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Outline 

 Review: wave equations in source-free region

 Review: time-harmonic fields in source-free region

 The birth of waves?
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 Wave equations
 Homogeneous equations in time-domain
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Time-domain Maxwell’s equations

 Simple medium
 Linear, homogeneous, isotropic:

 Charge-free: 
 Non-conducting:
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Time-domain homogeneous wave equation-(1)

 Take curl of Eq. (1)
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Time-domain homogeneous wave equation-(2)

 Take curl of Eq. (3)
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Comments

 We assumed charge-free and current-free:
 These equations only deals how the waves propagate.

 They do not tell us how the waves are generated.

 We assume a simple medium. If the medium is complicated: 
(nonlinear, anisotropic, inhomogeneous), then the wave 
equation will be different.
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 Time-harmonic fields (frequency-domain)
Wave equation with sinusoidal time functions
 Helmholtz’s equations
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Why time-harmonics?

 Any periodic (aperiodic) function  superposition of 
discrete (continuous) sinusoidal functions by Fourier series 
(integral).

 Maxwell’s equations are linear. 
 Sinusoidal sources produce sinusoidal fields of the same 

frequency in steady state. 

 Total field can be derived by superposition of individual 
sinusoidal responses.

 Easy to operate if phasors are used: 
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Scalar to vector phasor notation

 Scalar phasors of voltages & currents are sufficient to 
describe steady-state response of TX lines:

 Vector phasors of E-field and M-field are required to 
describe time-harmonic EM fields:
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Phasor: time  frequency

 Extract magnitude and phase frequency-by-frequency
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Frequency-domain Maxwell’s equations

 For simple, source-free, current-free medium
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Frequency-domain wave equation-(1)

 Take curl of Eq. (1) HjE
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Frequency-domain wave equation-(2)

 Take curl of Eq. (3)
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The EM spectrum

 Can all be calculated by Maxwell’s equations
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 Radiation
 Generation of waves
 Brewster’s angle revisited
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Where does light come from?

The wave equation describes the propagation of light. 

But where does light come from in the first place?

( ) ( )qP t Nqx t
 

N: the number density of charged particles

q: is the charge of each particle

is the position of the charge.  

Assuming each charge is identical and has identical motion.

( )qx t

Note that matter’s polarization is 
analogous to the polarization of light. 

Some matter must emit the light. 

It does so through the matter’s polarization:
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How to take medium into account?

 In vacuum

 Now that we have polarization

 If polarization is taken as scalar
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Polarized and unpolarized media

Unpolarized medium

(random phase) Polarized medium

On the right, the displacements of the charges are correlated, 
so it is polarized at any given time.
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The induced polarization,    , contains the effect of the 
medium and is included in Maxwell’s Equations:

Maxwell's equations for a medium
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But                   is just the charge acceleration!  

This extra term turn it into the Inhomogeneous Wave Equation:

The polarization is the 
driving/source term and tells 
us what light will be emitted.
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So it’s accelerating charges that emit light!
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Sources of light

Linearly accelerating charge

Synchrotron radiation—
light emitted by charged 
particles deflected by a 
magnetic field

Bremsstrahlung (Braking radiation)—
light emitted when charged particles 
collide with other charged particles

Accelerating charges emit light

B
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Check: earthquake light!
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Electric dipole radiation

 Two spatially separated charges
 One positive

 One negative
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Electric dipole radiation-cont.

 Frequency, wavelength
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Radiation pattern

 Toroidal pattern

 No field in the direction of motion!!
 How to align the antennas of your wireless router?


