Lesson 2 Refraction and Reflection

Chen-Bin Huang

Department of Electrical Engineering
Institute of Photonics Technologies
National Tsing Hua University, Taiwan

Outline

Normal incidence of plane wave

- Oblique incidence of TE and TM plane waves
 - Law of reflection
 - Snell's law
- Total internal reflection
 - Near-field enhancement

2015光電工程導論 Introduction to Optoelectronic En...

課程編號: MOOC_00_001

課程時間:2015-02-23-2015-04-26

課程費用:免費

<mark>清華大學</mark> 黃承彬老師

For detailed derivations, please refer to my MOOCs course: http://mooc.nthu.edu.tw/sharecourse/course/view/courseInfo/53

Reflection

Gives us the natural beauties

Refraction

Refractive index and the speed of light

The wavelength in a medium is shorter than in vacuum

$$\lambda = \lambda_0 / n$$

The speed of light is ω/k . Since k_0 becomes $k = nk_0$ in a medium,

$$v = \omega / (nk_0) = (\omega / k_0) / n \implies v = c / n$$

The refractive index, n, of a medium is defined as the ratio:

$$n \equiv c / v$$

The refractive index is usually > 1. But it can sometimes be < 1.

Derivations of Fresnel coefficients

- Normal incidence
- Oblique incidence
 - TE
 - TM

$$r_{TE} = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

$$t_{TE} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_i} \qquad t_{TE} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i}$$

$$r_{TM} = \frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i}$$
$$t_{TE} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_t}$$

 (ε_2, μ_0)

External reflection

- $n_1 < n_2$
- Air-glass interface

Brewster angle (TM) streeth special!
$$\theta_B + \theta_t = \frac{\pi}{2}$$

Brewster's angle: another perspective

- Why only TM mode?
- Recall that

$$\theta_B + \theta_t = \frac{\pi}{2}$$

$$r_{TM} = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_1 \cos \theta_t + n_2 \cos \theta_i} = 0$$

Internal reflection

- $n_1 > n_2$
- Glass-air interface (n₁/n₂=1.5)

Total internal reflection

- Only if $n_1 > n_2$
- Incident angle > critical angle

Rainbows

Primary rainbow

Rainbows

- Secondary rainbow
- 2 TIRs

The evanescent wave

The "transmitted wave" when total internal reflection occurs:

$$r_{\perp} = \frac{E_{0r}}{E_{0i}} = \frac{\left[n_{i}\cos(\theta_{i}) - n_{t}\cos(\theta_{t})\right]}{\left[n_{i}\cos(\theta_{i}) + n_{t}\cos(\theta_{t})\right]}$$

Since $sin(\theta_t) > 1$, θ_t doesn't exist, so computing r_{\perp} is impossible.

Let's check the reflectivity, R, anyway. Use Snell's Law to eliminate θ_t :

$$\cos(\theta_t) = \sqrt{1 - \sin^2(\theta_t)} = \sqrt{1 - \left(\frac{n_i}{n_t}\right)^2 \sin^2(\theta_i)} = \sqrt{\text{Neg. Number}}$$

Substituting this expression into the above one for r_{\perp} and

redefining
$$R$$
 yields:
$$R \equiv r_{\perp} r_{\perp}^* = \left(\frac{a - bi}{a + bi}\right) \left(\frac{a + bi}{a - bi}\right) = 1$$

So all power is reflected; the evanescent wave contains no power.

Some interfaces are unique!

- The start medium is having a higher index
- Formation of evanescent wave
 - Imaginary wave-vector component in z-direction

$$k_2^2 = n_2^2 \left(\frac{\omega}{c}\right)^2 = k_x^2 + k_z^2$$

The evanescent-wave k-vector

The evanescent wave k-vector must have x and y components:

$$k_{tz} = k_t \cos(\theta_t)$$

Using Snell's Law,

$$\sin(\theta_t) = (n_i/n_t) \sin(\theta_t)$$
, so k_{tz} is meaningful.

And again:

$$\cos(\theta_t) = [1 - \sin^2(\theta_t)]^{1/2} = [1 - (n_i/n_t)^2 \sin^2(\theta_t)]^{1/2}$$
$$= \pm j\gamma$$

$$E_t(x,z,t) = E_0 \exp[-k\gamma z] \exp[i[\omega t - k(n_i/n_t)\sin(\theta_i)x]$$

The evanescent wave decays exponentially in the transverse direction.

TIR: field enhancement at surface!

- At critical angle ($\theta_t = \pi/2$):
- $t_{TE} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t} \qquad t_{TM} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i}$ $2n_1\cos\theta_i$
- TM mode is special!!
 - Sanity?

Frustrated total internal reflection

By placing another surface in contact with a totally internally reflecting one, total internal reflection can be **frustrated**.

Total internal reflection

Frustrated total internal reflection

Engineering aspect!

FTIR, the evanescent wave, and fingerprinting

Summary

Normal and oblique incidence of plane waves

- TM mode is special
 - Brewster's angle
- Total internal reflection
 - TM mode is special