

Chen-Bin Huang

Department of Electrical Engineering
National Tsing Hua University, Taiwan

Waveguide structure

- Core (n₁), cladding (n₂)
- $n_1 > n_2$

Waveguide principle: TIR

- What you already learned
- Numerical aperture (NA)

$$\theta > \theta_c$$
 , $n_1 \sin \theta_c = n_2$

$$1 \cdot \sin \delta = n_1 \sin(\frac{\pi}{2} - \theta) \le \sqrt{n_1^2 - n_2^2}$$

$$\delta \leq \sin^{-1}\left(\sqrt{n_1^2 - n_2^2}\right) \equiv \delta_{\text{max}}$$

$$NA = \sin \delta_{\text{max}} = n_1 \sqrt{2\Delta}, \quad \Delta \equiv \frac{n_1^2 - n_2^2}{2n_1^2}$$

Weakly guiding waveguides: $n_1 \approx n_2$, $\Delta \approx \frac{n_1 - n_2}{n_1}$

Formation of guided modes

- Optical path length AB, BC should give constructive interference
- But is that all?
 - NO! TIR gives additional phase φ!

Phase incurred during TIR

ϕ from Fresnel coefficients

Refresh your memory when TIR:

$$\cos(\theta_t) = -j\sqrt{\left(\frac{n_1}{n_2}\right)^2 \sin^2\theta_i - 1}$$

• TE
$$r_{TE} = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} = \frac{n_1 \cos \theta_i + j \sqrt{n_1^2 \sin^2 \theta_i - n_2^2}}{n_1 \cos \theta_i - j \sqrt{n_1^2 \sin^2 \theta_i - n_2^2}} = e^{-j\phi_{TE}}$$

$$\phi_{TE} = -2 \tan^{-1} \left(\frac{\sqrt{n_1^2 \sin^2 \theta_i - n_2^2}}{n_1 \cos \theta_i} \right) = -2 \tan^{-1} \left(\sqrt{\frac{2\Delta}{\cos^2 \theta_i} - 1} \right)$$

• TM
$$r_{TM} = \frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_2 \cos \theta_i + n_1 \cos \theta_t} = \frac{j n_1 \sqrt{(\frac{n_1}{n_2})^2 \sin^2 \theta_i - 1 - n_2 \cos \theta_i}}{j n_1 \sqrt{(\frac{n_1}{n_2})^2 \sin^2 \theta_i - 1 + n_2 \cos \theta_i}} = e^{-j\phi_{TM}}$$

$$\phi_{TM} = -2 \tan^{-1} \left(\frac{n_1 \sqrt{(n_1/n_2)^2 \sin^2 \theta_i - 1}}{n_2 \cos \theta_i} \right)$$

Finding the modes

Writing out the phase difference, eventually you see only the k_y component matters:

Consider multiple rays

• Interference → transverse mode profile

Standing wave

- In the y-direction only
- The transverse pattern propagates in z-direction

Waveguide mode profile

Fundamental mode (m=0): almost axial

Normalized frequency V

Determines how many modes in a waveguide

$$V \equiv \frac{2\pi a}{\lambda_0} \sqrt{n_1^2 - n_2^2} = \frac{2\pi a}{\lambda_0} NA$$

$$V \equiv \frac{2\pi a}{\lambda_0} \sqrt{n_1^2 - n_2^2} = \frac{2\pi a}{\lambda_0} NA \qquad m \leq \frac{(2V + \phi_m)}{\pi} \quad \text{, note } \phi_m < 0$$

Single-mode (only m=0 mode, $\phi_m \rightarrow -\pi$) slab waveguide: $V < \frac{\pi}{2}$

$$V < \frac{\pi}{2}$$

Solving the modes

Analytical expression

Graphical solution

Higher-order modes have cut-off

Waveguide mode profile

- Large V: higher-order modes exist
- Higher-order modes penetrates more into the cladding

TE and TM modes

- Finding the TM modes: all you need to do is change the $\phi_{m,TE}$ in the above derivations to $\phi_{m,TM}$
- Of course, the resulting same order (TE, TM)-modes will have different θ_{m}
- Note: B_z for TE and E_z for TM!!
 - Only possible in waveguides

Intermodal dispersion

- Different transverse modes travel at different velocities
- But do higher-order modes travel slower?
 - We need to understand <u>dispersion diagram/relation</u>

Dispersion diagram

- For TE_m modes
- The slope gives the group velocity v_g

Intramodal dispersion

- Same transverse mode: wavelength dependence
- TE₀ mode: longer wavelength travels faster
 - Matches our understanding to typical n(λ)

Planar lightwave circuit (PLC)

Fabrication processes

Real PLC

Arrayed waveguide grating

