaction Rate

Species 2 Reaction Rate

Species 3 Reaction Rate

Spin-orbit hole valley ratio

SRH par n1/nie

SRH Rec Eff Lifetime

SRH Recomb Rate

SRP Doping

Stimulated Recombination Rate

Stokes Vector I

Stokes Vector Q

Stokes Vector U

Stokes Vector V

Strain XX

Strain XY

Strain XZ

Strain YY

Strain YZ

Strain ZZ

Stress XX

Stress XY
179 DeckBuild User’s Manual

Customized Extract Statements Extract
Stress XZ

Stress YY

Stress YZ

Stress ZZ

Structure Temp

Surface Field

Surface Potential

Surface Recombination

Surf Recomb Eff Lifetime

Te Gradient

Th Gradient

Thomson Heat Power

Tin

Total Current Density

Total Doping

Total Field

Total Heat Flow Density

Total Heat Power

Total T Gradient

Trap Density #1

Trap Density #2

Trap Density #3

Trap Density #4

Trap Density #5

Trap Density #6

Trap Density #7

Trap Density #8

Trap Density #9

Trap Density #10

Trap Electron Capture Rate

Trap Hole Capture Rate

Trapped e- Density (Acc)

Trapped h+ Density (Dnr)

Trapped Insulator e- Concentration

Trapped Insulator h+ Concentration

Traps

Trap State Recomb

Triplet Exciton Density
180 DeckBuild User’s Manual

Customized Extract Statements Extract
Triplet Exciton Generation Rate

Tunnelling Rate

User Recomb Eff Lifetime

User Recomb Rate

Vacancies

Vacancy Arsenic

Vacancy Gallium

Valence Band Energy

Velocity X

Velocity Y

Velocity Z

Viscosity

von Mises Stress

Vo Velocity

Vo Velocity Enhancement

Vo Velocity Enhancement X

Vo Velocity Enhancement Y

Vo Velocity Enhancement Z

Vo Velocity X

Vo Velocity Y

Vo Velocity Z

Wet O~2

X Position

X valley ratio

Y Position

Zinc

Z Plane Index

Z Position

impurity=<QSTRING>

<NUMBER> :

 /* Real or integer value. */

<QSTRING> :

 /* Quoted string, for example, "silicon". */
181 DeckBuild User’s Manual

Customized Extract Statements Extract
5.3.2 DEFAULTS
The following default values will be assumed.

name=<QSTRING> : name=None

<MATERIAL> : material="silicon"

<IMPURITY> : impurity="net doping"

mat.occno=<EXPR> : mat.occno=1

junc.occno=<EXPR> : junc.occno=1

region.occno=<EXPR> : region.occno=1

interface.occno=<EXPR> : interface.occno=1

val.occno=<EXPR> : val.occno=1

datafile=<QSTRING> : datafile="results.final"

outfile=<QSTRING> : outfile="extract.dat"

bias.step=<EXPR> : bias.step=0.25

bias.start=<EXPR> : bias.start=0.0

bias.stop=<EXPR> : bias.stop=5.0

temp.val=<EXPR> : temp.val=300.0

soi : FALSE

semi.poly : FALSE

incomplete : FALSE

x.val=<EXPR> | y.val=<EXPR> | region=<QSTRING> : x.val is set to
 be 5% from
182 DeckBuild User’s Manual

Customized Extract Statements Extract
 left-hand side of
 structure.

sigfigs=<EXPR> : sigfigs=6

5.3.3 Examples of Process Extraction

Note: You can enter extract commands on multiple lines using a backslash character for continuation. The
syntax, however, shown below should be entered on a single line although shown on two or more lines.

The following examples assume to be extracting values from the current simulation running
under DeckBuild. You can use saved standard structure files directly with extract using the
syntax below.

extract init infile="filename"

Material Thickness
Extract the thickness of the top (first) occurrence of Silicon Oxide for a 1D cutline taken
where Y=0.1 (Assume 2D structure). A warning is then displayed if results cross boundaries
set by max.v and min.v.

extract name="tox" thickness material="SiO~2" mat.occno=1 y.val=0.1
min.v=100 max.v=500

oxide can be substituted for the material="SiO~2".

Junction Depth
Extract the junction depth of the first junction occurrence in the top (first) occurrence of
silicon for a 1D cutline taken where X=0.1.

extract name="j1 depth" xj material="Silicon" mat.occno=1 x.val=0.1
junc.occno=1

Surface Concentration
Extract the surface concentration net doping for the top (first) occurrence of silicon for a 1D
cutline taken for an X value corresponding to the gate contact/region for loaded MaskViews
cutline data.

extract name="surface conc" surf.conc impurity="Net Doping" mate-
rial="Silicon" mat.occno=1 region="gate"

QUICKMOS 1D Vt
Extract the 1D threshold voltage of a p-type MOS cross section at x=0.1 using the built-in
QUICKMOS 1D device simulator. This example uses a default gate bias setting of 0-5V for a
0.25V step with the substrate at 0V and a default device temperature of 300 Kelvin. Values of
QSS and gate workfunction have also be specified.

extract name="1D Vt" 1dvt ptype qss=1e10 workfunc=5.09 x.val=0.1

This 1D Vt extraction will calculate the 1D threshold voltage of an n-type MOS cross section
at X=0.1, where a gate voltage range (0.5-20V) was specified while the substrate (Vb) is set
at 0.2V. The device temperature has been set to 350 Kelvin.

extract name="1D Vt 0-20v" 1dvt ntype bias=0.5 bias.step=0.25
bias.stop=20.0 vb=0.2 temp.val=350.0 x.val=0.1

Sheet Resistance and Sheet Conductance
183 DeckBuild User’s Manual

Customized Extract Statements Extract
Note: For sheet conductance extraction substitute "sheet.res" with "conduct" (e.g., conduct, p.conduct,
n.conduct).

Extract the total sheet resistance of the first p-n region in the top (first) occurrence of
polysilicon for a cutline at X=0.1. Polysilicon is treated as a metal by default but is flagged
here as a semiconductor (semi.poly). The default device temperature of 300 Kelvin and no
layer biases will be used and the incomplete ionization flag is also set for carrier freezeout
calculations (see “Incomplete Ionization Of Impurities” physics section within the Atlas
manual).

extract name="Total SR" sheet.res material="Polysilicon" mat.occno=1
x.val=0.1 region.occno=1 semi.poly incomplete

Extract the n-type sheet resistance of the second p-n region in the top (first) occurrence of
silicon for a cutline at X=0.1, where the second region is held at 4.0V and the device
temperature is set to 325 Kelvin. These commands use the start/cont/done syntax to
create a multi-line statement as described in Section 5.8 “Extract Features”.

extract start material="Silicon" mat.occno=1 region.occno=2 bias=4.0
x.val=0.1 extract done name="N-type SR" n.sheet.res material="Sil-
icon" mat.occno=1 temp.val=325 x.val=0.1 region.occno=2

The following multi-line statement extracts the p-type sheet resistance of the first p-n region
in the top (first) occurrence of silicon for a cutline at x=0.1, where the first region is held at
5.0V. The second region is held at 1.0V and the first interface Qss value equal to 1e10.

extract start material="Silicon" mat.occno=1 region.occno=1 bias=5.0
x.val=0.1

extract cont material="Silicon" mat.occno=1 region.occno=2 bias=1.0
x.val=0.1

extract cont interface.occno=1 qss=1.0e10

extract done name="P-type SR" p.sheet.res material="Silicon" mat.occno=1
x.val=0.1 region.occno=1

Note: This is an example of the multi-line "start/continue/done" type of statement used to specify layer
biases and Qss values. It is recommended that you always let the Extract popup write this particular syntax.
The Qss value also specifies the material interface occurrence involved, counting from the top down. There
can be any number of additional "continue" lines to specify the biases on other layers and the Qss
values of other interfaces; the last line, "done", does the actual extraction.

1D Max/Min Concentration
Extract the peak concentration of net doping within the first p-n region of the top (first) layer
of silicon for a 1D cutline at x=0.1.
184 DeckBuild User’s Manual

Customized Extract Statements Extract
extract name="Max 1d Net conc" max.conc impurity="Net Doping"
material="Silicon" mat.occno=1 x.val=0.1 region.occno=1

Extract the peak concentration of phosphorus within any p-n regions (default) for all
materials using a 1D cutline at x=0.1.

extract name="Max 1d phos conc" max.conc impurity="Phosphorus" mate-
rial="All" x.val=0.1

Extract the minimum concentration of boron within any p-n regions of the top (first) layer of
silicon for a 1D cutline at x=0.1.

extract name="Min 1d bor conc" min.conc impurity="Boron" material="Sili-
con" mat.occno=1 x.val=0.1

2D Max/Min Concentration
Extract the peak concentration of net doping for the entire 2D structure.

extract name="Max 2D net conc" 2d.max.conc impurity="Net Doping" mate-
rial="All"

Extract the peak concentration of boron within the silicon material in the 2D “box” limits
defined.

extract name="Max 2D bor conc" 2d.max.conc impurity="Boron" material="Sil-
icon" y.min=0.1 y.max=0.9 x.min=0.2 x.max=0.6

In addition to this statement, you can add the interpolate flag. When present, this flag
causes the extraction to perform interpolation at the edges of the specified bounding box for
min/max concentration and position.

Extract the minimum concentration of phosphorus for all materials within the 2D “box”
limits. These limits are defined by user-defined y coordinates and x values corresponding to
loaded MaskViews cutline information for the specified electrode or region.

extract name="Min 2D phos conc" 2d.min.conc impurity="Phosphorus" mate-
rial="All" region="gate" y.min=0.1 y.max=0.9

The following multi-line extract command measures the minimum concentration of antimony
for the entire 2D structure and return the x-y coordinates of the extracted concentration.

extract name="Min 2D ant conc" 2d.min.conc impurity="Antimony" mate-
rial="All"

extract name="Min 2D ant conc X position" x.pos

extract name="Min 2D ant conc Y position" y.pos

Note: The x-y position syntax must directly follow the 2D concentration extraction (same as start/continue/
done syntax). We advise you to use the Extract popup to create these statements.

2D Concentration File
The output file contains data of the format x y c, where c is the value of concentration at the
coordinates xy. The following example extracts the boron concentration in Silicon for the
whole structure.
185 DeckBuild User’s Manual

Customized Extract Statements Extract
extract 2d.conc.file material="silicon" impurity="boron"
outfile="conc.dat"

You can increase the precision of the values written to the output file using the sigfigs
option.

extract 2d.conc.file material="silicon" impurity="boron"

outfile="conc.dat" sigfigs=10

The number of significant figures defaults to 6.

1D Material Region Boundary
Extracting the maximum Y boundary (upper side) location of the first occurrence of silicon
material for a 1d cutline taken at X=2.

extract name="max_y" max.bound material="silicon" x.val=2 mat.occno=1

Extracting the minimum X boundary (left side) location of the second occurrence of
polysilicon material for a 1d cutline at Y=3.

extract name="min_x" min.bound material="polysilicon" y.val=3 mat.occno=2

2D Material Region Boundary
Extracting the minimum X boundary (left side) location of the photoresist material region at
XY coordinates (7.6, -1.2).

extract name="minx" min.bound x.pos material="photoresist" x.val=7.6

y.val=-1.2

Extracting the maximum Y boundary (upper side) location of the photoresist material region
at XY coordinates (5.2, 0).

extract name="maxy" max.bound y.pos material="photoresist" x.val=5.2
y.val=0

2D Concentration Area
Integrates the Boron concentration within the specified “box” limits, using a cutline step of
0.05 microns.

extract name="limit_area" 2d.area impurity="Boron" x.step=0.05 x.min=0.01
y.min=0.23 x.max=0.6 y.max=0.45

In addition to this statement, you can add the interpolate flag. When present, this flag
causes the extraction to perform interpolation at the edges of the specified bounding box for
min/max concentration and position.

Integrates the Phosphorus concentration for the whole 2D structure using a cutline step of
0.03 microns.

extract name="device_area" 2d.area impurity="Phosphorus" x.step=0.03

Note: The x.step refers to the number of 1d cutlines used to obtain the 2D area. For a device with an X axis of 7
microns, an x.step of 1 would result in 8 cutlines being used at 1 micron intervals.

2D Maximum Concentration File
Creates a Data format file plotting the position of the maximum potential, in silicon material
only, for the whole 2D structure. A maximum potential Y position is found for every X step
186 DeckBuild User’s Manual

Customized Extract Statements Extract
of 0.1 microns. These Data format files can be loaded into TonyPlot (-ccd) to represent a line
of maximum concentration across a device.

extract name="Total_max_pot" max.conc.file impurity="potential" x.step=0.1
material="silicon" outfile="totalconc.dat"

Creates a Data format file plotting the position of the maximum potential, in any material, for
the specified “box” limits. A maximum potential Y position is found for every X step of 0.2
microns.

extract name="limit_max_pot" max.conc.file impurity="potential"

x.step=0.2 outfile="limitconc.dat" x.min=0 x.max=7 y.min=0 y.max=0.09

Note: The x.step does not refer to cutlines but to the number of X coordinates used. A value of 1 representing
stepping 1 micron in X for every max Y value calculated.

QUICKMOS CV Curve
Extract a MOS CV curve, ramping the gate from 0 to 5 volts, with 0 volts on the backside and
the device temperature set at 325 Kelvin (default 300 K). This example creates a curve that is
stored in file cv.dat and can be shown using TonyPlot. To bring up TonyPlot on this file, an
easy way is to highlight the file name and then click on DeckBuild’s Tools button. TonyPlot
starts and loads with the file automatically.

extract name="CV curve" curve(bias,1dcapacitance vg=0.0 vb=0.0
bias.ramp=vg bias.step=0.25 bias.stop=5.0 x.val=0.1 temp.val=325) out-
file="cv.dat"

To get the maximum capacitance for the same curve, insert the keyword max (by editing the
syntax created by the popup). Notice that in this example, a single value is being extracted
from a curve, not the curve itself. You still, however, store the curve used during the
calculation into an output file, which is always the case.

extract name="CV curve Max cap" max(curve(bias,1dcapacitance vg=0.0 vb=0.0

 bias.ramp=vg bias.step=0.25 bias.stop=5.0 x.val=0.1 temp.val=325))

 outfile="cv.dat"

To find what the capacitance was at voltage 4.3 volts, use the following syntax:

extract name="MOS capacitance at Vg=4.3" y.val from curve(bias,1dcapaci-
tance vg=0.0 vb=0.0 bias.ramp=vg bias.step=0.25 bias.stop=5.0 x.val=0.1
temp.val=325) where x.val = 4.3

The general form of this syntax is

extract y.val from curve(xaxis, yaxis) where x.val=number_on_xaxis

and:

extract x.val from curve(xaxis, yaxis) where y.val=number_on_yaxis

where xaxis and yaxis will determine the actual curve. The syntax for this example was
created by using the popup to write the syntax for the CV curve, and then adding the
y.val... where x.val syntax in the input deck.

For more examples on how to manipulate curves, see the examples in Section 5.4 “Device
Extraction”.

Junction Capacitance Curve
187 DeckBuild User’s Manual

Customized Extract Statements Extract
Extract a curve of junction capacitance against bias where the first region in the top (first)
layer of silicon is ramped from 0 to 5V. Capacitance of the first junction occurrence (upper) is
measured and the resultant curve is output to the file XjV.dat. Device temperature is default
(300 Kelvin). If only one junction exists for the selected region, you must use then a junction
occurrence of one (upper).

extract start material="Silicon" mat.occno=1 bias=0.0 bias.step=0.25
bias.stop=5.0 x.val=0.1 region.occno=1

extract done name="Junc cap vs bias" curve(bias,1djunc.cap material="Sili-
con" mat.occno=1 x.val=0.1 region.occno=1 junc.occno=1) outfile="XjV.dat"

Extract the minimum junction capacitance on the created junction capacitance against bias
curve. The second region in the top (first) layer of silicon is ramped from 0 to 3V and the
capacitance of the second junction occurrence (lower) is measured. Device temperature is set
for calculations to be 325 Kelvin. The resultant curve is output to the file XjVmin.dat,
while the extracted minimum value is logged to the default results file (results.final).

extract start material="Silicon" mat.occno=1 bias=0.0 bias.step=0.25
bias.stop=3.0 x.val=0.1 region.occno=2

extract done name="Junc cap vs bias" min(curve(bias,1djunc.cap mate-
rial="Silicon" mat.occno=1 x.val=0.1 region.occno=2 junc.occno=2
temp.val=325)) outfile="XjVmin.dat"

Note: The junction occurrence is only valid for the specified region. In other words, there is only a maximum of two
possible junctions for the specified region.

Junction Breakdown Curve
Extract a curve of electron ionization integral against bias where the first region in the top
(first) layer of silicon is ramped from 0 to 5V and device temperature is set to be 325 Kelvin.
The resultant breakdown curve is output to the file Nbreakdown.dat. See the Impact
command section and Impact Ionization physics section in the Atlas User’s Manual for the
Selberherr model used in calculation.

extract start material="Silicon" mat.occno=1 bias=0.0 bias.step=0.25
bias.stop=5.0 x.val=0.1 region.occno=1

extract done name="N Breakdown "curve(bias,n.ion material="Silicon"
mat.occno=1 x.val=0.1 region.occno=1 temp.val=325)

 outfile="Nbreakdown.dat"

The following extraction creates a curve of hole ionization integral against bias, and
calculates the breakdown voltage corresponding to the point where the hole ionization
integral intercepts 1.0. The second region in the top (first) layer of silicon is ramped from 0 to
20V and the device temperature is set to the default of 300 Kelvin. The resultant breakdown
curve is output to the file Pbreakdown.dat and the breakdown voltage is appended to the
default results file (results.final).

extract start material="Silicon" mat.occno=1 bias=0.0 bias.step=0.50
bias.stop=20.0 x.val=0.1 region.occno=2

extract done name="P intercept" x.val from curve(bias,p.ion material="Sil-
icon" mat.occno=1 x.val=0.1 region.occno=2) where y.val=1.0

 outfile="Pbreakdown.dat"
188 DeckBuild User’s Manual

Customized Extract Statements Extract
You can modify the selberherr model parameters using the syntax below. For more
information, see Appendix Appendix A “Models and Algorithms,”.

extract start material="Silicon" mat.occno=1 bias=0.2 bias.step=0.08
bias.stop=5.0 x.val=0.3 region.occ=2

extract done name="iiP" curve(bias, p.ion material="Silicon" mat.occno=1
x.val=0.3 region.occno=2 egran=4.0e5 betap=1.0 betan=1.0

 an1=7.03e5 an2=7.03e5 bn1=1.231e6 bn2=1.231e6 ap1=6.71e5 ap2=1.582e6
bp1=1.693e6 bp2=1.693e6) outfile="extract.dat"

SIMS Curve
Extract the concentration profile of net doping in the top (first) layer of silicon. The output
curve is placed into the file SIMS.dat.

extract name="SIMS" curve(depth,impurity="Net Doping" material="Silicon"
mat.occno=1 x.val=0.1) outfile="SIMS.dat"

SRP Curve
Extract the SRP (Spreading Resistance Profile) in the top (first) silicon layer. The output
curve is placed into the file SRP.dat.

extract name="SRP" curve(depth, srp materials="Silicon" mat.occno=1
x.val=0.1)

outfile="SRP.dat"

The following command will calculate the SRP (Spreading Resistance Profile) in the top
(first) silicon layer using a specified 100 etch steps of uniform size. The output curve is
placed into the file SRP100.dat.

extract name="SRP100" curve(depth,srp material="Silicon"

mat.occno=1 n.step=100 x.val=0.5) outfile="srp100.dat"

Note: Where n.step is not specified, the default is 50 etch steps of variable size dependent on the gradient of
net concentration. If n.steps is set, uniform etch steps are used.

Sheet Resistance/Conductance Bias Curves
Extract the Total sheet conductance against bias curve of the first p-n region in the top (first)
occurrence of polysilicon. Polysilicon is treated as a metal by default but is flagged here as a
semiconductor (semi.poly). The device temperature is set to 325 Kelvin (default=300
Kelvin) and a bias ramped from 0 to 5V on the same polysilicon region.

extract start material="Polysilicon" mat.occno=1 bias=0.0 bias.step=0.00
bias.stop=5.0 x.val=0.1 region.occno=1

extract done name="Total SC" curve(bias,1dconduct material="Polysilicon"
mat.occno=1 temp.val=325 x.val=0.1 region.occno=1 semi.poly) out-
file="totalSC.dat"
189 DeckBuild User’s Manual

Customized Extract Statements Extract
Extract the n-type sheet conductance against bias curve of the first p/n region in the top (first)
occurrence of silicon where a bias ramped from 0V to 5V on the same silicon region and a
value of QSS (4.0e10) is specified for the first interface occurrence.

extract start material="Silicon" mat.occno=1 region.occno=1 bias=0.0
bias.step=0.00 bias.stop=5.0 x.val=0.1

extract cont interface.occno=1 qss=4.0e10

extract done name="N-type SC" curve(bias,1dn.conduct material="Silicon"
mat.occno=1 x.val=0.1 region.occno=1) outfile="NtypeSC.dat"

Extract the p-type sheet conductance against bias curve of the first p-n region in the top (first)
occurrence of silicon, where a bias ramped from 0 to 5V on the same silicon region and a bias
of 2V is held on the first region of the top occurrence of polysilicon. A value of QSS (5.0e10)
is also specified for the first interface occurrence.

extract start material="Silicon" mat.occno=1 region.occno=1 bias=0.0
bias.step=0.00 bias.stop=5.0 x.val=0.1

extract cont material="Polysilicon" mat.occno=1 bias=2.0 x.val=0.1
region.occno=1

extract cont interface.occno=1 qss=5.0e10

extract done name="P-type SC" curve(bias,1dp.conduct material="Silicon"
mat.occno=1 x.val=0.1 region.occno=1) outfile="PtypeSC.dat"

The command below extracts the p-type sheet conductance against bias curve of the first and
second p-n regions in the top (first) layer of silicon, where a bias is ramped from 1V to -2V on
the top (first) polysilicon layer.

extract start material="Polysilicon" mat.occno=1 bias=1.0 bias.step=-0.05
bias.stop=-2.0 x.val=0.01

extract done name="region1+2" curve(bias,1dp.conduct material="Silicon"

mat.occno=1 x.val=0.01 region.occno=1 region.stop=2) out-
file="region1+2.dat"

Note: For sheet resistance extraction, substitute “1dconduct” with “1dsheet.res” (i.e.,1dsheet.res, 1dnsheet.res,
1dpsheet.res).

Electrical Concentration Curve
Extract the electron distribution against depth for the top (first) layer of silicon where a bias is
ramped from 0 to 5V for the first region of the silicon and a QSS of 4.0e10 set for the first
interface occurrence. Device temperature is set at 325 Kelvin.

extract start material="Silicon" mat.occno=1 region.occno=1 bias=0.0
bias.step=0.00 bias.stop=5.0 x.val=0.1

extract cont interface.occno=1 qss=4.0e10

extract done name="Electrical conc" curve(depth,n.conc material="Silicon"
mat.occno=1 x.val=0.1 temp.val=325) outfile="extract.dat"

ED Tree (Optolith)
Create a Data format file plotting a single branch of an ED tree for deviation of 10% from the
datum, the specified critical dimension (CD) value of 0.5. The x.step defines the defocus
190 DeckBuild User’s Manual

Customized Extract Statements Extract
step to be used. 0.08 representing 8% of the total X axis range for each calculation. For each
value of defocus at the specified critical dimension deviation, the value of dose is
interpolated. Therefore, the resulting curve is dose against defocus for a critical dimension of
0.5 plus 10%.

extract name="ed+10" edcurve(da.value."DEFOCUS", da.value."CDs",

da.value."DOSE",dev=10 datum=0.5 x.step=0.08) outf="ed10.dat"

Note: If no x.step is specified the actual curve defocus points are used.

Elapsed time
The timer is reset to 10 seconds, a timestamp extracted before and then after a simulation. The
elapsed time is then calculated by subtraction.

extract name ="reset_clock" clock.time start.time = 10

extract name ="t1" clock.time

<simulation>

extract name ="t2" clock.time

extract name="elapsed_time" $t2 - $t1

Note: This extraction does not measure CPU time
191 DeckBuild User’s Manual

Device Extraction Extract
5.4 Device Extraction
Device extraction always deals with a “logfile” that contains I-V information produced by a
device simulator (such as Atlas). Therefore, it deals almost exclusively in curves. The
following section show how to construct a curve or extract values on a curve for all possible
devices. For the special case of MOS devices, both Atlas has a popup with a number of pre-
defined MOS tests. See Section 5.6 “MOS Device Tests” for more information.

Device extraction also deals with structure files, which contain information saved by a device
simulator (e.g., Atlas). You can extract this information by using the process extraction
syntax style shown below. The following extracts the total electric field for silicon in a 1D
cutline, where x = 0.5 for the loaded device structure file.

extract name="test" 2d.max.conc impurity="E Field" material="Silicon"
x.val=0.5

There are some differences between the syntax used by Extract and the syntax used by the
Atlas output command. Section 5.10 “Using Extract with Atlas” shows these differences.

Extract allows you to construct a curve using separate X and Y axes. For each axis, you can
choose the voltage or current on any electrode, the capacitance or conductance between any
two electrodes, or the transient time for AC simulations. You can either manipulate the axes
individually, such as multiplication or division by a constant, or combine axes in algebraic
functions.

Note: The curve manipulation discussed is equally applicable to all curves, whether the curve came from process
or device simulation. The only type-specific syntax relates to the curve axes. For example, gate voltage can’t
be extracted from a process simulator. If you try, then a warning message will appear.

5.4.1 The Curve
The basic element is always the curve. Once the curve is constructed, it can be used as is, by
saving it to a file for use by TonyPlot, or as an Optimizer target, or it can be used as the basis
for further extraction. For details on the extract curve syntax, see Section 5.3.1 “Extract
Syntax”.

To construct a curve representing voltage on electrode "emitter1" (on the X axis) versus
current on electrode "base2", write:

extract name="iv" curve(v."emitter1", i."base2")

The first variable specified inside the parentheses becomes the X axis of the curve. The
second variable becomes the Y axis. The v."name" and i."name" syntax is used for any
electrode name — just insert the proper name of the electrode. The electrode name be defined
previously (such as in the device deck, or previous to that in an Athena input deck using the
electrode statement, or interactively in DevEdit). Electrode names may contain spaces but
must always have quotation marks.

Transient time is represented by the keyword time.

extract name="It curve" curve(time, i."anode")

For Device temperature curves, use:

extract name="VdT" curve(v."drain", temperature)
192 DeckBuild User’s Manual

Device Extraction Extract
For extracting a frequency curve use:

extract name="Idf" curve(i."drain", frequency)

To extract a capacitance or conductance curve, use this syntax:

extract name="cv" curve(c."electrode1""electrode2", v."electrode3")

and

extract name="gv" curve(g."electrode1""electrode2", v."electrode3")

For other electrical parameters (see Section 5.3.1 “Extract Syntax” section for valid electrical
parameters) use the following syntax:

extract name="IdT" curve(elect."parameter",v."drain")

An extract name is given in each example. Although optional, it is always a good idea to
name extract statements so they can be identified later. Names are always necessary for
entering an extract statement in DeckBuild’s Optimizer, and for recognition by the VWF.

It is also possible to shift or manipulate curve axes. Each axis is manipulated separately. The
simplest form of axis manipulation is algebra with a constant.

extract name="big iv" curve(v."gate"/50, 10*i."drain")

You can multiply, divide, add, or subtract any constant expression to each axis.

Curve axis can also be combined algebraically, similar to TonyPlot’s function capability:

extract name="combine" curve(i."collector", i."collector"/i."base")

All electrode values (current, voltage, capacitance, conductance) can be combined in any
form this way.

Another curve type is deriv() used to return the derivative (dydx). For example, statement
below will create the curve of dydx gate bias and drain current plotted against and X axis of
gate bias.

extract name="dydx" deriv(v."gate", i."drain") \

 outfile="dydx.dat"

It is also possible to calculate dydx to the nth derivative as below.

extract name="dydx2" deriv(v."gate", i."drain", 2) \

 outfile="dydx2.dat"

To find local maxima and minima on a curve, limit the section of the curve X axis. The
following statement extracts the maximum drain current, where gate bias is between the
limits of 0.5 volts and 2.5 volts.

extract name="limit" max(curve(v."gate", i."drain",x.min=0.5

x.max=2.5)) outf="limit.dat"

In addition, there are several operators which apply to curve axes. They are as follows:

abs(axis)

log(axis)

log10(axis)

sqrt(axis)
193 DeckBuild User’s Manual

Device Extraction Extract
atan(axis)

-axis

For instance:

extract curve(abs(i."drain"), abs(v."gate"))

The operators can be combined. For example, log10(abs(axis)). These operators also
work on curve axes from process simulation.

5.4.2 Curve Manipulation
A number of curve manipulation primitives exist:

min(curve)

max(curve)

ave(curve)

minslope(curve)

maxslope(curve)

slope(line)

xintercept(line)

yintercept(line)

area from curve

area from curve where x.min=X1 and x.max=X2

x.val from curve where y.val=k

y.val from curve where x.val=k

x.val from curve where y.val=k and val.occno=n

y.val from curve where x.val=k and val.occno=n

grad from curve where y.val=k

grad from curve where x.val=k

For details on Extract curve manipulation syntax, see Section 5.3.1 “Extract Syntax”.

For instance, using the BJT curve example above, you could find the maximum of Ic/Ib vs Ic,
or maximum beta, by writing:

extract name="max beta" max(curve(i."collector", i."collector"/i."base"))

max(), min(), and ave() all work on the Y axis of the curve.

The sloped lines and intercepts often work together. The primitives minslope() and
maxslope() can be thought of as returning a line. Extracting a line by itself has no meaning,
so three other operators take a line as input. The operators are slope(), which returns the
slope of the line, and xintercept() and yintercept(), which return the value where the
line intercepts the corresponding axis.

For instance, a Vt test for MOS devices looks at a curve of Vg (x) versus Id (y) and finds the
X intercept of the maximum slope. Such a test would look like:

extract name="vt" xintercept(maxslope(curve(abs(v."gate",
abs(i."drain"))))
194 DeckBuild User’s Manual

Device Extraction Extract
Some Vt tests take off Vd/2 from the resulting value. You could write:

extract name="vt" xintercept(maxslope(curve(abs(v."gate",

 abs(i."drain")))) - ave(v."drain")/2

Note that the last example uses:

ave(v."drain")/2

The max(), min(), and ave() operators can be used on both curves,

extract name="Iave" ave(curve(v."gate", i."drain"))

and also on individual curve axes,

extract name="Iave" ave(i."drain")

or even on axis functions:

extract name="Icb max" max(i."collector"/i."base")

You can also find the Y value on a curve for a given X value and the other way round. For
example, to find the collector current (Y) for base voltage 2.3 (X), use:

extract name="Ic[Vb=2.3]" y.val from curve(abs(v."base"), abs(i."collec-
tor")) where x.val = 2.3

Extract uses linear interpolation if necessary. If more than one point on the curve matches the
condition, Extract takes the first one, unless you use the following syntax to specify the
occurrence of the condition. This example would find the second Y point on the curve
matching an X value of 2.3.

extract name="Ic[Vb=2.3]" y.val from curve(abs(v."base",

 abs(i."collector"))

 where x.val = 2.3 and val.occno =2

The condition used for finding an intercept can be a value or an expression and therefore use
the min(), max(), and ave() operators. The following command creates a transient time
against drain-gate capacitance curve and calculates the intercepting time where the
capacitance is at its minimum value.

extract name="t at Cdrain-gate[Min]" x.val from curve(time,
c."drain""gate")

 where y.val=min(c."drain""gate")

In addition to finding intercept points on curves, you can also calculate the gradient at the
intercept, specified by either a Y or X value as shown below.

extract name="slope_at_x" grad from curve(v."gate", i."drain")

 where x.val=1.5

extract name="slope_at_y" grad from curve(v."gate", i."drain")

 where y.val=0.001

You can also find the area under a specified curve for either the whole curve or as below
between X limits.

extract name="iv area" area from curve(v."gate", c."drain""gate")

 where x.min=2 and x.max=5
195 DeckBuild User’s Manual

Device Extraction Extract
5.4.3 BJT Example
As a final example for device extraction, consider finding, say, the beta value for a BJT
device, at 1/10th the current for max beta. This example sums up the information presented so
far, and also introduces the feature of variable substitution.

First, you need to figure out what the current is at max beta. Max beta was presented in a
previous example:

extract name="max beta" max(curve(i."collector", i."collector"/i."base"))

After this statement has been run, extract remembers the extract name, max beta, and the
resulting value. Use this information later on using variable substitution. In this example, you
need to get the current, or X axis value, at max beta, to figure out what 1/10th of it is. To do
this, use the extracted max beta as our Y axis “target value”:

extract name="Ic[max beta]" x.val from curve(i."collector",

 i."collector"/i."base") where y.val=$"max beta"

Finally, extract the value of Ic/Ib for Ic=max beta/10.

extract name="Ic/Ib for Ic=Ic[max beta]/10" y.val from curve(i."collec-
tor",

 i."collector"/i."base") where x.val=$"Ic[max beta]"/10

For more information about variable substitution, see Section 5.8 “Extract Features”.
196 DeckBuild User’s Manual

General Curve Examples Extract
5.5 General Curve Examples
The following examples assume that they are extracting values from the currently loaded
logfile running under DeckBuild. Saved “IV” log files, however, can be used directly with
extract using the syntax below.

extract init infile="filename"

Note: You can enter extract commands on multiple lines using a backslash character for continuation. You
should, however, enter the syntax shown below on a single line although shown on two or more lines.

5.5.1 Curve Creation
The following command extracts a curve of collector current against base voltage and places
the output in icvb.dat.

extract name="IcVb curve" curve(i."collector", v."base") out-
file="icvb.dat"

5.5.2 Min Operator with Curves
The following command calculates the minimum value for a curve of drain current against
internal gate voltage.

extract name="Vgint[Min]" min(curve(i."drain", vint."gate"))

5.5.3 Max Operator with Curves
The following command calculates the maximum value for a curve of base voltage against
base-collector capacitance.

extract name="Cbase-coll[Max]" max(curve(v."base", c."base""collector"))

5.5.4 Ave Operator with Curves
The following command calculates the average value for a curve of drain current against
gate-drain conductance.

extract name="Ggate-drain[Ave]" ave(curve(i."drain", g."gate""drain"))

The preceding assumes that the x values (the drain current in this case) are equally spaced. If
this is not so, the use of linear interpolation may be specified. Inserting the interpolate
keyword thus :

extract name="Ggate-drain[Ave]" ave(curve(i."drain", g."gate""drain"),
 interpolate)

causes the number of interpolation points to be set to twice the number of points in the curve.
Alternatively, the number of interpolation points may be specified explicitly, thus :

extract name="Ggate-drain[Ave]" ave(curve(i."drain", g."gate""drain"),
 interpolate n.step=100)

5.5.5 X Value Intercept for Specified Y
The following command creates a frequency against drain current curve and calculates the
intercepting frequency for a drain current of 1.5-e6.
197 DeckBuild User’s Manual

General Curve Examples Extract
extract name="Freq at Id=1.5e-6" x.val from curve(frequency, i."drain")
where y.val=1.5e-6

5.5.6 Y Value Intercept for Specified X
The following command creates a drain voltage against device temperature curve and
calculates the intercepting temperature for a drain voltage of 5V.

extract name="T at Vd=5" y.val from curve(v."drain", temperature) where
x.val=5.0

5.5.7 Abs Operator with Axis
The following command creates a curve of absolute gate voltage against absolute optical
wavelength (log, log10 and sqrt also available).

extract name="Vg-optW curve" curve(abs(v."gate"), abs(elect."optical wave-
length"))

5.5.8 Min Operator with Axis Intercept
The following command creates a transient time against gate-drain capacitance curve and
calculates the intercepting time where the capacitance is at its minimum value.

extract name="t at Cgate-drain[Min]" x.val from curve(time,
c."gate""drain") where y.val=min(c."gate""drain")

5.5.9 Max Operator with Axis Intercept
The following command creates a collector current against collector current divided by base
current curve and calculates the intercepting collector current where Ic/Ib is at a maximum
value.

extract name="Ic at Ic/Ib[Max]" x.val from curve(i."collector", i."collec-
tor"/i."base") where y.val=max(i."collector"/i."base")

5.5.10 Second Intercept Occurrence
The following command creates a gate voltage against source photo current curve and
calculates the second intercept of gate voltage for a source photo current of 2e-4.

extract name="2nd Vg at Isp=2e-4" x.val from curve(v."gate", elect."source
photo current") where y.val=2e-4 and val.occno=2

5.5.11 Gradient at Axis Intercept
The following command creates a probe Itime against drain current curve and finds the
gradient at the point where probe Itime is at a maximum.

extract name="grad_at_maxTime" grad from curve(probe."Itime",

i."drain") where y.val=max(probe."Itime")

5.5.12 Axis Manipulation with Constants
The following command creates a gate voltage divided by ten against total gate capacitance
multiplied by five. Adding and subtracting are also available.

extract name="Vg/10 5*C-gg curve" curve(v."gate"/10, 5*c."gate""gate")
198 DeckBuild User’s Manual

General Curve Examples Extract
5.5.13 X Axis Interception of Line Created by Maxslope Operator
The following command calculates the X axis intercept for the maximum slope of a drain
current against gate voltage curve.

extract name="Xint for IdVg" xintercept(maxslope(curve(i."drain",
v."gate")))

5.5.14 Y Axis Interception of Line Created by Minslope Operator
The following command calculates the Y axis intercept for the minimum slope of a substrate
current against drain voltage.

extract name="Yint for IsVd" yintercept(minslope(curve(i."substrate",
v."drain")))

5.5.15 Axis Manipulation Combined with Max and Abs Operators
The following command calculates the maximum value of drain-gate resistance.

extract name="Rdrain-gate[Max]" max(1.0/(abs(g."drain""gate")))

5.5.16 Axis Manipulation Combined with Y Value Intercept
The following command creates a gate voltage against drain-gate resistance and calculates
the intercepting drain-gate resistance for a gate voltage of 0V.

extract name="Rdrain-gate at Vg=0" y.val from curve (v."gate", 1.0/
abs(g."drain""gate"))

 where x.val=0.0

5.5.17 Derivative
The following command creates the curve of dydx gate bias and drain current plotted against
and X axis of gate bias.

extract name="dydx" deriv(v."gate", i."drain")

outfile="dydx.dat"

This further example calculates to the 2nd derivative.

extract name="dydx2" deriv(v."gate", i."drain", 2)

outfile="dydx2.dat"

5.5.18 Data Format File Extract with X Limits
The following command finds the local maximum in Data Format file for the curve of vin
between 2 and 5 volts against power.

extract name="max[2-5]" max(curve(da.value."vin", da.value."power",

x.min=2 x.max=5)) outf="max2-5.dat"

5.5.19 Impurity Transform against Depth
The following command calculates the electron concentration in the first occurrence of
silicon material for a cutline of X=1 squared against depth.
199 DeckBuild User’s Manual

General Curve Examples Extract
{fixed} extract name="nconc^2" curve(depth,(n.conc material="Silicon"

mat.occno=1 x.val=1) * (n.conc material="Silicon" mat.occno=1 x.val=1))

outfile="nconc.dat"
200 DeckBuild User’s Manual

MOS Device Tests Extract
5.6 MOS Device Tests
A list of ready-made MOS extract statements is also provided. Use them directly or make
modifications to suit testing needs. DeckBuild allows you to create, modify, and save tests.

The following MOS tests are:

• Vt
• Beta
• Theta
• Leakage
• Bvds
• Idsmax
• SubVt
• Isubmax
• Vg[Isubmax]

Do the following to access the list of MOS extract routines.

• ATLAS: Choose CommandsExtractsDevice... and the Atlas Extraction popup will
appear. Choose the desired test and click on the WRITE button to insert the test into the
input deck. Using the User defined option, you can enter custom extracts into the popup
and save them as defaults.

When you click the Write Deck button on the Control popup, the extract syntax will be
written automatically to the deck along with the selected tests (Figure 5-5).

Figure 5-5 The Atlas Extraction (Vt) Popup
201 DeckBuild User’s Manual

Extracted Results Extract
5.7 Extracted Results
Extracted results appear both with the simulator output in the tty subwindow and in a special
file named by default results.final. You can name the file using the
datafile="filename" syntax. Use the file to compare the results from a large number of
runs. For example, if using DeckBuild’s built-in optimizer, the file gives a concise listing of
all the results as a function of the input parameters. The extract results file is created in the
current working directory.

5.7.1 Units
• Material thickness (angstroms)
• Junction depth (microns)
• Impurity concentrations (impurity units, typically atoms/cm3)
• Junction capacitance (Farads/cm2)
• QUICMOS capacitance (Farads/cm2)
• QUICKMOS 1D Vt (Volts)
• QUICKBIP 1D solver (see the QUICKBIP section)
• Sheet resistance (Ohm/square)
• Sheet conductance (square/Ohm)
• Electrode voltage (Volts)
• Electrode internal voltage (Volts)
• Electrode current (Amps)
• Capacitance (Farads/micron)
• Conductance (1/Ohms)
• Transient time (Seconds)
• Frequency (Hertz)
• Temperature (Kelvin)
• Luminescent power (Watts/micron)
• Luminescent wavelength (Microns)
• Available photo current (Amps/micron)
• Source photo current (Amps/micron)
• Optical wavelength (Microns)
• Optical source frequency (Hertz)
• Current gain (dB)
• Unilateral power gain frequency (dB)
• Max transducer power gain (dB)

If desired, you can perform whatever unit shifting required by adding the appropriate
constants in the device extract tests and saving them as the default. The units are always
printed out along with the extract results for built-in single value extract routines. Custom
extract routines do not show units.
202 DeckBuild User’s Manual

Extract Features Extract
5.8 Extract Features

5.8.1 Extract Name
extract statements should almost always be given names. The name must be prepended to
the remainder of the extract statement. For example:

extract name="gateox thickness" oxide thickness x.val=1.0

The extract name is used in three ways. The name appears on the Optimizer worksheet
when you enter the extract statement as a target, and on the VWF worksheet as an extracted
parameter. It can also be used in further extract statements to perform variable substitution.
The name can contain spaces.

5.8.2 Variable Substitution
The extract parser maintains a list of variables, each of which consists of a name and a value.
A name is defined by any previous named extract statement. The corresponding value is the
result of the statement.

To refer to a variable’s value, precede it with a ‘$’. Quotes are optional around variable
references, except when the variable name contains spaces, in which case the $ must precede
the quotes. The substituted variable acts as a floating point number, and can be used in any
extract expression that uses numerical arguments.

For example:

extract name="xj1" xj silicon junc.occno=1

extract name="xj2" xj silicon junc.occno=2

extract name="deltaXj" abs($xj1 - $xj2)

Examples with spaces:

extract name="max boron" max.conc boron

extract name="max arsenic" max.conc arsenic

extract name="PN ratio" $"max boron"/$"max arsenic"

You can also use variable substitution in extract with the set command as shown below.

set cutline=0.5

extract name="gateox thickness" oxide thickness x.val=$cutline

In addition, filenames to be loaded can also be specified this way. For example:

set efile = structure.str

extract init infile="$’efile’"

Note: Single quotes can be used to substitute where $-variable must appear within double quotes.
203 DeckBuild User’s Manual

Extract Features Extract
5.8.3 Min and Max Cutoff Values
Statements may contain min.val=value or max.val=value or both to define a valid range
for extracted results (single-valued results only, not curves). If you do not define either max or
min, then the range extends from +-infinity to the stated value respectively. If the extracted
value is outside the range, then an error message is printed along with the extracted results
and also appended to the default results file.

5.8.4 Multi-Line Extract Statements
Extract statements may be spread over multiple lines to specify layer biases and QSS values
as shown in above examples. This involves using the start/cont/done syntax.

5.8.5 Extraction and the Database (VWF)
When run with the Virtual Wafer Fab, all extract values in the deck appear as output result
columns on the split worksheet. Each row of the worksheet contains the input parameters
used to create the results. The extracted value cell values are filled in automatically as the
split points complete. If some extracts are only intermediate calculations and are not required
to be included in the results worksheet the hide flag can be used. This prevents unrequired
extract results from cluttering the worksheet data.

The min/max extract ranges, if defined, are examined. If any extracted value is out of
range, then children of that deck fragment (any part of the worksheet that uses the simulation
results of that deck fragment) are automatically de-queued and marked with a parent error.
The fragment is marked with a range error. The purpose here is that the system does not waste
its time by running any simulation beyond that point in the input deck where the range error
occurred, for all parts of the split tree that use the particular values of the deck.
204 DeckBuild User’s Manual

QUICKBIP Bipolar Extract Extract
5.9 QUICKBIP Bipolar Extract
QUICKBIP is a 1D simulator for bipolar junction transistors (BJT) and is fully integrated
inside the DeckBuild environment. It is accessed using the extract command and is
available for use with any Silvaco simulator.

The doping profile passed to the QUICKBIP solver should be a bipolar profile. At least, three
regions must exist. The top region in the first silicon layer is taken to be the emitter. There
may be other materials on top of the silicon.

QUICKBIP can be used with either Athena (2D process simulation) or SSuprem3 (1D
process simulation). It is used in cases where a 1D device simulation is both easier and faster
to turn around a result. Examples of the QUICKBIP extract command language are listed
as follows:

extract name="bip test bf" bf

extract name="bip test nf" nf

extract name="bip test is" gpis

extract name="bip test ne" ne

extract name="bip test ise" ise

extract name="bip test cje" cje

extract name="bip test vje" vje

extract name="bip test mje" mje

extract name="bip test rb" rb

extract name="bip test rbm" rbm

extract name="bip test irb" irb

extract name="bip test tf" tf

extract name="bip test cjc" cjc

extract name="bip test vjc" vjc

extract name="bip test mjc" mjc

extract name="bip test ikf" ikf

extract name="bip test ikr" ikr

extract name="bip test nr" nr

extract name="bip test br" br

extract name="bip test isc" isc

extract name="bip test nc" nc

extract name="bip test tr" tr

Any name can be assigned to each command. In the case of a 2D simulator, the lateral
position of the vertical profile has to be specified with the parameter x.val=n. For example:

extract name = "forward transit time" tf x.val=0.3

Alternatively, a boolean region can be specified when running in conjunction with the IC
Layout interface. For example:

extract name="my test" tf region="pnp_active_poly"
205 DeckBuild User’s Manual

QUICKBIP Bipolar Extract Extract
In this case, the bipolar test is performed only in the case where an IC layout cross section
intersects the named region.

You can modify QUICKBIP tuning parameters for using the syntax shown below. Appendix
A “Models and Algorithms” provides a more detailed explanation.

extract name="Tuning bf" bf x.val=0.5 bip.tn0=1.0e-5 bip.tp0=1.0e-3

bip.an0=2.9e-31 bip.ap0=0.98e-31 bip.nsrhn=5.0e12 bip.nsrhp=5.0e15

bip.betan=2.1 bip.betap=1.

Table 5-1 shows the extract parameters representing the BJT parameters.

Table 5-1 BJT Parameters

Parameter Description Units

bf Ideal Maximum Forward Beta

nf Forward current Emission Coefficient

gpis Transport saturation current (IS) A/cm2

ne Base-Emitter Leakage Emission Coefficient

ise Base-Emitter Leakage Saturation Current A/cm2

cje Base-Emitter Zero Bias DEpletion Capacitance F/cm2

vje Base-Emitter built in potential V

mje Base-Emitter exponential factor

rb Zero bias base resistance Ohms/square

rbm Minimum base resistance at high current Ohms/square

irb Current at half base resistance value A/cm2

tf Ideal forward transit time (1/ft) secs

cjc Base-Collect zero bias depletion capacitance F/cm2

vjc Base-Collector built in potential V

mjc Base-Collector exponential factor

ikf Corner of Forward Beta High current roll-off A/cm2

ikr Corner of Reverse Beta High current roll-off A/cm2

nr Reverse Current Emission Coefficient

br Ideal Maximum Reverse Beta
206 DeckBuild User’s Manual

QUICKBIP Bipolar Extract Extract
Automated command writing is accomplished with the use of the DeckBuild Extract popup
window. This is accessed from the Commands menu when either SSuprem3 or Athena is
selected as the current simulator.

I-V Curves can be visualized with TonyPlot if the Compute I-V curve option is selected on
the Extract popup. In this case, select from either forward or reverse characteristics and
specify the axes of the curve.

• All extracted parameters can be used as optimization targets.
• All extracted parameters are appended to the default results file in the current working

directory. Unless specified, using the datafile=filename syntax, it defaults to
results.final.

• When running under the VWF, all extracted parameters will be logged for regression
modeling.

QUICKBIP solves fundamental system of semiconductor equations, continuity equations for
electrons and holes, and Poisson’s equation for potential self-consistently using the Gummel
method. The following physical models are taken into account by QUICKBIP:

• Doping-dependent mobility
• Electric field dependent mobility
• Band gap narrowing
• Shockley-Read-Hall recombination
• Auger recombination

QUICKBIP is fully automatic so that it is unnecessary to specify input biases. QUICKBIP
calculates both forward and inverse characteristics of the BJT. For an n-p-n device, these sets
are as follows:

1. Veb = -0.3... -Veb_final, Veb_step=-0.025, Vcb = 0 V

2. Vcb = -0.3... -Vcb_final, Vcb_step=-0.025, Veb = 0 V

3. Veb_final and Vcb_final depend on the particular BJT structures, usually about -1...
-1.5 (high injection level).

For a p-n-p device, all signs are changed.

isc Base-Collector Leakage Saturation Current A/cm2

nc Base-Emitter Leakage Emission Coefficient

tr Ideal forward transit time secs

Table 5-1 BJT Parameters

Parameter Description Units
207 DeckBuild User’s Manual

Using Extract with Atlas Extract
5.10 Using Extract with Atlas
Do the following to calculate extract parameters during an Atlas simulation.

1. Include an output statement in your original input deck that specifies the parameters of
interest (e.g., output charge to specify charge concentration). You cannot extract a
parameter unless you specify that parameter (either explicitly or by default) in an output
statement.

2. Insert an extract statement to extract the desired parameters (see Chapter 5
“Extract”).

There are some differences between the Extract syntax and the syntax used by the Atlas
output statement. To extract parameters, use the correct extract statement syntax (not the
Atlas Output statement syntax). For example, the Atlas OUTPUT statement uses E.Field to
specify electric field, while the extract statement requires the name E.Field. To extract
electric field include the following lines in the input deck:

Output E.Field

...

...

...

Extract ... Impurity="E Field"

The following table shows the differences between the Atlas syntax and the extract
statement syntax.

Atlas Parameter Atlas Default Extract Parameter Units

POTENTIAL Mandatory Potential V

NET DOPING Mandatory Net Doping atoms/cm3

ELECTRON CONCENTRATION Mandatory Electron Conc cm3

HOLE CONCENTRATION Mandatory Hole Conc cm3

CHARGE False Change Conc atoms/cm3

CON.BAND False Conduction Band Energy V

E.FIELD/EFIELD False E Field V/cm

E.MOBILITY False e- Mobility cm2/Vs

E.TEMP True Electron Temp K

E.VELOCITY False Electron Velocity cm/s

EX.FIELD True E Field X V/cm

EX.VELOCITY False e- Velocity X m/s

EY.FIELD False E Field Y V/cm

EY.VELOCITY False e- Velocity Y m/s

FLOWLINES False Current Flow None

H.MOBILITY False h+ Mobility cm2/Vs
208 DeckBuild User’s Manual

Using Extract with Atlas Extract
H.TEMP True Hole Temp K

H.VELOCITY False Hole Velocity cm/s

HX.VELOCITY False h+ Velocity X m/s

HY.VELOCITY False h+ Velocity Y m/s

IMPACT True Impact Gen Rate scm3

JY.ELECTRON False Je- Y A/cm2

J.ELECTRON True Je- Current Magnitude A/cm2

JX.ELECTRON FALSE Je- X A/cm2

J.CONDUC True Conduction Current A/cm2

J.DISP False Displacement Current A/cm2

J.HOLE True h+ Current Magnitude A/cm2

J. TOTAL True Total Current Density A/cm2

JX.CONDUC False Cond Current X A/cm2

JX.HOLE False Jh+ X A/cm2

JX. TOTAL False Jtot X A/cm2

JY.CONDUC False Cond Current Y A/cm2

JY.HOLE False Jh+ Y A/cm2

JY. TOTAL False Jtot Y A/cm2

PHOTOGEN True Photo Generation Rate scm3

QFN True Electron QFL V

QFP True Hole QFL V

QSS False Interface Charge cm2

RECOMB True Recombination Rate scm3

TOT.DOPING False Total Doping atoms/cm3

TRAPS True Traps cm3

U.AUGER False Auger Recomb Rate scm3

R.RADIATIVE False Radiative Recomb Rate scm3

U.SRH False SRH Recomb Rate scm3

VAL.BAND False Valence Band Energy V

X.COMB False Composition X None

Y.COMB True Composition Y None

Atlas Parameter Atlas Default Extract Parameter Units
209 DeckBuild User’s Manual

Using Extract with Atlas Extract
OPT.INTENS False Optical Intensity W/cm2

OX.CHARGE False Fixed Oxide Charge cm3

Atlas Parameter Atlas Default Extract Parameter Units
210 DeckBuild User’s Manual

Chapter 6
Optimizer

Overview Optimizer
6.1 Overview
An o ptimizer is a mechanism that automatically varies one or more input parameters and
car r ies out s imula t ions in o rder to match one or more targets. The Optimizer
thereby runs through a number of iterations until the results match the targets within a
certain tolerance.

The Optimizer in Deckbuild uses the Levenberg-Marquart algorithm from the MINPACK
optimization library to build a response surface of results versus input parameters as the
iterations progress. This response surface is used to calculate the input parameter values for
each iteration. If – for some reason – the Optimizer cannot achieve convergence, it stops and
displays the error condition.

In practice, several parameters are measured and the simulation is then tuned to those values.
For example, MOS structure, gate oxide thickness, can all be used to tune the input deck with
the Optimizer.

6.1.1 Features
The Optimizer eliminates guesswork by determining the input parameter values necessary to
match one or more targets quickly and accurately. Furthermore, since the Optimizer is built
on top of DeckBuild’s native auto-interfacing capability, parameters in one simulator can be
optimized against the extracted results from a different simulator.

The Optimizer in Deckbuild is most useful for tuning studies. Use it to calibrate extracted
simulation results to measured data by changing coefficients, such as diffusion and
segregation; rather than trying to vary settings, such as simulated time and temperature. You
can use such well- tuned input deck fragments, each of which performs a known operation, to
build entire input decks.

For design studies, rather than tuning studies, we recommend the Virtual Wafer Fab (VWF).
The VWF constructs and allows visualization of the entire process response surface, opposed
to meeting a single target. It also acts in unison with the Optimizer by storing the well-tuned
input deck operations for later use. Since the input deck requires no modification and no
special statements, you can easily optimize any existing deck. When there are satisfying
optimization results, the Optimizer can copy the final parameter values back into the deck.
You can save all parameter and target data from the worksheet to disk and reload it at any
time.

For the Deckbuild Optimizer any variable defined via a set statement can serve as an
optimization parameter and any extracted value can be used as a target. You can optimizer
several targets at the same time and also use curves as targets.

6.1.2 Terminology
This chapter makes reference to input parameters and targets. Input parameters, or just
parameters, are any numerical constants in the input deck. Examples include implant energy,
diffusion time, and gate voltage. Targets are values that are extracted from the simulated
results. Examples include oxide thickness or Vt.
212 DeckBuild User’s Manual

Using the Optimizer Optimizer
6.2 Using the Optimizer
In the following we will demonstrate how an optimization can be run in Deckbuild. We will
explain the features of the optimizer by means of an example. The threshold voltage Vt of a
MOS transistor shall be optimized towards a selected value by varying parameters of the
threshold adjust implant. This optimization example is based on the mos1ex01 standards
example that is shipped with Deckbuild. The first step will be to define the parameters that we
want to optimize. To do so, open the deck and introduce two variables by using the set
statement as shown in this code snippet.

set vt_dose=9.5e11
set vt_energy=10

#vt adjust implant
implant boron dose=$vt_dose energy=$vt_energy pearson

The next step is then to write the optimizer script file. The syntax of the file is XML.

 <optimization>

 <parameter-list>
 <parameter name="vt_dose" nom="9e11" min="4.5e11" max="1.9e12"></parameter>
 <parameter name="vt_energy" nom="10.0" min="5.0" max="15.0"></parameter>
</parameter-list>
<target-list>
 <target name="nvt" value="0.65"/>
</target-list>

 </optimization>

The example script file shows two major sections, one is the <parameter-list>, the other is the
<target-list>. In the <parameter-list> section we have to define the parameters we would like
the optimizer to vary and also the minimum, and maximum values as well as the starting
(nominal) value. The <target-list> defines a list of targets to optimize to including their
values. In this case a single target called nvt with value of 0.65V was defined. The names of
parameters and targets must be equal to the names used in set and extract statements.

After the file was created you can then run the optimization by using a command as follows:

deckbuild -run -ascii ./mos1ex01.in -opt ./opt.xml

This will start deckbuild in optimzer mode. You will see the usual (for batch mode) runtime
output appear on the console window. You can stop the optimization/simulation anytime by
hitting Ctrl-C. Additionally to the runtime output, two files called progress.opt and
results.opt are created. The former is updated with every iteration and contains information

about the progress of the optimization run. You can open a 2nd terminal window and watch

this file as it changes. It contains entries of the form:

OPTIMIZER SETTINGS
ftol:0.1
gtol:0
xtol:0.1
maxfev:800
epsfcn:0.001
factor:100
TARGETS
target-name:nvt,simulated-file:
reference-values:0.65
213 DeckBuild User’s Manual

Using the Optimizer Optimizer
target-name:dummy,simulated-file:
reference-values:0
EVALUATION:1
PARAMETERS
vt_dose:9.12471e+11,vt_energy:10
nvt:0.523108,residual:-0.126892

When the optimization has reached a truncation criterion deckbuild will stop. The file
results.opt will then contain the results obtained from the optimizer:

vt_dose=1.2162e+12
vt_energy=8.29531
RETURN:2
TOTAL EVALUATIONS:11

In this case the values for the two parameters vt_dose and vt_enery is shown as well as
the return status of the optimizer and the number of iterations that were needed.

6.2.1 Parameter settings
The <parameter> element supports the following settings (attributes)

• name="vt_dose". Defines the name of the parameter as it appears in the set statement
• nom="9e11". The nominal (or initial) value of the parameter. The optimizer runs the first

simulation using the nominal value
• min="4.5e11". The minimum value of the parameter.
• max="1.9e12". The maximum value of the parameter
• scale=”log”. Scaling of the parameter. This can be set to either “log” (logarithmic) or

“lin” (linear). Omitting the parameter implies a setting of “lin”. A linear scaling means
that the parameter is passed to the optimizer as is, whereas a logarithmic scaling means
the log value of the parameter is passed to the optimizer.

6.2.2 Target settings
The <target> element supports the following settings (attributes)

• name.=”vt” .The name of the target as it appears in the extract statement
• type=”curve”. The type of the target. Can either be “scalar” or “curve”.
• reference="log_ref.dat". Valid in case the target is of type “curve”. Defines a

curve, which denotes the measurement. This is taken as the reference curve for the
optimizer

• simulated="out.dat". Valid in case the target is of type “curve”. Defines a curve,
which denotes a simulation result. The deck, which is run by the optimizer must contain
simulator statements to create this file.

• scale=”log”. Scaling of the target. Can be set to either “lin” (linear) or “log”
(logarithmic). The setting influences how the error vector is computed. A linear scaling
means the absolute error of the computed and measured target value(s) is computed. A
logarithmic setting means that the absolute error of the logarithm of the computed and
measured target value(s) is computed.

• weights=”weighs.dat”. An optional DAT file containing a weight. The weight allows
to emphasize certain parts of a curve over other parts of the same curve. The DAT file
must have as many entries as are in the curve file. weighing is applied after the error
vector was computed. The error vector is multiplied by the given weight. If this parameter
is not given a default value of 1 is implied.
214 DeckBuild User’s Manual

Using the Optimizer Optimizer
Below an example weighs file containing 10 values is given:

weigh

10 2 2

index

value

0 1.00000000000000000e+00

1 2.00000000000000000e+00

2 3.00000000000000000e+00

3 4.00000000000000000e+00

4 5.00000000000000000e+00

5 4.00000000000000000e+00

6 3.00000000000000000e+00

7 2.00000000000000000e+00

8 1.00000000000000000e+00

9 0.00000000000000000e+00

6.2.3 Settings of the Optimizer
The optimizer has various settings that can be used to influence the optimization run. They
are defined via the XML file and have to appear in a separate section called <settings>. If a
parameter is not given in the file a default value is used. As shown in above example the
<settings> section can be omitted as a whole in which case default values will be used for all
parameters.

All settings are passed on to the underlying MINPACK algorithm.

The following settings are supported:

 <settings>
 <setting name="epsfcn" value="0.001" />
 <setting name="xtol" value="0.1" />
 <setting name="gtol" value="0.0" />
 <setting name="ftol" value="0.1" />
 <setting name="maxfev" value="800" />
 </settings>
215 DeckBuild User’s Manual

Using the Optimizer Optimizer
Name Description Default

epscn epsfcn is an input variable used in determining a suitable step length for the
forward-difference approximation. This approximation assumes that the rel-
ative errors in the functions are of the order of epsfcn. If epsfcn is less than
the machine precision, it is assumed that the relative errors in the functions
are of the order of the machine precision.

0.001

xtol xtol is a nonnegative input variable. Termination occurs when the relative
error between two consecutive iterates is at most xtol. Therefore, xtol mea-
sures the relative error desired in the approximate solution.

0.1

gtol gtol is a nonnegative input variable. Termination occurs when the cosine of
the angle between fvec and any column of the jacobian is at most gtol in
absolute value. Therefore, gtol measures the orthogonality desired between
the function vector and the columns of the jacobian.

0.0

ftol ftol is a nonnegative input variable. Termination occurs when both the actual
and predicted relative reductions in the sum of squares are at most ftol.
Therefore, ftol measures the relative error desired in the sum of squares.

0.1

maxfev maxfev is a positive integer input variable. Termination occurs when the
number of evaluations (simulations) is at least maxfev by the end of an itera-
tion.

800

6.2.4 Running optimizations on curves
The optimizer supports optimizing on curve targets. This works by setting the type of a
parameter to being a curve as in this code snippet:

 <target-list>

 <target name="cc" type="curve" reference="log_ref.dat" simulated="out.dat" />

 </target-list>

Above target definition defines a target named CC to be of type curve. The target values are
specified using the “reference” attribute (log_ref.dat in this case). The simulator created
(extracted) curve is defined using the “simulated” attribute (out.dat in this case). The
optimizer will compute an error vector of the two given vectors using a component-wise
relative error. Note, that the dimension of the two vectors must be equal. You need to use a
script in your simulation deck, which takes care of interpolating missing values if needed.

Table 6-1 Optimizer Settings
216 DeckBuild User’s Manual

Using the Optimizer Optimizer
6.2.5 Optimizer return values
When an optimization finishes, the optimizer returns with a certain status. The status is
indicated via the RETURN value written into the results.opt file. The following table lists all
possible return values and their meaning:

Value Description

0 Improper input parameters.

1 Both actual and predicted relative reductions in the sum of squares are at most ftol.

2 Relative error between two consecutive iterates is at most xtol.

3 Conditions for info = 1 and info = 2 both hold.

4 The cosine of the angle between the error vector and any column of the jacobian is at
most gtol in absolute value.

5 Number of calls to fcn has reached or exceeded maxfev.

6 ftol is too small. No further reduction in the sum of squares is possible.

7 xtol is too small. No further improvement in the approximate solution x is possible.

8 gtol is too small. fvec is orthogonal to the columns of the jacobian to machine precision.

Table 6-2 Optimizer Return Values
217 DeckBuild User’s Manual

Appendix A
Models and Algorithms

Introduction
A.1 Introduction
Models and Algorithms used by one dimensional (1D) electrical solvers in DeckBuild and
TonyPlot.

Note: This appendix is intended to serve as a quick reference only. A detailed description of the semiconductor
device physical models is provided in the Atlas manual.

1D electrical solvers, available by using the extract command in DeckBuild or in TonyPlot,
are based on the iterative solution of the Poisson equation:

div q p n– ND
+

NA
–

–+
 F–= A-1

where is the potential, is the dielectrical permittivity, n and p are the electron and hole
concentrations, and pF is the fixed charge.

QUICKBIP uses the continuity equations to calculate n and p:

1
q
---divJn Un 0=–

1
q
---divJp Up 0=–

A-2

A-3

where:

Jn qnEn n qDnn+=

Jp qpEp p qDpp+=

Dn
kT
q

-------n Dp
kT
q

-------p=,=

A-4

A-5

A-6

A.1.1 Physical Models
All electrical solvers take into account the following models and effects:

• Temperature dependence, such as kT/q or Eg
• Concentration-dependent mobility (with built-in temperature dependence)
• Field-dependent mobility (perpendicular field with built-in temperature dependence)
• Material work function (for MOS structures)
• Fixed interface charge
219 DeckBuild User’s Manual

Concentration Dependent Mobility
A.2 Concentration Dependent Mobility
The concentration dependent mobilities for n and p respectively are:

n
D nmin

n

1 Ntotal Nnref+
---+=

p
D pmin

p

 Ntotal Npref+
---+=

A-7

A-8

where:

nmin 88
Y

300

 0.57–
=

nmin 54.3
Y

300

 0.57–
=

n 1252
Y

300

 2.33–
=

p 407
Y

300

 2.33–
=

Nnref 1.432 10
17 Y

300

 2.456

=

Npref 2.67 10
17 Y

300

 2.456

=

A-9

A-10

A-11

A-12

A-13

A-14
220 DeckBuild User’s Manual

Field Dependent Mobility Model
A.3 Field Dependent Mobility Model
The field dependent mobilities for n and p respectively are:

n

n
D

1 1.54 10
5–

E +

--=

p

p
D

1 5.35 10
5–

E +

--=

A-15

A-16
221 DeckBuild User’s Manual

Sheet Resistance Calculation
A.4 Sheet Resistance Calculation
After solving the Poisson equation, the sheet resistance for each semiconductor layer is
estimated using:

Rsh
1

qn n qp p+ xd
xleft

xright

--= A-17

xleft and xright are determined by the p-n junction locations and the semiconductor material
boundaries.
222 DeckBuild User’s Manual

Threshold Voltage Calculation
A.5 Threshold Voltage Calculation
Threshold voltage calculation is based on the calculated sheet resistance. In MOS mode (1D
vt extraction), the solver will calculate threshold voltage automatically. First, the conductance
of the channel region will be calculated for each gate voltage applied. If an NMOSFET
structure is assumed, then:

g Vg qn n xd
O

xinv

= A-18

O corresponds to the oxide-silicon interface and xinv is the boundary of the inversion layer.
Threshold voltage will be determined using the g(Vg) curve as an intersection with the Vg
axis of the straight line drawn through two points on the g(Vg) curve, corresponding to the
maximum slope region shown below.

Figure A-1 Threshold Voltage Calculation
223 DeckBuild User’s Manual

Threshold Voltage Calculation
A.5.1 Breakdown Voltage Calculation
Breakdown voltage calculation is based on estimation of ionization integrals for electrons and
holes. Breakdown is determined by the condition that one of the integrals is greater than 1.
The ionization rates are calculated using the following equations (See the Selberherr model in
the Atlas manual):

n AN
BN
E

 BETAN–exp=

p AP
BP
E

 BETAP

–exp=

A-19

A-20

where:

AN = AN1 if E < EGRANAN = AN2 if E > EGRAN

AP = AP1 if E < EGRANAP = AP2 if E > EGRAN

BN = BN1 if E < EGRANBN = BN2 if E > EGRAN

BP = BP1 if E < EGRANBP = BP2 if E > EGRAN

The values of the parameters ANI, AN2, AP1, AP2, BN1, BN2, BP1, BP2, BETAN, BETAP, EGRAN
are user-definable (through the extract command or pop-up menu). Their default values are:

AN1=7.03e5 cm-1

AN2=7.03e5 cm-1

BN1=1.231e6 V/cm

BN2=1.231e6 V/cm

AP1=6.71e5 cm-1

AP2=1.582e6 cm-1

BP1=1.693e6 V/cm

BP2=2.036e6 V/cm

BETAN=1.0 (unitless)

BETAP=1.0 (unitless)

EGRAN=4e5 V/cm
224 DeckBuild User’s Manual

Threshold Voltage Calculation
225 DeckBuild User’s Manual

Appendix B
DBInternal

DBInternal
B.1 DBInternal
DBInternal is a simple but powerful DeckBuild tool that allows you to create a Design Of
Experiments (DOE) from a pair of input files. Amongst other things, you can create corner
models for process parameters or device characteristics or both.

Any parameters that are to be used as variables must be specified as set statements in a
template file. Any results of interest should be calculated using extract statements.

The DOE is specified with simple sweep statements in a separate design file. The sweep
statement defines which variables are required in the DOE, and the range of values these
variables are to take.

The parameter values and the results of each simulation can be stored in a file that can be
viewed in TonyPlot or used as a data base for input to a statistical analysis tool such as Spayn.

B.1.1 Example
Suppose you have an Atlas deck (resistor_template.in) for a simple resistor (the doping
is controlled by a set statement). When run, this deck calculates the resistance from the
gradient of the VI curve.

go atlas

set doping=1e16

set trial_id=0

mesh width=2

x.mesh loc=0.0 spac=0.25

x.mesh loc=1.0 spac=0.25

y.mesh loc=0.0 spac=0.25

y.mesh loc=10.0 spac=0.25

region num=1 silicon

electrode num=1 top name=ground

electrode num=2 bottom name=anode

doping uniform n.type conc=$doping

models conmob

solve init

log outf=dop$’doping’.log

solve vanode=0.0 vstep=0.1 vfinal=2.0 name=anode

log off

extract init infile="dop$’doping’.log"

extract name="res" grad from curve(i."anode",v."anode") where
y.val=1

quit
227 DeckBuild User’s Manual

DBInternal
If you want to investigate how doping affects the resistance, you can create a DBInternal deck
(sweep.in) that defines an experiment (a series of trials). In this example, the doping is

changing between 1015 and 1019 cm-3 (at three points per decade, thirteen points in all).

go internal

load infile=resistor_template.in

sweep parameter=doping type=power range="1.0e15, 1.0e19, 13"

save type=sdb outfile=resistance.dat

quit

When you execute sweep.in, DBInternal runs the resistor_template.in deck several
times, each time changing the value on the set doping= line. DBInternal also collates the
data generated by the extract name="res" line and saves it in sdb format suitable for
viewing with TonyPlot. The resistance as a function of doping is shown in the following
figure.

Figure B-1 Doping Resistance
228 DeckBuild User’s Manual

The Template File
B.2 The Template File
The template file is a description of the class of simulations you want to perform. It should be
a deck that will execute correctly when run within DeckBuild.

Any variables that you need DBInternal to control must be defined on a set line. For
example, the file resistor_template.in has the line

set doping=1e16

so DBInternal can change the value of the variable doping. DBInternal ignores the actual
value on the set line in the template file. It is safe to set variables that DBInternal doesn’t
control. They will remain with the value defined in the template file.

The variable is normally used to set numbers in the template file. For example:

doping uniform n.type conc=$doping

where the doping concentration is being set by the variable doping. But it is also useful to be
able to use the value as a string in a filename. In this instance, you should enclose the
variable name in single quotes. For example:

log outf=dop$'doping'.log

extract init infile="dop$'doping'.log"

So if doping had been set to 1e16, the filename would be "dop1e16.log".

The template file may have extract statements. For example:

extract init infile="dop$'doping'.log"

extract name="res" grad from curve(i."anode",v."anode") where
y.val=1

DBInternal will recognize you are interested in the result "res" (for example) and will
collect these results from each simulation.

B.2.1 The trial_id Variable
The template file in Section B.1.1 Example contained the line

set trial_id=0

A variable called trial_id is used in a special way by DBInternal. If it exists in the template
file, then DBInternal will assign the ordinal of the current trial to it during each child
simulation.

In the previous example when the doping was 1e15 (the first trial), the trial_id variable
would have been given a value of 1. When the doping was 1e16 (the fourth trial), the
trial_id variable would have been given a value of 4. When the doping was 1e19 (the final
trial), the trial_id variable would have been given a value of 13.

Because the trial_id is different for each trial, it is a useful way to generate a unique
filename for each trial. In the example, we defined the log file with the command

log outf=dop$'doping'.log

an alternative would have been

log outf=trial$'trial_id'.log
229 DeckBuild User’s Manual

The Experiment File
B.3 The Experiment File
The experiment file has three main parts

B.3.1 Load command
load infile=resistor_template.in

This tells DBInternal which file to use as the basis for the simulations.

B.3.2 Experiment command
sweep parameter=doping type=power range="1.0e15, 1.0e19, 13"

This tells DBInternal how you want the variables to change.

B.3.3 Save Command
If the template file contains extract statements, you also want a save command

save type=sdb outfile=resistance.dat

which tells DBInternal where to save the extracted data. The saved file will contain the
values of all the independent variables (the variables defined in the experiment command)
and the values of all the dependent variables (the variables calculated with extract
statements).
230 DeckBuild User’s Manual

Technical Details
B.4 Technical Details
DBInternal reads in the template file and looks for any variables defined on an extract line
and makes a note of their names. The name must be the first parameter after the extract
command and have no spaces.

extract name="res" ...

DBInternal also knows what parameters have been set on the experiment line. For example,
DBInternal will control the parameters x and y.

 sweep parameter=x type=linear range=1,2,2 \

 parameter=y type=linear range=3,5,3

To run a trial, DBInternal creates a temporary <infile> with the name

<infile>=dbinternal_temporary_<name>_<pid>

<name> is the name of the machine and <pid> is the program ID of the DBInternal program.
(See also the LOG command). The temporary file is a copy of the template file with different
values on any set line that correspond to a parameter in the experiment command. For
instance, if the template file had the lines

set x=5

set y=10

set z=15

and you ran the earlier sweep command the first temporary file would have the lines

set x=1

set y=3

set z=15

DBInternal will change the values for parameters it recognizes and leaves the other set lines
alone.

DBInternal then runs a trial by producing a child (DeckBuild) with the command

deckbuild [-v a.b.c.X][-int][-ascii][-noplot] -run <infile> -out-
file
<infile>.out

Once DeckBuild is finished, DBInternal will parses the <infile>.out file to find the values
generated by the extract statements. The <infile> and the <infile>.out are then
deleted.

This procedure (creating an <infile>, starting DeckBuild, examining the <infile>.out) is
repeated for the remaining sets of parameters in the experiment.
231 DeckBuild User’s Manual

DBInternal Commands
B.5 DBInternal Commands
DBInternal commands are generally of the form

<command> <param1>=<value1> <param2>=<value2> ...

The commands and the parameters may be abbreviated but they must be long enough to be
recognized. For instance, the save command may be shortened to sa, but not to s because
that would not distinguish between save and sweep.

If the value contains whitespace, it must be enclosed in quotes. For instance

 range="1.0e15, 1.0e19, 13"

But if the value is a single block of text, there is no need for the quotes. This range can be
entered as

 range=1.0e15,1.0e19,13

DBInternal regonizes the following commands.

B.5.1 convert
Syntax

 convert <number> <string> into <string>

Description
The convert command converts a number from one set of units into another. This command
tries to parse anything between convert and into into a value with a unit. And, it parses
anything after into into the units to convert the value into.

Example
convert 1 eV into J

gives

1 eV == 1.60218e-19 J

B.5.2 doe
Syntax

 doe type=<doe_type> \

 parameter=<param1> range="center, delta" \

 parameter=<param2> range="center, delta"

Description
The trials of a DOE experiment correspond to various points on or near a hypercube around
some origin in parameter space. The results can be used to create a model for the dependent
variables over the hypercube.

For example, suppose you had a process that generated FETs with gate lengths in the range
95-105 µm and recess depths in the range 45-55 µm. The parameter space is a square with
corners (95, 45), (95, 55), (105, 45) and (105, 55). Suppose you want to know how
breakdown voltage is affected by these parameters. If you knew there were a simple linear
relationship, you could simulate at the midpoint and the two points where the axis intersected
with the hypercube ((100, 50), (105, 50), (100, 55)) and fit a simple linear model through the
232 DeckBuild User’s Manual

DBInternal Commands
results. If you thought there were a more complex relationship, you would simulate at more
points over the hypercube. For example, the midpoint and all the corners.

A parameter should be the name of a variable in the template deck. The names (e.g.,
<param1>) cannot be abbreviated. They must be exactly as they appear in the template deck.

The range is two numbers. The first is center of the hypercube (i.e., the value of the parameter
at the middle of its range). The second is the distance from the center to the edge of the
hypercube (or half the range of the parameter).

The points are almost always high symmetry points on the hypercube, such as the corners of
the hypercube, the points where an axis intersects the hypercube, and a midpoint along an
edge of the hypercube. The best way to see the points generated by a DOE type is to use the
no_exec command and setting the range of the parameters to "0, 1". Therefore, 0 indicates a
center point, 1 indicates one side of the hypercube and –1 the other side.

Example
 no_exec outfile=tlff.dat

 doe type=two_level_full_factorial \

 parameter=p1 range=0,1 \

 parameter=p2 range=0,1 \

 parameter=p3 range=0,1

DOE Types
The DOE type must one of the following:

• gradient_analysis

• two_level_full_factorial

• two_level_half_factorial

• three_level_full_factorial

• face_centered_cubic

• circumscribed_circle

• box_behnken

gradient_analysis

This type does a simulation at the center point and at the points one positive step along each
axis. An experiment with N parameters has N+1 trials.

two_level_full_factorial

This type does a simulation corresponding to every node of the N-dimensional hypercube. An

experiment with N parameters has 2N trials.

two_level_half_factorial

This type does half the simulations of the two_level_full_factorial and no two nodes

are on the same edge. An experiment with N parameters has 2N-1 trials.

three_level_full_factorial

This type does a simulation corresponding to every node and every half point of the N-

dimensional hypercube. An experiment with N parameters has 3N trials.
233 DeckBuild User’s Manual

DBInternal Commands
face_centered_cubic

This type does a simulation corresponding to every node. Every point where an axis intersects

the hypercube and the center point. An experiment with N parameters has 2N + 2N + 1 trials.

circumscribed_circle

This type is similar to the face_centered_cubic type but the axis points now lie on the
surface of the hypersphere that passes through the hypercube node points (i.e., all points are

equidistant from the origin). An experiment with N parameters has 2N + 2N + 1 trials.

box_behnken

The design matrix for this simulation is based on a balanced or partially balanced block
design. There is no easy relationship between the number of parameters and the number of
trials in the experiment. For example, an experiment with seven parameters requires 57 trials
and an experiment with nine parameters requires 97 trials. But an experiment with eight
parameters is particularly inefficient and requires 225 trials.

B.5.3 endsave
Syntax

endsave

Description
This command tells DBInternal to stop saving data to the current file. See the save
command for more information.

Example
save type=sdb outfile=example.out

sweep parameter=doping type=power range=1e15,1e19,13

endsave

This stops DBInternal from trying to save any more data to example.out.

B.5.4 get_data
Syntax

get_data infile=<filename> outfile=<filename> \

name="<string>" [ssv,tsv,csv] [[!]header] [[!]sort]

Description
infile is the name of the .log or .str file to read in.

outfile is the name of the file to save the extracted data to.

name is the name of the data to be extracted from the input file; the ; character is used to
separate different columns of data.

The name of the data is the name it is displayed under in TonyPlot. When extracting data
from .str files, X, Y, and Z should be used to indicate the coordinate is required.

The data can be output in space-separated value (ssv), tab-separated value (tsv), or comma-
separated value (csv) format. Specify ssv, tsv, or csv on the command to get the required
format. ssv is the default if nothing is supplied.
234 DeckBuild User’s Manual

DBInternal Commands
The first row of the output file is usually the header information for each column. If you don't
want this then put !header on the command.

The data is usually output in the order it is extracted from the input file. If you need to sort
the data, then use sort on the command. This sorts the data in numerical order in the first
column. If several rows have the same value in the first column, they are sorted in numerical
order in the second column and so on.

Example
get_data infile=dciv.log outfile=gd1.dat \

name="anode voltage; anode current"

This gets the anode voltage and anode current from a DC-IV curve.

get_data infile=va1.str outfile=gd5.dat \

name="X;Y;Potential;Singlet Exciton Density;Electron QFL"

This gets the potential, singlet exciton density, and electron quasi-Fermi level, as a function of
position, from a structure file.

B.5.5 log
Syntax

log outfile=<filename_root>

Description
This command tells DBInternal to keep the output generated by the child DeckBuild for each
trial. When generating the temporary input file for a trial, DBInternal uses the
<filename_root> and appends the ID of the trial (for example, the first trial has an ID of
zero and the second trial has an ID of one). The usual command is issued to run the trial

deckbuild –int –noplot –run <infile> -outfile <infile>.out

At the end of the trial, only the <infile> is deleted and the <infile>.out will remain.

Example
load infile=example.in

log outfile=keep

sweep parameter=doping type=linear range=1,4,4

This will generate the files keep1.out, keep2.out, keep3.out, and keep4.out.
235 DeckBuild User’s Manual

DBInternal Commands
B.5.6 monte_carlo
Syntax

monte_carlo number=<num_trials> \

 parameter=<param1> type=<mc_type> coeffs="list, of,
 numbers" \

 parameter=<param2> type=<mc_type> coeffs="list, of,
 numbers"

Description
The monte_carlo command generates an experiment from a specified number of trials. All
parameter values in each trial are random. Each parameter is drawn from its own distribution.

The number is the number of trials you want in the experiment.

A parameter should be the name of a variable in the template deck. The names (e.g.,
<param1>) cannot be abbreviated. They must be exactly as they appear in the template deck.

The type must be one of the following:

• uniform

• normal

• log_normal

• gamma

• weibull

These are the types of random distributions a parameter will be extracted from. The coeffs are
a list of numbers that describe the random distribution, the number and meaning of the coeffs
depending upon which distribution was chosen.

Random Distributions
The probability density function and the required coefficients for the following random
distributions.

uniform

The uniform type takes random numbers evenly spaced between two limits. The probability
density function is

p x 0= x xlo or x xhi

p x 1
xhi xlo–
--------------------= xlo x xhi

B-1

This distribution needs two coefficients, the minimum and maximum allowed values

coeffs xlo xhi= B-2
236 DeckBuild User’s Manual

DBInternal Commands
normal

The normal type is a Gaussian probability density. The probability density function is

 p x 1

2
------------------ x – 2

22
-------------------–

exp= B-3

This distribution needs two coefficients, the mean and the standard deviation.

coeffs = B-4

log_normal

The log_normal type has a probability density function of (the distribution of log(x) would
be normal)

 p x 1

2 X
----------------------- X log –

22
-------------------------------–

 exp= with X x – = B-5

This distribution needs four coefficients (the last coefficient should be +1 or –1 and gives the
sign in front of X).

coeffs a ,= B-6

gamma

The gamma type is the time to wait for several events that occur with a Poisson distribution.
The probability density function is

p x X
a 1– X exp

 a
------------------------–

 = with X
x –

 = . B-7

This distribution needs four coefficients (the first coefficient should be a +ve integer and the
last should be +1 or -1).

 coeffs a ,= B-8

Weibull

The probability density function of the weibull type is

p x a

--- X

a 1–
X

a
– exp= with X

x –

 = B-9

This distribution needs four coefficients (the last coefficient should be +1 or –1).

coeffs a ,= B-10
237 DeckBuild User’s Manual

DBInternal Commands
B.5.7 no_exec
Syntax

no_exec type=<ssf|spayn> outfile=<filename>

Description
This is a debugging command. If it is issued before an experiment, then DBInternal will
generate a file <filename>. This file contains a list of the independent variables, which
would have been passed to the simulations. No actual trials will be performed. An ssf
format file is a simple list of numbers suitable for viewing in a text editor. It can also be
plotted in TonyPlot. A spayn format file can be analyzed with Spayn.

Example
If you run an experiment file

 no_exec type=ssf outfile=example.out

 sweep parameter=length type=linear range=1,2,2 \

 parameter=width type=linear range=1,3,3

the data in example.out would be

...

0 1 1

1 2 1

2 1 2

3 2 2

4 1 3

5 2 3

The first column is the ordinal of the trial. The second column is the length value of that trial
(e.g., 1 or 2). The third column is the width value of that trial (e.g., 1, 2 or 3).

B.5.8 option
Syntax

option [[!]int][[!]ascii] [[!]plot][version=<string>]
[[!]ignore.return]

Description
The option command controls some of the command line options passed to DeckBuild when
running a trial.

The value of a parameter (int, ascii, or plot) is either true or false. If the parameter is
present, it is set to true. If it is negated (with the !), it is set to false. If it is absent, it is set to a
default value. The default for int is true. The default for both ascii and plot is false.

The version parameter defines which version of DeckBuild to use to run the child process.

A trial is run with the command

deckbuild [-v a.b.c.X][-int][-ascii][-noplot] -run <infile>
-outfile <infile>.out
238 DeckBuild User’s Manual

DBInternal Commands
The -int option tells DeckBuild to start DBinternal as the default simulator. The -ascii
option tells DeckBuild not to start its GUI. The -noplot option tells DeckBuild to ignore any
TonyPlot commands in <infile>.

The -int option will be passed if int is true and will be absent if int is false.

The -ascii option will be passed if ascii is true and will be absent if ascii is false.

The -noplot option will be passed if plot is false and will be absent if plot is true.

The ignore.return flag indicates that DBInternal should ignore the return value of a child
simulation. Even if the child simulation indicates an error DBInternal will try to parse the
output file for any data.

Example
option ascii !plot

This will run the trials without the DeckBuild GUI and ignoring any TonyPlot commands in
the trial deck.

option !ascii plot version=3.22.4.C

This will run the trials, using version 3.22.4.C of DeckBuild, inside a child DeckBuild GUI
and will execute any TonyPlot commands in the trial deck.

B.5.9 save
Syntax

save type=<sdb|spayn> outfile=<filename> [all.bad.skip]
[any.bad.skip]

Description
The save command saves the data generated by the experiment in the file <filename>. You
can output the data in sdb format (to be viewed in TonyPlot) or in spayn format (to be
analyzed by Spayn).

The following data is stored for each trial:

• The ID of the trial.
• The values of the parameters defined on the experiment line.
• The values of the parameters calculated with extract commands.

You can place the save command before or after the experiment line. If it comes before the
experiment line, the file will be rewritten at the end of each trial. Therefore if something
unforeseen happens during an experiment, you will have the data from the trials that were
completed. If it comes after the experiment line, all the data from the experiment will be
written at once.

Only one file at a time can be active. If you define two save statements before an experiment
line, only the second will actually get the following data.

save type=sdb outfile=save.sdb

save type=spayn outfile=save.spayn

sweep parameter=doping type=power range=1e15,1e19,13
239 DeckBuild User’s Manual

DBInternal Commands
The file save.sdb will have no data (the file save.spayn will be fine). Once a file is active,
it will remain active until a subsequent save command makes a different file active or until
an endsave command is given. A file, however, will only have data from one experiment.

Warning: If you have more than one experiment line in a deck, be very careful with the save command or you
will lose data. For example, the following is the wrong way.

sweep parameter=doping type=power range=1e15,1e19,13

save type=sdb outfile=one.sdb

sweep parameter=doping type=linear range=1e16,1e17,11

save type=sdb outfile=two.sdb

This will perform the first experiment, then save that experiment to one.sdb, then perform
the second experiment. But because one.sdb is still the active file, DBInternal will write the
data from the second experiment to one.sdb, destroying the data that was already there. At
the end of this run, both one.sdb and two.sdb will contain the same data. In this case, you
must use the endsave command to tell DBInternal to deactivate the active file.

It is possible that an EXTRACT statement will fail to calculate a value. For example, an
EXTRACT statement such as

EXTRACT name=vi01 y.val from curve(i."anode", v."anode")

where x.val=0.1 will fail if an anode current of 0.1 A doesn't exist in the IV curve. A more
extreme reason for failure would be if the simulation crashes before reaching the EXTRACT
line.

The all.bad.skip and any.bad.skip parameters control when to save trials where
EXTRACT has failed to calculate a value. If all.bad.skip is set, then any trials where all
EXTRACT lines fail to calculate a value will not be saved to the output file. If any.bad.skip
is set, then any trials where one-or-more EXTRACT lines fail to calculate a value will not be
saved. If there are no EXTRACT lines in the template file and you are just saving the set
values, then these parameters will be ignored and all lines will be saved.

Example
sweep parameter=doping type=power range=1e15,1e19,13

save type=sdb outfile=one.sdb

endsave

sweep parameter=doping type=linear range=1e16,1e17,11

save type=sdb outfile=two.sdb
240 DeckBuild User’s Manual

DBInternal Commands
B.5.10 sweep
Syntax

sweep parameter=<param1> type=<linear|power> range="start, stop,
num" \

 parameter=<param2> type=<list> data="list, of, ..., points" \

 [linked=<param3> type=<sweep_type> range="range"]

Description
The sweep command generates an experiment from all combinations of individual parameter
values. The first parameter changes with the highest frequency. The final parameter changes
with the lowest frequency.

A parameter should be the name of a variable in the template deck. The names (e.g.,
<param1>) cannot be abbreviated. They must be exactly as they appear in the template deck.

The type must be either linear, power, or list. If the type is linear or power, then the
range should be three numbers. The first number is the initial value of the parameter, the
second number is the final value of the parameter, and the third number is the number of
points. If the type is "list", then the data is just the list of values that should be assigned to
the parameter.

Note: data is just a synonym for range so either name will work.

Any parameter defined with the parameter command varies independently with all other
parameters defined with the parameter command. For example

sweep parameter=x type=linear range="1,3,3" \

 parameter=y type=linear range="10,30,3"

The x parameter is given the values 1, 2, 3 and the y parameter is given the values 10, 20,
30. This command would generate an experiment with 9 trials where each x value is paired
with all y values: (1,10), (2,10), (3,10), (1,20), (2,20), (3,20), (1,30), (2,30), (3,30).

But any parameter defined with the linked command is tied to the previous parameter. For
example

sweep parameter=x type=linear range="1,3,3" \

 linked=y type=linear range="10,30,3"

(where y is now linked to x) would generate an experiment with 3 trials where "x" and "y"
vary together: (1,10), (2,20), (3,30).

The order of these commands is important with any particular linked variable tied to the
immediately previous variable. For example

sweep parameter=A type=linear range="1,3,3" \

 linked=B type=linear range="1,3,3" \

 parameter=C type=linear range="1,4,4" \

 parameter=D type=linear range="1,5,5" \

 linked=E type=linear range="1,5,5" \

 linked=F type=linear range="1,5,5"
241 DeckBuild User’s Manual

DBInternal Commands
Here, B is linked to A; E and F are linked to D.

The number of steps is defined by the parameter variable. For example

sweep parameter=A type=linear range="1,3,3" \

 linked=B type=linear range="1,2,2" \

 linked=C type=linear range="1,4,4"

A is defined to have the values (1,2,3). B is defined to have the values (1,2). C is defined to
have the values (1,2,3,4). However, the experiment is controlled by the parameter A and
will contain three trials: (1,1,1), (2,2,2), (3,2,3). B reaches its final value of 2 and then
stays there and the final value of C is never reached.

Example 1
In a linear sweep, the parameter values are evenly spaced.

sweep parameter=x type=linear range="1,4,7"

This generates for x the values:

• 1

• 1.5

• 2

• 2.5
• 3

• 3.5

• 4

Example 2
In a power sweep, the log of the parameter values are evenly spaced.

sweep parameter=y type=power range="1e10, 1e15, 6"

This generates for y the values:

• 1e10

• 1e11
• 1e12

• 1e13

• 1e14
• 1e15

Example 3
The data is a list of values to assign to the parameter.

sweep parameter=z type=list data="1,2.5,3,3.1,4"

This assigns each of the values (one at a time) to z.
242 DeckBuild User’s Manual

DBInternal Commands
Example 4
The number of trials in the experiment is the product of the number of points for each
independent parameter.

sweep parameter=x type=linear range="1,4,7" \

 parameter=y type=power range="1e10, 1e15, 6"

This generates an experiment with 42 trials. All the values of x in combination with all the
values of y. Adding another variable:

sweep parameter=x type=linear range="1,4,7" \

 parameter=y type=power range="1e10, 1e15, 6" \

 parameter=z type=list data="0, 2, 3"

would increase the number of trials to 126. All 42 trials from the previous experiment with
z=0, and all 42 trials with z=2, and all 42 trials with z=3.

Example 5
Linked variable do not increase the number of trials in an experiment.

sweep parameter=temp type=linear range="200,400,5" \

 linked=conc type=power range="1e15,1e19,5" \

 linked=height type=list data="1,1.1,1.3,1.6,2"

This generates an experiment with 5 trials with the values for temp, conc, and height.

200, 1e15, 1.0

250, 1e16, 1.1

300, 1e17, 1.3

350, 1e18, 1.6

400, 1e19, 2.0
243 DeckBuild User’s Manual

DBInternal Commands
B.5.11 translate.ise
Syntax

translate.ise devedit|atlas|tonyplot \

[bnd.file=<filename>] [cmd.file=<filename>] \

[plt.file=<filename>] [grd.file=<filename>] \

[dat.file=<filename>] \

[out.file=<filename>] [pure.ac] [[!]execute]

Description
This command translates ISE decks and data files into Silvaco decks and data files. There
are three versions of this command:

translate.ise devedit bnd.file=<filename> cmd.file<filename> \

[out.file=<filename>] [[!]execute]

translates between MDrawand DevEdit decks.

translate.ise atlas cmd.file=<filename> \

[out.file=<filename>] [pure.ac] [[!]execute]

translates between Dessisand Atlas decks.

translate.ise tonyplot [plt.file=<filename>] \

[grd.file=<filename>] [dat.file=<filename>] \

out.file=<filename> [[!]execute]

translates ISE data files so that they can be viewed in TonyPlot.

The out.file parameter is common to all versions of the command. This gives the name of
the translated deck or data file that is created by the command. This is a required parameter
for the translate.ise tonyplot command but is optional for the other two. If this
parameter is not present, then the translated deck is written to the file pp<n>_ded.cmd or
pp<n>_atl.cmd (where <n> is an integer).

The execute parameter is also common to all versions of the command. When the translation
has been done, the appropriate Silvaco tool is run (DevEdit or Atlas are run in a child
DeckBuild, plot files are shown in TonyPlot). If you just want the translation without running
the Silvaco tool, then add !execute to the command.

The pure.ac parameter for the translate.ise atlas command tells the translator that the
external circuit is just for a small-signal AC simulation and can be ignored.

The translate.ise tonyplot command can operate on a plt.file (which are 1D data
like Silvaco's DC-IV .log files) or on a grd.file/dat.file pair (which are 2D data like
Silvaco's device .str files).
244 DeckBuild User’s Manual

DBIT
B.6 DBIT
DBIT is a GUI tool that provides some of the functionality of DBInternal. DBIT runs outside
of DeckBuild. But DeckBuild is still required to run the child trials. To start DBIT, type
"dbit" at the command line. The DBIT Main Window will then appear.

Figure B-2 DBIT Main Window
245 DeckBuild User’s Manual

DBIT
B.6.1 The General Tab
Click on the Browse button or select FileOpen to open a template file. This file will be
analyzed and the variables that appear on the "set" lines of the template file will be listed in
the left hand box (see Figure B-3).

Figure B-3 General Tab

Note: The input file must be a template file rather than a dbinternal experiment file.

To define a range of values for a variable, highlight the appropriate variable in the left hand
box and click the New button or double click the name of the variable. The Range Dialog
Window will appear (see Figure B-4).
246 DeckBuild User’s Manual

DBIT
Figure B-4 Range Dialog Window

The range can be defined as an arithmetic progression (Equation B-11) or a geometric
progression (Equation B-12).

a1 a1 d a1 2 d a1 3 d an+++ a1 n 1– d+=

a1 a1 r a1 r
2 a1 r

3 an a1 r
n 1– =

B-11

B-12

There are four parameters associated with a range:

• the initial value (a1)

• the number of points (n)
• the step (d for arithmetic progression and r for geometric progression)
• the final value (an).

A range can, in principal, be uniquely defined by giving any three of these parameters. But
DBIT expects you always to define the initial value, so there are three ways to define a range:

• the initial value, the final value, and the step
• the initial value, the final value, and the number of points
• the initial value, the step, and the number of points

If you require a single value just enter it into Start.

If you use Start, Stop, Step to define the range, the final value of the range may not be the
value explicitly written in Stop. If the progression defined by Start and Step does not
exactly reach the Stop value, then the range will stop before the Stop value. For example,
Start=1, Stop=10, Step=2 will result in the range "1,3,5,7,9" and not
"1,3,5,7,9,10".

Once you add a range, you can edit the description of the range by highlighting the range (in
the right hand box) and clicking the Edit button (or by double clicking on the appropriate
range). You can delete a range by highlighting it and clicking the Delete button.
247 DeckBuild User’s Manual

DBIT
B.6.2 The Matrix Tab
Once you finished defining the ranges for the variables, click on the Matrix tab. This shows a
spreadsheet-like area that lists all the trials to be done (see Figure B-5).

Figure B-5 Matrix Tab

Click the Run button to run the trials. The trials are run in the order they are defined in the
spreadsheet. When one trial is finished, a new trial starts with the next available set of
numbers.

If you click the Pause button, no new trials will be started (until you click on the Run button
again) but any currently running trials will be allowed to finish.

Each row in the spreadsheet corresponds to a trial. You can edit various cells in the
spreadsheet to change or add trials to the experiment. Clicking the right mouse button while
the cursor is over the spreadsheet brings up a menu with the available commands.

The first column is Id. This is an integer that is assigned by DBIT to a trial. Each row will
have a unique integer. If you add a trial to the list, it will automatically assign the next
available Id. You cannot change the value in this column. The Id assigned to a trial is
available within the template file by using $trial_id. For example, you can output data in
the template file data with the command

save outfile=data_$’trial_id’.dat

This will save the data to a different file for each trial.
248 DeckBuild User’s Manual

DBIT
The second column is a single character that gives the current status of the trial. A ‘W’ means
the trial is waiting to run. An ‘R’ means the trial is currently running (or has finished running
but the output files have not yet been processed). An ‘F’ means the trial finished
successfully. An ‘X’ means the trial failed to start. An ‘H’ means you have hidden the trial.

A hidden trial is still displayed in the spreadsheet but DBIT will not run it. To hide a trial,
select the rows that correspond to the trials you want to hide, click the right mouse button, and
select Hide Trial. You can reactivate a hidden trial by selecting the Activate Trial option.

The next few columns in the spreadsheet correspond to the set variables, one column for each
variable (the name of the variable is at the top of the column). The values in the columns are
the values that will be assigned to the variables when the corresponding trial is running. You
can edit values in these columns by selecting an appropriate cell and typing the new value.
You can Cut, Copy and Paste values to and from these columns. If you add numbers to a
blank row, a new trial will be generated. The next available trial ID will be automatically
added to the first column.

A blank column comes next to mark the end of the set variables.

Any remaining columns correspond to the extract variables (the name of the variable is at the
top of the column). These columns are initially empty. When a trial successfully runs, the
results of the Extract commands will be added to the appropriate cells.

To save the data in the spreadsheet, either click the Save button or select FileSave or
FileSave As. You can save the data in .dat format to view it in TonyPlot or as
space-delimited text that can be imported into a spreadsheet program. Selecting FileSave
As allows you to define the filename and the file format. Pressing the Save button or
selecting FileSave saves the data to the most recent file defined by FileSave As. If you
haven’t selected FileSave As, then pressing the Save button or selecting FileSave opens
the FileSave As Dialog.

The Keep Deckbuild .out files check box behaves in the same way as the "log" command
for DBInternal. If you check this box, the .out files are not deleted when a trial is finished.

The Maximum number of concurrent trials defines the maximum number of child
deckbuilds that DBIT can start. If you are running on a computer with more than one
processor, or if you have a grid computing engine, you can set this higher than 1.

DBIT is designed to use Flowtracer/NC™ by Runtime Design Automation or the N1 Grid
Engine™ by Sun. If DBIT detects a grid computing engine, you can run the trials on the
network rather than the local machine.
249 DeckBuild User’s Manual

DBIT
B.6.3 The Command Menu
The Command menu gives you access to the commands that are used to run the child
simulations. In these dialog boxes, the text in angular brackets (such as <in_file> and
<silock_command>) are text generated by DBIT, which will be different for each trial.
Leave these variables as they are.

“deckbuild...”
The default command to start the child simulation is

deckbuild "run <in_file> -int "outfile <out_file>

If you want to add any command line options to this command (see Section B.4 Technical
Details), then add them in this dialog window.

“silock (local host)...” and “silock (grid engine)...”.
silock is a small program that monitors the progress of a child trial (started with the
deckbuild command). When the trial is finished, silock removes a lock file that allows
DBIT to determine the trial has finished. The two versions of the silock command are for
when the trials are run directly by DBIT (the local host version) or when the trials are
submitted to a grid engine. You should not change these commands. The default command
for "silock (local host)..." is

silock "f "l <lock_file> -x <deckbuild_command>

and the default command for "silock (grid engine)..." is

silock "l <lock_file> -x <deckbuild_command>

“Flowtracer/NC...” and “Sun N1...”
These are the default commands used to submit a job to the appropriate grid engines.

The default command for Flowtracer/NC is

nc run -E 'SNAPSHOT+D(DISPLAY=[hostname]:0)' <silock_command>

The default command for N1 Grid Engine is

qsub -cwd -N <trial_name> -b y "<silock_command>"

If you have either of these grid engines, please refer to their documentation for more details
on these commands.
250 DeckBuild User’s Manual

DBIT
251 DeckBuild User’s Manual

A
Athena 9
Auto-Interface 9
B
Bipolar Extract

QUICKBIP 205
BJT 196
Breakdown Voltage Calculation 224
C
Calculation

Breakdown Voltage 224
Sheet Resistance 222
Threshold Voltage 223

Commands Menu 81
Concentration Dependent Mobility 220
Curves

Abs Operator with Axis 198
Ave Operator 197
Axis Manipulation Combined with Max and Abs Operators 199
Axis Manipulation Combined with Y Value Intercept 199
Axis Manipulation with Constants 198
Creation 197
Data Format File Extract with X Limits 199
Derivative 199
Gradient at Axis Intercept 198
Impurity Transform against Depth 199
Max Operator 197
Max Operator with Axis Intercept 198
Min Operator 197
Min Operator with Axis Intercept 198
Second Intercept Occurrence 198
X Axis Interception of Line Created by Maxslope Operator 199
X Value Intercept for Specified Y 197
Y Axis Interception of Line Created by Minslope Operator 199
Y Value Intercept for Specified X 198

Customized Extract Statements
Defaults 182–183
Syntax 138–181

D
DBInternal 232

Commands 232–243
DBIT 245–250
Example 227–228
Experiment File 230
Technical Details 231
Template File 229

DBInternal Commands
convert 232
doe 232–234
SILVACO, Inc. 252

endsave 234
get_data 234–235
log 235
monte_carlo 236–237
no_exec 238
option 238–239
save 239–240
sweep 241–243
translate.ise 241

DBIT 245–250
Deck Parsing 81
Deck Writing 81–87
Design of Experiments (DOE)

box_behnken 234
circumscribed_circle 234
face_centered_cubic 234
gradient_analysis 233
three_level_full_factorial 233
two_level_full_factorial 233
two_level_half_factorial 233

Dessis™ 244
DevEdit 9
Device Extraction 192–196

BJT 196
Curve 192
Curve Manipulation 194

Device Simulation 9
Diffusion Dialog 84
E
Examples 11
Execution Control 10
Extract 203

Customized Statements 138
Device Extraction 192
Features 203
MOS Device Tests 201
Process Extraction 131
QUICKBIP Bipolar Extract 205
Results 202
Using with ATLAS 208

Extract Features
Extract Name 203
Extraction and the Database (VWF) 204
Min and Max Cutoff Values 204
Multi-Line Extract Statements 204
Variable Substitution 203

Extraction 11
253 SILVACO, Inc.

F
Field Dependent Mobility Model 221
Flowtracer/NC™ 249, 250
Full Interactive Control 9
Function Calculator 11
G
General Curve Examples 197–199
Generic Decks 11
H
History 10
I
Input Decks 9
Inputting Commands 81–87
Interactive Plotting 9
ISE™ 244
M
Mask

Misalignment and CD Experimentation 119
MaskViews 11, 120
MDraw™ 244
MOS Device Tests 201
N
N1 Grid Engine™ 249, 250
O
Optimizer 9, 11
P
Physical Models 219
Process Extraction

Curves 136
Entering Statements 134
Examples 183–191

Process Extraction Examples
1D Material Region Boundary 186
1D Max/Min Concentration 184
2D Concentration Area 186
2D Concentration File 185
2D Material Region Boundary 186
2D Max/Min Concentration 185
2D Maximum Concentration File 186
ED Tree (Optolith) 190
Elapsed time 191
Electrical Concentration Curve 190
Junction Breakdown Curve 188
Junction Capacitance Curve 187
Junction Depth 183
Material Thickness 183
QUICKMOS 1D Vt 183
QUICKMOS CV Curve 187
Sheet Conductance 183
SILVACO, Inc. 254

Sheet Resistance 183
Sheet Resistance/Conductance Bias Curves 189
SIMS Curve 189
SRP Curve 189
Surface Concentration 183

Process Input Deck
Writing 84–85

Process Simulation 9
Process Simulators 83
Q
QUICKBIP

Bipolar Extract 205–207
R
Random Distributions

gamma 237
log_normal 237
normal 237
uniform 236
Weibull 237

S
Sheet Resistance Calculation 222
Simulators 9
SSuprem3 9
Statements

ASSIGN 105–108
AUTOELECTRODE 109
DEFINE 110–111
ELSE 115
EXTRACT 112
GO 113–114
IF 115
IF.END 115
L.END 116–117
L.MODIFY 116–117
LOOP 116–117
MASK 118–119
MASKVIEWS 120
SET 121–123
SOURCE 124–125
STMT 126
SYSTEM 127
TONYPLOT 128
UNDEFINE 110–111

Stop Points 9
T
Text Editor 9
Threshold Voltage Calculation 223
255 SILVACO, Inc.

trial_id 229
U
Utmost 9
SILVACO, Inc. 256

	DeckBuild User’s Manual
	Notice
	How to Read this Manual
	Chapter 1 Introduction
	1.1 What is DeckBuild
	1.1.1 Features

	Chapter 2 Tutorial
	2.1 Overview
	2.2 Starting DeckBuild
	2.3 Searching and Loading an Example
	2.4 Running a Simulation
	2.5 Plotting TonyPlot Files
	2.5.1 Plotting Files from the Deck or Runtime Output

	2.6 Quitting DeckBuild

	Chapter 3 Functions
	3.1 DeckBuild Modes
	3.2 Batch Mode Options
	3.2.1 Examples
	3.2.2 Preference Settings

	3.3 Remote Mode
	3.3.1 Introduction
	3.3.2 Using Remote mode
	3.3.3 Remote preferences
	3.3.4 Prerequisites

	3.4 DeckBuild Controls
	3.4.1 The View Menu

	3.5 Running Deck
	3.6 Stop Points
	3.7 History Feature
	3.8 PDF report and movie generation
	3.8.1 History Scripts
	3.8.2 Movie creation
	3.8.3 Browsing through history points
	3.8.4 PDF report creation

	3.9 Go to Line
	3.10 Tracking Variables
	3.11 Tracking Output Files
	3.12 Tracking Resource Usage
	3.13 Tools Menu
	3.14 Edit Menu
	3.15 Help Menu
	3.16 File Menu
	3.17 Examples
	3.18 Cross-referencing runtime output and the deck
	3.19 Folding runtime output
	3.20 Visualizing VictoryProcess line statements
	3.21 Context sensitive help system
	3.22 Commands
	3.22.1 Deck Writing Paradigm
	3.22.2 Commands Menu
	3.22.3 Parsing the Deck
	3.22.4 Process Simulators
	3.22.5 Writing a Process Input Deck

	3.23 Preferences
	3.24 Application
	3.25 Tools
	3.26 Editor Settings
	3.27 History and File Settings
	3.28 Runtime Settings
	3.29 Simulation Settings
	3.30 Registered Filetypes
	3.31 Remote Settings

	Chapter 4 Statements
	4.1 Overview
	4.1.1 DeckBuild Commands

	4.2 ASSIGN
	4.3 AUTOELECTRODE
	4.4 DEFINE and UNDEFINE
	4.5 EXTRACT
	4.6 GO
	4.7 IF, ELSE and IF.END
	4.8 LOOP, L.END and L.MODIFY
	4.9 MASK
	4.10 MASKVIEWS
	4.11 SET
	4.12 SOURCE
	4.13 STMT
	4.14 SYSTEM
	4.15 TONYPLOT

	Chapter 5 Extract
	5.1 Overview
	5.2 Process Extraction
	5.2.1 Entering a Process Extraction Statement
	5.2.2 Extracting a Curve

	5.3 Customized Extract Statements
	5.3.1 Extract Syntax
	5.3.2 DEFAULTS
	5.3.3 Examples of Process Extraction

	5.4 Device Extraction
	5.4.1 The Curve
	5.4.2 Curve Manipulation
	5.4.3 BJT Example

	5.5 General Curve Examples
	5.5.1 Curve Creation
	5.5.2 Min Operator with Curves
	5.5.3 Max Operator with Curves
	5.5.4 Ave Operator with Curves
	5.5.5 X Value Intercept for Specified Y
	5.5.6 Y Value Intercept for Specified X
	5.5.7 Abs Operator with Axis
	5.5.8 Min Operator with Axis Intercept
	5.5.9 Max Operator with Axis Intercept
	5.5.10 Second Intercept Occurrence
	5.5.11 Gradient at Axis Intercept
	5.5.12 Axis Manipulation with Constants
	5.5.13 X Axis Interception of Line Created by Maxslope Operator
	5.5.14 Y Axis Interception of Line Created by Minslope Operator
	5.5.15 Axis Manipulation Combined with Max and Abs Operators
	5.5.16 Axis Manipulation Combined with Y Value Intercept
	5.5.17 Derivative
	5.5.18 Data Format File Extract with X Limits
	5.5.19 Impurity Transform against Depth

	5.6 MOS Device Tests
	5.7 Extracted Results
	5.7.1 Units

	5.8 Extract Features
	5.8.1 Extract Name
	5.8.2 Variable Substitution
	5.8.3 Min and Max Cutoff Values
	5.8.4 Multi-Line Extract Statements
	5.8.5 Extraction and the Database (VWF)

	5.9 QUICKBIP Bipolar Extract
	5.10 Using Extract with Atlas

	Chapter 6 Optimizer
	6.1 Overview
	6.1.1 Features
	6.1.2 Terminology

	6.2 Using the Optimizer
	6.2.1 Parameter settings
	6.2.2 Target settings
	6.2.3 Settings of the Optimizer
	6.2.4 Running optimizations on curves
	6.2.5 Optimizer return values

	Appendix A Models and Algorithms
	A.1 Introduction
	A.1.1 Physical Models

	A.2 Concentration Dependent Mobility
	A.3 Field Dependent Mobility Model
	A.4 Sheet Resistance Calculation
	A.5 Threshold Voltage Calculation
	A.5.1 Breakdown Voltage Calculation

	Appendix B DBInternal
	B.1 DBInternal
	B.1.1 Example

	B.2 The Template File
	B.2.1 The trial_id Variable

	B.3 The Experiment File
	B.3.1 Load command
	B.3.2 Experiment command
	B.3.3 Save Command

	B.4 Technical Details
	B.5 DBInternal Commands
	B.5.1 convert
	B.5.2 doe
	B.5.3 endsave
	B.5.4 get_data
	B.5.5 log
	B.5.6 monte_carlo
	B.5.7 no_exec
	B.5.8 option
	B.5.9 save
	B.5.10 sweep
	B.5.11 translate.ise

	B.6 DBIT
	B.6.1 The General Tab
	B.6.2 The Matrix Tab
	B.6.3 The Command Menu

